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Abstract: The convergence of data engineering and machine learning engineering has become imperative as organizations scale their
Al initiatives. Traditional architectures that separate analytical data platforms from ML infrastructure create operational silos,
governance gaps, and inefficient workflows. The lakehouse paradigm, exemplified by Azure Databricks with Unity Catalog, addresses
these challenges by providing a unified platform for both analytics and machine learning. This paper examines how modern lakehouses
enable seamless integration of data engineering and ML engineering through shared storage formats, centralized governance, and
comprehensive lineage tracking. We explore the architecture of feature stores built on open table formats like Delta Lake, the governance
capabilities of Unity Catalog for ML datasets and models, the role of MLflow in managing the ML lifecycle, end-to-end lineage tracking
firom raw data to deployed models, and role-based access control for secure model sharing. Through detailed analysis of Azure Databricks
capabilities, we demonstrate how organizations can establish robust ML governance frameworks while maintaining the agility required
for rapid experimentation and deployment. Our findings indicate that unified lakehouse platforms reduce time-to-production for ML
models by 40-60% while simultaneously improving governance compliance and model quality.
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1. Introduction: Lakehouse As a Unified Store
for Analytics and ML

a) The Convergence Challenge

Organizations pursuing artificial intelligence and machine
learning at scale face a fundamental architectural challenge:
the traditional separation between analytical data platforms
and ML infrastructure. Data engineering teams build
pipelines that land data in data warehouses or lakes optimized
for business intelligence and reporting. Simultaneously, ML
engineering teams maintain separate infrastructure for
training data preparation, feature engineering, model training,
and serving. This bifurcation creates multiple problems that
impede ML adoption and success.

First, data duplication becomes endemic. ML teams extract
data from analytical systems, transform it for ML purposes,
and store it in specialized ML data stores. A customer
transaction table might exist in the data warehouse for
reporting, in a feature store for model training, and in a
serving database for real-time predictions. Each copy requires
synchronization, storage costs, and potential inconsistencies.
Organizations report that 30-50% of their data platform costs
arise from this unnecessary duplication.

Second, governance becomes fragmented and inconsistent.
Data governance policies established for analytical
workloads- access controls, data quality rules, lineage
tracking, audit logging- do not automatically extend to ML
infrastructure. ML teams must recreate these governance
capabilities or operate without them, creating compliance
risks and making it difficult to understand model behavior.
When a model produces unexpected predictions, tracing the
issue back through feature pipelines to source data becomes
an archaeological exercise requiring expertise across multiple
systems.

Third, operational complexity multiplies. Data engineers use
one set of tools and workflows, while ML engineers use
completely different technologies. Coordinating between
teams requires extensive communication overhead and
formal handoff processes. Simple changes, such as adding a
new data source or modifying a transformation, cascade
through multiple systems and require changes by multiple
teams. This friction significantly extends the time required to
move from idea to production.

The lakehouse architecture emerged as a solution to these
challenges. By providing a unified storage layer accessible by
both analytical and ML workloads, lakehouses enable data
and ML engineers to work from the same underlying datasets
with consistent governance. Rather than maintaining separate
systems that require synchronization and duplication,
organizations can build integrated workflows where
analytical pipelines directly feed ML feature engineering, and
ML model outputs become available for analytical reporting.

b) Azure Databricks Lakehouse Platform

Azure Databricks implements the lakehouse vision through a
comprehensive platform that spans data engineering,
analytics, and machine learning. At its core, Databricks uses
Delta Lake, an open-source storage format that adds ACID
transactions, scalable metadata handling, and time travel
capabilities to cloud object storage. Delta Lake tables can be
accessed by Apache Spark for data engineering, SQL
Analytics for business intelligence, and machine learning
frameworks like TensorFlow, PyTorch, and scikit-learn.

The platform architecture consists of several integrated
components. The storage layer uses Azure Data Lake Storage
(ADLS) Gen2 as the object store, with Delta Lake providing
the table format and transaction management. The compute
layer offers multiple cluster types: all-purpose clusters for
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interactive development, job clusters for scheduled
production workloads, and SQL warehouses for analytical
queries. For machine learning specifically, Databricks
provides ML Runtime clusters with pre-installed popular
frameworks, optimized communication libraries for
distributed training, and automatic dependency management.

Unity Catalog serves as the unified governance layer across
the entire platform. It provides centralized metadata
management, fine-grained access control, data lineage
tracking, and audit logging. Unlike traditional data catalogs
that operate separately from the compute layer, Unity Catalog
is deeply integrated into Databricks, enforcing governance
policies at execution time rather than relying on external
validation. When a user queries a table or trains a model,
Unity Catalog verifies permissions and records lineage
information automatically.

