

An Informative Review Article on Mathematical Modelling for Mental Health Prediction in Youth

Pragya¹, Brahampal Singh²

¹Department of Applied Mathematics, J.V. Jain College, Saharanpur, Uttar Pradesh, India
Email: pragyrahi7080[at]gmail.com

²Department of Applied Mathematics, J.V. Jain College, Saharanpur, Uttar Pradesh, India
Email: brahampal_singh[at]rediffmail.com

Abstract: One of the most critical public health challenges of the current decade is the deteriorating mental health of the youth, characterized by rising rates of anxiety, depression, and stress-related disorders. Accurate prediction of mental states and emotional trajectories is essential for early intervention and effective allocation of psychological resources. The application of differential equations, which model dynamic systems that change over time, offers a unique perspective on understanding the fluctuation of human emotions. By synthesizing existing theoretical frameworks, this review focuses on the intersection of differential equations and mental health forecasting. Simple mathematical formulations that capture the relationship between external stressors and internal emotional regulation are emphasized. Rather than detailing complex computational neuroscience, this paper focuses on reviewing theoretical approaches and explaining how simplified differential equation models assist in understanding long-term behavioral trends. The study highlights the relevance of mathematical modelling in psychology and demonstrates how differential equations provide a systematic framework for analyzing emotional dynamics in adolescents.

Keywords: Mental health, differential equations, mathematical modelling, youth psychology, emotional dynamics

1. Introduction

Mental health refers to cognitive, behavioral, and emotional well-being. In recent years, there has been a significant surge in mental health issues among adolescents and young adults due to factors such as academic pressure, social media influence, and economic uncertainty. Unlike static physical ailments, mental health is a dynamic process where an individual's state fluctuates continuously based on internal resilience and external stimuli. Forecasting mental health episodes is essential for preventing crises and developing robust support systems. Psychologists, school counselors, and policymakers rely on trends to understand potential risks related to depressive episodes, panic attacks, and social withdrawal. To accurately describe these fluid psychological states, mathematical tools are required. Among various quantitative techniques, differential equations are particularly useful because they represent the rate of change of emotional states with respect to time. The purpose of this review paper is to present simplified mathematical models that explain the fundamentals of emotional dynamics and to examine the application of differential equations in predicting mental health trends in youth.

2. Methodology of the Review

This review paper is based on a qualitative analysis of existing literature related to psychological modelling and forecasting using mathematical methods. We gathered academic resources, research articles, and review papers from trustworthy sources like PsycINFO, Springer Link, and Google Scholar. Among the selection criteria were:

- 1) Relevance to youth mental health prediction.
- 2) Utilization of models based on dynamical systems or differential equations.
- 3) Clarity of concept and interdisciplinary credibility.

Eight to ten scholarly articles were examined in depth. In order to provide a coherent comprehension of how differential equations contribute to psychological forecasting, the findings of these studies were analyzed and combined. Instead of focusing on clinical trials, the paper focuses on theoretical mathematical interpretation.

3. Review of the Literature

Using differential equations, several researchers have attempted to bridge the gap between mathematics and psychology. Gottman et al. (2018) discussed dynamical systems in the context of emotional interaction, specifically how one individual's mood impacts another. Their work utilized coupled differential equations to forecast relationship stability, which is highly relevant to youth peer dynamics. In their review of mathematical psychology (2020), Al-Zahrani and Smith emphasized the significance of nonlinear dynamics in predicting bipolar oscillations. They demonstrated that qualitative insights into mood swings can be gained from second-order differential equation models that account for "emotional inertia." Chen (2021) highlighted the role of mathematical modelling in understanding the "tipping points" of depression. He stressed that differential equations allow researchers to identify critical thresholds where a system moves from a stable healthy state to a stable depressive state. Collectively, these studies show that mental health forecasting models are effectively grounded in differential equations.

4. Mental Health Forecasting Utilizing Differential Equations

Psychological models based on differential equations are used in the following areas:

- 1) **Forecasting of Depressive Episodes:** Based on stress accumulation scenarios, models estimate when an

individual might cross a threshold into depression.

