
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Application of the Central Limit Theorem (CLT)

for Performance Modeling in AI-Based Inference

Systems

Prakasharao Raghavapudi1, Rashmi Gupta2

1Independent Researcher, Dallas, TX, United States

Email: rpraki385[at]gmail.com

2Independent Researcher, Dallas, TX, United States

Email: rashmig0829[at]gmail.com

Abstract: Modern AI applications- including deep learning inference services, large-language-model (LLM) serving platforms, and real-

time recommendation engines- operate at massive scale and experience high variability in request latency. Individual inference requests

exhibit heavily skewed latency distributions due to network jitter, contention, memory stalls, and nondeterministic scheduling effects.

However, performance engineers routinely analyze aggregated metrics such as mean latency, batch averages, and windowed system

statistics, which display surprisingly stable and Gaussian-like behavior. This paper demonstrates that the Central Limit Theorem (CLT)

provides the mathematical basis for this stability. We simulate AI inference latency using heavy-tailed distributions, compute aggregated

batch means, and show that the distribution of batch means converges to a normal distribution even when individual latencies are non-

normal. The findings confirm that CLT is foundational for AI performance monitoring, AIOps-based anomaly detection, confidence-

bound estimation, and large-scale inference stability analysis.

Keywords: Central Limit Theorem; AI Inference; Performance Engineering; Latency Modeling; AIOps; Statistical Methods; Normal

Approximation; Batch Means; Large-Scale Systems.

1. Introduction

Artificial Intelligence (AI) systems deployed in production

environments process millions of requests per second. These

include transformer-based LLMs, deep neural network

inference endpoints, and recommender systems. Performance

Engineering for such systems focuses on modeling latency,

understanding variability, detecting drift, and ensuring

availability under unpredictable traffic conditions.

Despite the highly non-normal nature of individual request

latencies, aggregated metrics appear stable and approximately

Gaussian due to the Central Limit Theorem (CLT). This paper

presents simulations demonstrating this effect.

2. Central Limit Theorem: Mathematical

Background

The Central Limit Theorem states that given independent and

identically distributed random variables with finite mean and

variance, the normalized sum converges in distribution to a

standard normal distribution as sample size increases. This

holds regardless of the underlying distribution, making the

CLT essential for analyzing aggregated metrics.

3. CLT in AI Performance Engineering

CLT influences multiple aspects of AI system monitoring and

optimization:

• Latency modeling and smoothing of skewed inference

times.

• Windowed metrics for monitoring and drift detection.

• Auto-scaling and forecasting.

• Stabilizing gradient noise during model training.

4. Simulation Methodology

Simulations were constructed using Python and C to reflect

real AI inference scenarios. Heavy-tailed latency distributions

(lognormal and exponential) were generated, and samples

were grouped into batches of size 1, 4, 16, and 64. Batch

means were computed and analyzed for convergence.

5. Results

Raw latency distributions were highly skewed. However,

batch means quickly converged to a Gaussian-like

distribution as batch size increased. For batch size 64, the

distribution was nearly symmetric and bell-shaped, validating

the CLT.

6. Discussion

The results demonstrate that CLT directly governs aggregated

behaviors in AI inference systems. This justifies the use of Z-

score thresholds, statistical confidence intervals, drift

detection, and forecasting algorithms widely employed in

AIOps.

7. Conclusion

CLT is fundamental to modern AI performance engineering.

It guarantees stable aggregated metrics despite noisy and

skewed individual latencies. Future work may extend

simulations to GPU-level batching and distributed inference

clusters.

Paper ID: SR26123224009 DOI: https://dx.doi.org/10.21275/SR26123224009 1454

http://www.ijsr.net/
mailto:rashmig0829@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

References

[1] Papoulis, A. Probability, Random Variables, and

Stochastic Processes.

[2] Montgomery, D. Applied Statistics and Probability for

Engineers.

[3] Dean, J., Barroso, L. The Tail at Scale.

[4] Bishop, C. Pattern Recognition and Machine Learning.

[5] IJSR Formatting Guidelines, 2023.

Appendix A: C Simulation Code for CLT in AI Inference Latency

The following C program simulates AI inference latency using an exponential distribution, groups requests into batches,

computes batch-mean latencies, and writes the results to a CSV file. These batch means can be plotted to visually demonstrate

the Central Limit Theorem (CLT).

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

/*

 * Simulate CLT for AI inference latency in C.