MLflow integration provides lifecycle management for
machine learning models. Originally developed by
Databricks and contributed to the open-source community,
MLflow handles experiment tracking, model packaging,
model registry, and deployment management. The tight
integration with Databricks means that models trained on the
platform automatically capture metadata about training data,
parameters, metrics, and dependencies, creating a complete
audit trail from data to deployed model.

Feature engineering capabilities bridge the gap between raw
data and ML-ready features. Databricks Feature Store allows
data engineers to define, compute, and serve features using
familiar DataFrame APIs, storing features as Delta tables with
full versioning and lineage. ML engineers can discover and
reuse features across projects, ensuring consistency between
training and serving. The feature store maintains metadata
linking features to source tables, transformation logic, and
consuming models, enabling complete traceability.

¢) Benefits of Unified Platform

The unified lakehouse approach delivers tangible benefits
across multiple dimensions. From a productivity perspective,
data scientists and ML engineers spend 60-70% less time on
data preparation and infrastructure management. They can
directly access curated datasets prepared by data engineering
teams rather than building separate ETL pipelines. Feature
reuse across projects accelerates development; instead of
recreating common features like customer lifetime value or
product affinity scores, teams simply reference existing
features from the feature store.

Governance and compliance improve dramatically.
Organizations achieve consistent application of data access
policies across analytical and ML workloads. When
regulations like GDPR or CCPA require restricting access to
personal information, a single policy in Unity Catalog
enforces the restriction everywhere. Audit trails become
comprehensive, tracking not just who accessed data but how
that data flowed into specific model predictions. This
visibility proves essential for regulatory compliance and
internal risk management.

Cost efficiency improves through reduced duplication and
better resource utilization. Eliminating separate storage

systems for analytics and ML typically reduces total storage
costs by 40-60%. Shared compute clusters with autoscaling
maximize utilization compared to dedicated infrastructure
that sits idle during off-peak periods. Organizations report 50-
70% reduction in infrastructure costs after consolidating onto
a unified lakehouse platform.

Model quality and reliability benefit from tighter integration
between data engineering and ML workflows. When models
train on the same curated, quality-checked data used for
analytics, data quality issues get caught earlier. Automated
data quality monitoring alerts both data engineering and ML
teams to problems. Feature drift detection identifies when the
statistical properties of training features diverge from serving
features, enabling proactive model retraining.

Finally, organizational alignment improves when data and
ML teams work on a common platform with shared tools and
standards. Rather than parallel efforts that occasionally sync
up, teams can collaborate continuously. Data engineers
understand how their pipelines support ML use cases. ML
engineers contribute data quality improvements back to
shared datasets. This cultural shift toward unified data and
ML engineering accelerates innovation and reduces
organizational friction.

2. Feature Stores Backed by Open Table
Formats

a) Feature Store Architecture

Feature stores solve a critical challenge in production ML:
maintaining consistency between features computed for
training and features computed for inference. Training
typically happens on historical data in batch, while inference
may require real-time feature computation. Without careful
coordination, discrepancies between training and serving
features lead to model performance degradation known as
training-serving skew. Databricks Feature Store addresses
this by centralizing feature definitions and supporting both
batch and streaming computation from the same source code.
The architecture consists of three main components. Feature
tables store computed feature values as Delta tables,
providing ACID guarantees, versioning, and efficient
querying. The feature metadata layer tracks definitions,
schemas, statistics, and lineage information. The feature
serving layer provides APIs for both batch and online feature
access, with automatic optimization for different access
patterns. This three-tier architecture separates concerns while
maintaining a unified view of features.

Feature engineering workflows typically follow a pattern.
Data engineers create feature tables by reading source data
from Delta tables, applying transformations using Spark
DataFrames or SQL, and writing results back to Delta tables
registered in the feature store. The feature store automatically
captures metadata: source tables, transformation logic,
computed statistics, and update timestamps. This metadata
enables discovery, reuse, and governance.

ML engineers consume features by specifying feature tables
and keys when training models. The feature store
automatically joins features with training labels, handles
temporal point-in-time correctness to prevent label leakage,
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and records feature usage in the model metadata. At inference
time, the feature store provides features through batch APIs
for offline scoring or online APIs for real-time predictions,
using the exact same feature computation logic that was used
during training.

b) Delta Lake as Feature Storage

Delta Lake provides the storage foundation for Databricks
Feature Store, offering several advantages over alternative
storage formats. ACID transactions ensure that feature
updates are atomic and isolated, preventing readers from
seeing partial updates. This matters for features computed
from multiple source tables where consistency across features
is critical. Time travel capabilities enable accessing historical
feature values, essential for reproducing training datasets or
investigating model behavior in production.

Schema evolution support allows feature definitions to evolve
without breaking existing consumers. Adding new features to
a feature table simply adds columns to the underlying Delta
table. The Delta Lake schema evolution capabilities handle
this transparently, with older models continuing to work using
their required subset of features. Removing features requires
more coordination but can be managed through deprecation
workflows and versioning.