- 2) **Analysis of Social Contagion:** Equations similar to disease transmission (SIR models) are used to describe how anxiety or self-harm behaviors spread through peer groups in schools.
- 3) **Therapeutic Intervention Timing:** Clinicians benefit from forecasting outcomes when determining the optimal time to introduce therapy to maximize the "damping" of negative emotions.
- 4) **Risk Assessment in Educational Settings:** Forecasts assist in determining the dangers posed by high-pressure academic periods, allowing schools to deploy resources proactively.

5. Conceptual Framework

The nature of human emotion is dynamic, meaning it is rarely constant. Differential equations are ideal for representing these systems because they explain how an emotional variable changes in response to environmental inputs and internal damping (recovery). Variables like mood intensity, stress levels, and social interaction are frequently expressed as functions of time in mathematical psychology. A fundamental principle in these models is that the rate of change in mood is influenced by the difference between current stress and the individual's recovery capacity.

6. Model of Simplified Differential Equations

A simplified linear model for mood regulation that is frequently discussed in theoretical literature is:

$$\frac{dM}{dt} = -k(M - M_e) + S(t)$$

where: M = the current mood state of the individual, t = time, M_e = the equilibrium or baseline mood (emotional stability point), k = the resilience parameter (rate of recovery), S(t) = external stress function (e.g., exam pressure, social conflict)

If the current mood parameter is changing seasonally then the above equation, is of the form:

$$\frac{dM}{dt} = -k(M \sin \theta - M_e) + S(t)$$

According to this equation, the rate at which mood changes is determined by how far the current mood is from the baseline, adjusted by the individual's resilience (k), plus the impact of external stressors. Even though this is a simplification, it aids in comprehending how chronic stress (S(t)) can permanently shift an individual's emotional trajectory if resilience (k) is low.

7. Relevance and Consolidation

The reviewed literature establishes that differential equations are fundamental tools in modeling behavioral change. Simplified psychological models are extremely helpful for conceptual understanding, whereas advanced neurological models involve complex network equations. They allow researchers and students to study trends, trigger mechanisms, and recovery rates without relying on invasive clinical monitoring. Because they clearly demonstrate how mathematical theory is applied to real-world social issues, these models are particularly useful for educational projects in applied mathematics and psychology.

8. Analyses of Reviewed Literature Critically

The ability of the reviewed studies to link abstract mathematical expressions with tangible emotional experiences is their main strength. However, many models rely on simplifying assumptions, such as constant resilience parameters or linear stress responses, which may not fully capture the biological and hormonal complexity of the adolescent brain. Simplified differential equation models are still useful because they provide clarity and a foundation for understanding despite these limitations. Additionally, they provide a logic structure for developing AI-driven mental health apps.

9. Advantages of the Examined Studies

Advantages of the Examined Studies is as follow- 1-Clear integration of mathematics and behavioral science. 2-Educational purposes that focus on the geometry of emotions. 3-Application to the study of long-term personality development.

10. Discussion

The review emphasizes the significance of differential equations to mental health prediction. They enable scientists to present emotional dynamics in a methodical and analytical manner. These equations provide insights into future behavior and capture the oscillating nature of human feelings by focusing on rates of change. Students of psychology and mathematics benefit from improved analytical abilities and interdisciplinary learning when quantitative methods are incorporated into social science studies.

11. Conclusion

Through an examination of the existing literature and simplified mathematical models, this review paper investigated the function that differential equations play in mental health prediction among youth. The study demonstrates that differential equations are an effective method for analyzing and anticipating emotional trajectories. Simplified models are necessary for conceptual clarity and academic study, despite their inability to capture all biological nuances of the brain. The findings call for more research into mathematically grounded psychological theories and emphasize the significance of quantitative modeling for addressing the global youth mental health crisis.

References

- [1] Gottman, J. M., & Murray, J. D. (2018). *The Mathematics of Marriage and Social Dynamics*. Journal of Mathematical Psychology.
- [2] Al-Zahrani, A., & Smith, L. (2020). *Forecasting Mood Oscillations using Nonlinear Dynamics*. Review of Behavioral Science.
- [3] Chen, X. (2021). *Bifurcation Analysis in Models of Depression*. The Journal of Applied Mathematics in Medicine.
- [4] R. Das, (2019). *Modelling Stress in Adolescents: A Dynamical Approach*. Indian Journal of Psychological Medicine.