 *

 * - Per-request latency ~ base_latency + Exponential(lambda)

 * (skewed, heavy-tailed, similar to real-world async/network delays)

 * - We group requests into batches and compute average latency per batch.

 * - Output (batch_size, batch_index, batch_mean_latency_ms) to CSV.

 */

#define NUM_REQUESTS 200000

#define NUM_BATCH_SIZES 4

/* Generate uniform random number in (0,1) */

static double rand_uniform() {

 return (rand() + 1.0) / ((double)RAND_MAX + 2.0); // avoid log(0)

}

/* Generate exponential random variable with rate lambda */

static double rand_exponential(double lambda) {

 double u = rand_uniform();

 return -log(u) / lambda;

}

int main(void) {

 int i, b;

 int batch_sizes[NUM_BATCH_SIZES] = {1, 4, 16, 64};

 double *latencies = NULL;

 double base_latency_ms = 50.0;

 double lambda = 1.0 / 20.0; // mean ~ 20ms for exponential noise

 /* Seed RNG */

 srand((unsigned int)time(NULL));

 /* Allocate memory for simulated latencies */

 latencies = (double *)malloc(NUM_REQUESTS * sizeof(double));

 if (!latencies) {

 fprintf(stderr, "Failed to allocate memory\n");

 return 1;

 }

 /* Step 1: simulate per-request latency */

 for (i = 0; i < NUM_REQUESTS; ++i) {

 double noise = rand_exponential(lambda);

 latencies[i] = base_latency_ms + noise; // ms

 }

 /* Print some basic stats for raw latencies */

 double sum = 0.0, sum_sq = 0.0, min = latencies[0], max = latencies[0];

Paper ID: SR26123224009 DOI: https://dx.doi.org/10.21275/SR26123224009 1455

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 for (i = 0; i < NUM_REQUESTS; ++i) {

 double x = latencies[i];

 sum += x;

 sum_sq += x * x;

 if (x < min) min = x;

 if (x > max) max = x;

 }

 double mean = sum / NUM_REQUESTS;

 double var = (sum_sq / NUM_REQUESTS) - (mean * mean);

 double std = (var > 0) ? sqrt(var) : 0.0;

 printf("Raw latency stats (ms):\n");

 printf(" mean = %.3f\n", mean);

 printf(" std = %.3f\n", std);

 printf(" min = %.3f\n", min);

 printf(" max = %.3f\n\n", max);

 /* Step 2: open CSV output */

 FILE *fp = fopen("clt_ai_inference_batch_means.csv", "w");

 if (!fp) {

 fprintf(stderr, "Failed to open output CSV file\n");

 free(latencies);

 return 1;

 }

 fprintf(fp, "batch_size,batch_index,batch_mean_latency_ms\n");

 /* Step 3: compute batch means for each batch size */

 for (b = 0; b < NUM_BATCH_SIZES; ++b) {

 int batch_size = batch_sizes[b];

 int num_batches = NUM_REQUESTS / batch_size;

 printf("Batch size = %d, num_batches = %d\n", batch_size, num_batches);

 double global_sum = 0.0;

 double global_sum_sq = 0.0;

 for (i = 0; i < num_batches; ++i) {

 double batch_sum = 0.0;

 int j;

 for (j = 0; j < batch_size; ++j) {

 int idx = i * batch_size + j;

 batch_sum += latencies[idx];

 }

 double batch_mean = batch_sum / batch_size;

 /* write to CSV */

 fprintf(fp, "%d,%d,%.6f\n", batch_size, i, batch_mean);

 /* accumulate for batch-mean stats */

 global_sum += batch_mean;

 global_sum_sq += batch_mean * batch_mean;

 }

 double mean_b = global_sum / num_batches;

 double var_b = (global_sum_sq / num_batches) - (mean_b * mean_b);

 double std_b = (var_b > 0) ? sqrt(var_b) : 0.0;

 printf(" batch-mean stats: mean = %.3f ms, std = %.3f ms\n\n", mean_b, std_b);

 }

 fclose(fp);

 free(latencies);

Paper ID: SR26123224009 DOI: https://dx.doi.org/10.21275/SR26123224009 1456

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 printf("Wrote batch mean latencies to clt_ai_inference_batch_means.csv\n");

 printf("You can plot histograms grouped by batch_size to see CLT in action.\n");

 return 0;

}

Paper ID: SR26123224009 DOI: https://dx.doi.org/10.21275/SR26123224009 1457

http://www.ijsr.net/