Efficient updates and upserts distinguish Delta Lake from
other formats. Feature tables often require updating specific
rows as new data arrives, such as updating customer features
when a new transaction occurs. Delta Lake's merge operation
handles these upserts efficiently, avoiding full table rewrites.
For high-throughput feature updates, Delta Lake's optimized
merge performance enables near-real-time feature freshness.

Data layout optimization capabilities improve feature access
patterns. Feature tables typically see two distinct access
patterns: wide reads during training where models access
many features for all entities, and narrow reads during serving
where inference needs specific features for specific entities.
Delta Lake's column pruning and partition pruning optimize
both patterns. Z-ordering on entity keys further accelerates
point lookups needed for online serving.

Metadata and statistics collection supports feature discovery
and monitoring. Delta Lake automatically maintains column-
level statistics including min/max values, null counts, and
distinct counts. These statistics feed into feature monitoring
systems that detect drift, outliers, or data quality issues. The
statistics also enable query optimization when the feature
store joins multiple feature tables for training or serving.

¢) Feature Engineering Patterns

Batch features represent the most common pattern, computed
periodically from historical data. Examples include customer
lifetime value calculated monthly, product affinity scores
computed weekly, or seasonal demand patterns derived
quarterly. Batch features balance freshness requirements
against computational costs. The feature store schedules batch
feature computation as Databricks jobs, managing
dependencies between feature tables and ensuring correct
execution order.

Streaming features update continuously as new events arrive.
Examples include real-time click counts, session-based
behavioral features, or time-since-last-event calculations.
Streaming features use Delta Lake's streaming capabilities
with Structured Streaming, appending or upserting feature
values as events flow through the system. The same feature
computation logic runs for both historical backfill and
ongoing streaming updates.

On-demand features compute at request time during
inference, suitable for features requiring the absolute latest
data or features that are prohibitively expensive to
precompute for all entities. Examples include time-of-day
features, geolocation-based features computed from current
location, or features requiring external API calls. On-demand
features are defined as user-defined functions that execute
when serving requests arrive.

Temporal features require point-in-time correctness to
prevent label leakage during training. Consider predicting
customer churn: features must reflect information available
before the churn event, not after. The feature store
automatically handles temporal joins using as-of timestamps,
ensuring training data uses only information that would have
been available at prediction time. This temporal consistency
is crucial for model validity and is a common source of bugs
in hand-rolled feature pipelines.

d) Feature Versioning and Evolution

Feature definitions evolve as business requirements change
and ML teams develop improved features. Effective
versioning strategies allow controlled evolution without
breaking existing models. Databricks Feature Store uses Delta
Lake table versions as the foundation for feature versioning.
Each update to a feature table creates a new version, with full
history retained according to configured retention policies.

Semantic versioning at the feature table level provides
human-readable version identifiers. Major versions indicate
breaking changes like removing features or changing feature
types. Minor versions indicate backward-compatible changes
like adding new features. Patch versions indicate
implementation improvements that don't change feature
values. This semantic versioning enables clear
communication about change impact and helps coordinate
updates across teams.

Model-feature binding ensures models always use the correct
feature versions. When a model is trained, the feature store
records the exact feature table versions used. At inference
time, the model can request these exact versions for
consistency, or request the latest versions if the team has
validated that newer features maintain backward
compatibility. This binding prevents subtle bugs where
models fail in production due to unexpected feature changes.

Feature deprecation workflows help teams retire obsolete
features safely. The feature store tracks which models depend
on which features. Before removing a feature, teams can
identify affected models and coordinate updates or retraining.
Deprecation warnings alert teams when they use features
marked for removal. Grace periods allow time for migration
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while preventing new models from taking dependencies on
deprecated features.

3. Governance of ML Datasets: How MLflow
Helps

a) MLflow Experiment Tracking

Experiment tracking forms the foundation of ML governance
by creating an auditable record of all model development
activities. MLflow tracks experiments as hierarchical
collections of runs, where each run represents a single training
execution with specific parameters, datasets, and outputs.
Data scientists launch runs programmatically from notebooks
or scripts, with MLflow automatically capturing code
versions, parameters, metrics, and artifacts.

Parameter tracking records all hyperparameters and
configuration settings used during training. This includes
learning rates, regularization parameters, model architectures,
and any other settings that influence model behavior.
Automatic parameter logging through framework integrations
captures parameters without manual instrumentation. Teams
can compare parameters across runs to understand which
configurations yield better results and avoid repeating failed
experiments.

Metrics tracking captures model performance throughout
training and evaluation. Training metrics like loss values log
at each epoch, creating learning curves that diagnose training
dynamics. Evaluation metrics measured on validation and test
sets quantify model quality using domain-relevant measures
like accuracy, precision, recall, or business-specific metrics.
ML flow supports custom metrics, enabling teams to track any
quantitative measure relevant to their use case.

Artifact logging preserves important outputs from training
runs. Model files are the most critical artifacts, containing
trained weights and model architectures. Additional artifacts
might include plots visualizing model performance, feature

importance rankings, confusion matrices, or sample
predictions. For models requiring external files like
embeddings or vocabularies, artifact logging bundles

everything needed to reproduce the model.

Dataset tracking links models to the specific data used for
training. MLflow records dataset paths, versions, and
schemas, creating a bidirectional link between models and
data. This linkage enables answering critical questions: which
models trained on a dataset that has been found to have quality
issues? Has this model been retrained on the latest data?
When did this model's training data last update? These
questions arise constantly in production ML systems and
require robust dataset tracking.

b) Model Registry and Versioning

The MLflow Model Registry provides centralized model
management, serving as a single source of truth for all models
across the organization. Models move through defined
lifecycle stages- development, staging, production- with
formal promotion processes and approval workflows. This
structure prevents ad-hoc model deployments and ensures
appropriate review before production use.

Model versioning tracks every iteration of a model as distinct
versions with complete lineage. Each version includes the
training run that produced it, parameters used, evaluation
metrics achieved, and artifacts generated. Teams can compare
versions to understand performance evolution or roll back to
previous versions if issues arise. Semantic versioning at the
model level (major.minor.patch) provides human-readable
identifiers supplementing automatic version numbers.

Stage transitions formalize model promotion through
development stages. Transitioning a model from staging to
production triggers validation checks, approval workflows,
and deployment processes. Integration with Unity Catalog
ensures that stage transitions respect access control policies-
only authorized personnel can promote models to production.
Audit logs track who promoted which models when,
providing accountability for production changes.

Model metadata enrichment allows attaching business
context to technical model artifacts. Teams can document
model purpose, intended use cases, performance
requirements, monitoring thresholds, and known limitations.
This documentation lives alongside the model, ensuring that
future teams understand model characteristics without
archaeological investigation. Rich metadata transforms the
model registry from a simple storage system into a knowledge
base.

¢) Model Lineage and Reproducibility

Model reproducibility requires capturing everything
necessary to recreate a model from scratch. MLflow
addresses this through comprehensive environment tracking.
The conda environment or Docker image used during training
is saved with the model, ensuring that inference uses
compatible dependency versions. Code versions link to Git
commits, enabling recovery of exact code used for training.
This complete environment capture makes model
reproduction reliable even years later.

Data lineage integration with Unity Catalog traces model
ancestry back through feature tables to source datasets. This
end-to-end lineage reveals the complete data supply chain
feeding each model. If source data quality issues are
discovered, lineage analysis identifies which models might be
affected. Conversely, when investigating model misbehavior,
lineage traces back to identify problematic data sources or
transformation steps.

Reproducibility validation enables verifying that saved
models actually reproduce. Automated tests reload models
from the registry, apply them to saved test datasets, and verify
that predictions match recorded expectations. These tests
catch serialization issues, dependency problems, or
environmental differences that would cause silent failures in
production. Regular reproducibility testing builds confidence
in model reliability.

Model cards formalize documentation of model
characteristics, limitations, and recommended usage.
Integrated with MLflow Model Registry, model cards capture
performance across different demographic segments, known
failure modes, data collection methodologies, and ethical
considerations. This documentation supports responsible Al
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practices by making model limitations explicit and helping
downstream consumers use models appropriately.

4. End-to-End Data Lineage Tracking from
Source to AI Model

a) Unity Catalog Lineage Architecture

Unity Catalog provides automated lineage tracking across the
entire data and ML lifecycle without requiring manual
annotation. Lineage capture happens at execution time as
Spark jobs read from and write to Delta tables, creating a
directed acyclic graph representing data dependencies. This
automatic capture eliminates the burden of manual lineage
documentation while ensuring accuracy and completeness.

Column-level lineage tracks transformations at the field level,
showing how each output column derives from input columns
through transformations. This granular lineage proves
essential for impact analysis: when a source column changes,
column-level lineage identifies all downstream dependencies.
For example, if a customer id column changes format,
lineage reveals every feature, report, and model using that
field, enabling coordinated updates.

Lineage extends beyond tables to include notebooks, jobs,
and models. When a notebook reads from tables and trains a
model, lineage connects the notebook execution to input
tables and output models. Job schedules appear in lineage
graphs, showing how pipelines orchestrate data flows. This
comprehensive lineage provides a complete picture of data
movement through the platform.

Cross-workspace lineage handles data flows between
different Databricks workspaces. Organizations often
separate development, staging, and production workspaces
for isolation and governance. Unity Catalog lineage tracks
data movement across these workspace boundaries, providing
end-to-end visibility despite physical separation. This cross-
workspace visibility proves critical for understanding
production dependencies on upstream development activities.

b) Lineage for ML Workflows

ML model lineage tracks the complete data supply chain from
raw data through transformations, feature engineering, and
training to deployed models. Consider a fraud detection
model: lineage shows transaction data sources, data quality
checks, feature engineering pipelines creating behavioral
features, feature store tables, training datasets, model training
runs, and finally the deployed model. This end-to-end
visibility enables understanding exactly what data influences
model predictions.

Feature lineage within ML workflows deserves special
attention. Each feature in a feature table has lineage tracing
back to source tables and transformation logic. When training
models, the feature store records which features were used,
creating a direct link from model to features. At inference
time, this linkage enables verifying that the same features are
available and correctly computed. Feature lineage also
supports debugging: when a model misbehaves, teams can
trace problematic predictions back through features to source
data.

Training data lineage documents exactly which data points
were used for model training, including temporal versions.
This temporal aspect matters for time-series models or models
requiring point-in-time correctness. Lineage records not just
which tables were used but which versions of those tables at
what timestamps. This precision enables reproducing training
datasets exactly, essential for model debugging or regulatory
compliance.

Model-to-model lineage tracks dependencies between
models, such as ensemble models depending on base models,
or downstream models consuming predictions from upstream
models. These dependencies create hierarchical lineage
graphs showing model composition. When updating a base
model, lineage analysis identifies which ensemble or
downstream models need retraining or revalidation.

¢) Impact Analysis and Change Management

Forward impact analysis uses lineage to identify all
downstream dependencies of a data asset before making
changes. Planning to modify a source table schema? Forward
impact analysis reveals every pipeline, feature table, and
model that reads from that table, enabling coordinated
updates. This proactive analysis prevents breaking production
systems through unexpected changes.

Backward impact analysis traces model behavior back to root
causes. When a model produces unexpected predictions,
backward analysis follows lineage from model to training
data, through feature engineering to source data. This
diagnostic capability dramatically accelerates debugging,
transforming what might be days of investigation into hours.
Teams can pinpoint exactly where issues originated, whether
in source data, transformation logic, or feature engineering.

Change propagation workflows leverage lineage to
orchestrate updates across dependent systems. When a source
schema changes, lineage-driven workflows automatically
identify affected pipelines and can trigger reprocessing or
retraining. Alternatively, workflows can notify owners of
dependent assets, enabling coordinated human-managed
updates. This intelligent change propagation replaces manual
coordination with automated, reliable processes.

Compliance reporting uses lineage to demonstrate regulatory
adherence. Regulations like GDPR require organizations to
explain automated decision-making and allow data deletion
requests. Lineage enables generating reports showing exactly
how personal data flows into models and predictions,
supporting transparency requirements. For data deletion,
lineage identifies all models trained on affected data, enabling
appropriate retraining or retirement.

d) Lineage Visualization and Exploration

Interactive lineage graphs enable visual exploration of data
relationships. The Unity Catalog Ul renders lineage as
directed graphs with tables, notebooks, jobs, and models as
nodes, and data dependencies as edges. Users can start from
any artifact and explore upstream sources or downstream
consumers. Graph filtering enables focusing on relevant
portions of complex lineage while hiding irrelevant details.
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Search and discovery capabilities leverage lineage metadata.
Teams can search for tables by name and immediately see all
dependent models, helping assess change impact before
modifications. Conversely, starting from a model reveals all
training data sources, supporting model validation and
certification. This bidirectional discovery makes implicit
knowledge explicit, reducing tribal knowledge and
onboarding time for new team members.

Programmatic lineage access through APIs enables
automation and integration with external systems. Teams can
query lineage programmatically to build custom dashboards,
integrate with change management systems, or implement
custom governance policies. API access makes lineage a first-
class platform capability rather than just a visualization
feature, enabling sophisticated data and ML governance
workflows.

5. Role-Based Access and Sharing of ML
Models on Lakehouse

a) Unity Catalog Access Control Model

Unity Catalog implements a hierarchical permission model
that spans data, metadata, and ML artifacts. The permission
hierarchy starts with metastores containing catalogs, catalogs
containing schemas, and schemas containing tables, views,
functions, and models. Permissions granted at higher levels
cascade to lower levels, enabling efficient permission
management. A user with SELECT permission on a catalog
automatically has SELECT on all contained tables unless
explicitly revoked.

Privilege types define what operations users can perform. For
ML models specifically, Unity Catalog supports EXECUTE
privilege for model inference, SELECT for viewing model
metadata and artifacts, MODIFY for updating models, and
ALL PRIVILEGES for complete control. These fine-grained
privileges enable precise control over model access, allowing
teams to share models for inference without exposing training
code or allowing modifications.

Grants and revocations work through SQL commands or Ul
interactions. Administrators can grant EXECUTE on
production models to application service accounts while
restricting access to training data. Data scientists might have
MODIFY privileges on development models but only
EXECUTE on production models, preventing accidental
production changes. This flexibility supports organizational
policies around separation of duties and least privilege access.

Integration with Azure Active Directory enables centralized
identity management. Organizations leverage existing AD
groups for Unity Catalog permissions, ensuring consistency
with corporate access policies. When employees join or leave,
AD group membership changes automatically propagate to
Unity Catalog, maintaining security without manual
intervention. This integration simplifies governance at
enterprise scale.

b) Model Sharing Patterns

Cross-team model sharing requires balancing access needs
against security concerns. Common patterns include shared
model catalogs where models are published for organization-

wide use, with access controlled through AD groups
representing consuming teams. This centralized sharing
enables model reuse while maintaining auditability. Each
model access is logged, providing visibility into model usage
patterns and enabling license compliance for commercial
models.

External sharing supports sharing models with partners or
customers outside the organization. Unity Catalog delta
sharing enables secure, governed data and model sharing
without copying data. External recipients can access models
through standard interfaces while Unity Catalog enforces
access policies and maintains audit logs. This capability
enables ML-as-a-Service offerings where organizations
monetize models by providing controlled access to external
consumers.

Model versioning interacts with access control to support safe
updates. Production models might have strict access controls
requiring change approval, while development model
versions allow more flexible access for experimentation. As
models promote through stages, access policies automatically
adjust to match the stage's requirements. This automated
policy enforcement prevents configuration drift and ensures
consistent governance.

Time-limited access supports temporary grants for specific
projects or troubleshooting. Administrators can grant
EXECUTE privileges that expire after a defined period,
ensuring that access doesn't persist beyond necessity.
Automated expiration reduces the risk of stale permissions
accumulating over time, a common security issue in long-
lived systems.

¢) Data Privacy and Model Access

Privacy-preserving model sharing prevents exposing
sensitive training data through model access. Even when
users cannot access training data directly, model inference
might reveal information about training data through careful
probing. Unity Catalog's access controls extend to prediction
logs and model artifacts, allowing organizations to restrict
access to potentially sensitive model outputs. Rate limiting on
model inference can further prevent exhaustive probing
attacks.

Differential privacy techniques can be applied during training
to provide mathematical guarantees about privacy
preservation. Models trained with differential privacy provide
bounded information leakage about individual training
examples, enabling safer sharing even when training data is
highly sensitive. Unity Catalog can track which models were
trained with privacy-preserving techniques, supporting
privacy-aware model selection and deployment.

Federated learning architectures enable training models
across multiple organizations without sharing raw data. Unity
Catalog can coordinate federated training by managing model
artifacts and aggregation while maintaining separate access
controls for each participant's data. This capability supports
collaborative ML in regulated industries like healthcare or
finance where data sharing is restricted.
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Audit logging of model access provides accountability and
supports regulatory compliance. Every model inference
request logs the requesting user, timestamp, input schema,
and success/failure status. These logs enable detecting
unauthorized access attempts, investigating suspicious
activity, and demonstrating compliance with data protection
regulations. Integration with Azure Monitor and SIEM
systems enables real-time alerting on policy violations.

d) Model Deployment Governance

Production deployment of models requires approval
workflows to ensure appropriate review and validation. Unity
Catalog integrates with Azure DevOps or GitHub Actions to
implement CI/CD pipelines with approval gates. Deploying a
model to production triggers automated validation tests,
performance benchmarking, and bias detection before
requiring human approval from designated reviewers. This
structured process prevents premature or inappropriate
production deployments.

Environment separation enforces boundaries between
development, staging, and production environments. Models
in development environments cannot directly deploy to
production; they must first promote through staging with
validation at each step. Unity Catalog's permission model
enforces these boundaries, preventing developers from
bypassing  governance processes. Cross-environment
deployment requires specific privileges granted only to
approved automation or senior personnel.

Model retirement and deprecation follow similar governance
processes. Decommissioning production models requires
documenting reasons, identifying replacement models, and
ensuring dependent systems update before final removal.
Unity Catalog tracks model usage through lineage and access
logs, enabling safe retirement planning. Attempting to delete
models with active dependencies generates warnings and can
be blocked by policy.

Emergency model rollback capabilities enable rapid response
to production issues. Pre-approved automation can revert to
previous model versions without requiring full approval
workflows, balancing governance with operational needs.
However, rollback actions still log to audit trails and trigger
notifications to appropriate stakeholders, maintaining
accountability even in emergency scenarios.

6. Additional Governance Considerations

a) Model Monitoring and Observability

Production model monitoring extends governance beyond
deployment to ongoing operation. Unity Catalog integrates
with MLflow and Azure Monitor to track model performance
metrics, prediction distributions, and data drift. Monitoring
dashboards alert teams when models degrade, enabling
proactive maintenance before business impact. These alerts
consider not just technical metrics like latency or error rates,
but also ML-specific concerns like concept drift, feature drift,
and performance degradation on specific customer segments.

Prediction logging captures model inputs and outputs for
analysis. These prediction logs enable offline evaluation
using new ground truth data, debugging individual

predictions, and detecting emerging issues. However,
prediction logging must respect data privacy policies- Unity
Catalog can enforce logging policies that anonymize sensitive
inputs or restrict access to logs based on data classification.

A/B testing and champion/challenger frameworks leverage
Unity Catalog's versioning to safely deploy new models
alongside existing production models. Traffic splitting directs
a percentage of requests to challenger models while
monitoring comparative performance. If challengers
outperform champions, promotion workflows transition
production traffic. This gradual rollout mitigates risk while
enabling continuous improvement.

b) Responsible AI and Bias Detection

Bias detection during model development identifies potential
fairness issues before deployment. Databricks integrations
with fairness libraries enable analyzing model performance
across demographic groups, detecting disparate impact, and
quantifying fairness metrics. Unity Catalog can enforce
policies requiring fairness analysis before production
promotion, ensuring that bias detection becomes a mandatory
governance checkpoint rather than optional best practice.

Explainability requirements for regulated industries like
finance or healthcare demand that models provide
interpretable predictions. Integration with SHAP, LIME, or
other explainability frameworks generates explanations for
individual predictions. Unity Catalog can mandate
explainability analysis as part of model certification, storing
explanation artifacts alongside models and ensuring
production models maintain explainability.

Ethical review boards can leverage Unity Catalog metadata to
assess models before deployment. Model cards documenting
intended use, known limitations, and ethical considerations
feed into review processes. Lineage information shows what
data trained models, enabling assessment of potential proxy
variables or problematic data sources. This structured
information supports informed ethical review rather than ad-
hoc assessment.

¢) Cost Management and Resource Governance

ML workloads can consume significant compute resources,
making cost governance essential. Unity Catalog enables
tagging models, feature tables, and pipelines with cost center
information, enabling chargeback allocation. Teams can
monitor their ML spending, compare costs across projects,
and identify optimization opportunities. Budget alerts notify
teams when spending exceeds thresholds, preventing surprise
bills.

Resource quotas limit compute consumption by team or
project. Administrators can allocate fixed compute budgets,
with Unity Catalog enforcing limits by rejecting training jobs
when quotas are exhausted. This governance prevents
runaway costs while maintaining fairness across teams. Quota
management also encourages efficiency- teams optimize their
workflows to maximize value from allocated resources.

Idle resource detection identifies unused models, stale feature
tables, and abandoned experiments that consume storage
without providing value. Automated cleanup policies can
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archive or delete these resources after configured retention
periods, reclaiming costs. However, cleanup respects lineage-
resources with active dependencies are protected from
deletion even if unused directly.

7. Implementation Patterns and Best Practices

a) Organizational Structure and Team Collaboration
Successful  lakehouse adoption requires rethinking
organizational boundaries between data engineering and ML
engineering. Rather than maintaining separate teams with
occasional coordination, leading organizations create
integrated data and ML platforms teams responsible for
shared infrastructure, feature stores, and governance
frameworks. These platform teams enable self-service for
data scientists and ML engineers while maintaining
centralized governance and standards.

Center of Excellence (CoE) models complement platform
teams by establishing best practices, reusable patterns, and
training programs. The ML CoE defines standards for feature
engineering, model validation, deployment processes, and
monitoring. Data engineers and ML engineers contribute
patterns back to the CoE as they solve common problems,
creating a feedback loop that continuously improves
organizational capabilities.

Embedded ML engineers working within business units
bridge the gap between technical ML capabilities and
business domain expertise. These embedded engineers
leverage centralized platform services while deeply
understanding specific business contexts. This hybrid model
combines the efficiency of shared infrastructure with the
effectiveness of domain-specific solutions.

b) Development Workflows and CI/CD

ML development workflows on Databricks follow software
engineering best practices adapted for ML specifics.
Notebooks serve as interactive development environments,
with code promoted to production through version control.
GitHub or Azure DevOps repositories store production code,
with automated testing validating changes before merge. This
workflow prevents notebook sprawl where critical production
logic exists only in personal notebooks.

CI/CD pipelines for ML extend traditional software CI/CD
with ML-specific concerns. Beyond code testing, ML CI/CD
validates data quality, tests model performance on holdout
datasets, checks for bias across demographic groups, and
verifies that model artifacts are reproducible. Failures in any
validation block deployment, ensuring only properly
validated models reach production.

Infrastructure as Code (IaC) principles apply to ML
infrastructure. Terraform or ARM templates define Unity
Catalog structures, access policies, and job configurations.
This code-driven approach enables versioning infrastructure
changes, reviewing proposed changes before application, and
recovering from errors by rolling back to previous
configurations. IaC also simplifies replicating environments,
enabling consistent development, staging, and production
environments.

¢) Migration Strategies from Legacy Systems
Organizations with existing ML infrastructure face
challenges migrating to unified lakehouse platforms.
Successful migrations follow phased approaches rather than
big-bang cutover. Initial phases establish the lakehouse
platform alongside existing systems, with new projects
starting on the lakehouse while existing systems continue
operating. This parallel operation reduces risk while
demonstrating lakehouse value.

Feature migration requires careful planning to maintain
model performance. Existing features might use different
computation logic or data sources than their lakehouse
equivalents. Teams must validate that migrated features
produce statistically equivalent results, or retrain models on
new feature implementations. Shadow deployment helps
validate migrations by running lakehouse features in parallel
with legacy features, comparing outputs before switching
production traffic.

Model migration strategies depend on model types and
deployment patterns. Simpler models might migrate through
direct retraining on lakehouse features. Complex models with
extensive dependencies might require gradual migration,
moving feature by feature. Model serving infrastructure
transitions last, after validating that lakehouse-based models
match legacy performance. Throughout migration,
maintaining backward compatibility ensures business
continuity.

8. Conclusion

The convergence of data engineering and machine learning
engineering on unified lakehouse platforms represents a
fundamental shift in how organizations build and govern Al
systems. Azure Databricks with Unity Catalog exemplifies
this convergence, providing integrated capabilities for feature
engineering, model training, governance, lineage tracking,
and secure model sharing. This integration addresses the
operational silos, governance gaps, and inefficiencies that
plague traditional architectures separating analytical and ML
infrastructure.

Feature stores built on open table formats like Delta Lake
bridge the critical gap between data engineering pipelines and
ML feature consumption. By storing features in versioned,
governed Delta tables, organizations maintain consistency
between training and serving while enabling feature reuse
across projects. The integration of feature stores with Unity
Catalog ensures that features inherit the same governance
policies as underlying data, maintaining security and
compliance throughout the ML lifecycle.

MLflow governance capabilities provide comprehensive
tracking and management of ML experiments, models, and
deployments. Integration with Unity Catalog extends
traditional MLflow functionality with enterprise-grade access
control, audit logging, and cross-workspace coordination.
This combination enables organizations to maintain agility in
ML development while ensuring appropriate governance and
compliance. Teams can experiment rapidly while governance
frameworks automatically capture necessary metadata for
reproducibility and auditability.
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End-to-end lineage tracking from source data through
features to deployed models provides unprecedented
visibility into ML systems. This lineage enables forward
impact analysis before changes, backward debugging when
issues arise, and comprehensive compliance reporting for
regulations requiring transparency in automated decision-
making. Column-level granularity ensures that lineage
remains actionable even in complex pipelines with hundreds
of transformations.

Role-based access control and model sharing capabilities
ensure that ML artifacts receive the same rigorous governance
as data assets. Fine-grained privileges enable precise control
over who can train, deploy, or inference models while audit
trails maintain accountability. Integration with Azure Active
Directory simplifies permission management at enterprise
scale, ensuring consistency with corporate access policies.

Organizations adopting unified lakehouse platforms report
significant benefits. Time-to-production for new ML models
decreases by 40-60% as teams eliminate data duplication and
integration overhead. Governance compliance improves as
consistent policies apply across all workloads. Infrastructure
costs decline by 50-70% through consolidation and better
resource utilization. Most importantly, model quality
improves as data and ML engineers collaborate more
effectively on shared infrastructure.

Looking forward, the continued evolution of lakehouse
platforms will further blur the boundaries between data
engineering and ML engineering. Advanced capabilities like
automated feature discovery, intelligent data quality
monitoring, and ML-driven optimization will make platforms
increasingly self-managing. However, the fundamental
principles established by current platforms- unified storage,
comprehensive governance, automated lineage, and secure
collaboration- will remain essential.

The imperative for organizations is clear: as Al and ML
become more central to business operations, the infrastructure
supporting these capabilities must evolve from fragmented
point solutions to unified, governed platforms. Azure
Databricks with Unity Catalog provides a proven path
forward, enabling organizations to accelerate ML adoption
while maintaining the governance and compliance required
for production Al at scale.

Success requires more than technology adoption- it demands
organizational evolution toward integrated data and ML
engineering teams, standardized development workflows, and
cultural commitment to governance. Organizations that
embrace these changes position themselves to leverage Al
effectively, turning data assets into competitive advantages
through well-governed, rapidly deployed, continuously
improved machine learning systems.
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