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Abstract: Modern AI applications- including deep learning inference services, large-language-model (LLM) serving platforms, and real-
time recommendation engines- operate at massive scale and experience high variability in request latency. Individual inference requests
exhibit heavily skewed latency distributions due to network jitter, contention, memory stalls, and nondeterministic scheduling effects.
However, performance engineers routinely analyze aggregated metrics such as mean latency, batch averages, and windowed system
statistics, which display surprisingly stable and Gaussian-like behavior. This paper demonstrates that the Central Limit Theorem (CLT)
provides the mathematical basis for this stability. We simulate Al inference latency using heavy-tailed distributions, compute aggregated
batch means, and show that the distribution of batch means converges to a normal distribution even when individual latencies are non-
normal. The findings confirm that CLT is foundational for AI performance monitoring, AIOps-based anomaly detection, confidence-
bound estimation, and large-scale inference stability analysis.
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1. Introduction

Artificial Intelligence (Al) systems deployed in production
environments process millions of requests per second. These
include transformer-based LLMs, deep neural network
inference endpoints, and recommender systems. Performance
Engineering for such systems focuses on modeling latency,
understanding variability, detecting drift, and ensuring
availability under unpredictable traffic conditions.

Despite the highly non-normal nature of individual request
latencies, aggregated metrics appear stable and approximately
Gaussian due to the Central Limit Theorem (CLT). This paper
presents simulations demonstrating this effect.

Mathematical

2. Central Limit Theorem:

Background

The Central Limit Theorem states that given independent and
identically distributed random variables with finite mean and
variance, the normalized sum converges in distribution to a
standard normal distribution as sample size increases. This
holds regardless of the underlying distribution, making the
CLT essential for analyzing aggregated metrics.

3. CLT in Al Performance Engineering

CLT influences multiple aspects of Al system monitoring and

optimization:

o Latency modeling and smoothing of skewed inference
times.

e Windowed metrics for monitoring and drift detection.

e Auto-scaling and forecasting.

o Stabilizing gradient noise during model training.

4. Simulation Methodology

Simulations were constructed using Python and C to reflect
real Al inference scenarios. Heavy-tailed latency distributions
(lognormal and exponential) were generated, and samples
were grouped into batches of size 1, 4, 16, and 64. Batch
means were computed and analyzed for convergence.

5. Results

Raw latency distributions were highly skewed. However,
batch means quickly converged to a Gaussian-like
distribution as batch size increased. For batch size 64, the
distribution was nearly symmetric and bell-shaped, validating
the CLT.

6. Discussion

The results demonstrate that CLT directly governs aggregated
behaviors in Al inference systems. This justifies the use of Z-
score thresholds, statistical confidence intervals, drift
detection, and forecasting algorithms widely employed in
AlOps.

7. Conclusion

CLT is fundamental to modern Al performance engineering.
It guarantees stable aggregated metrics despite noisy and
skewed individual latencies. Future work may extend
simulations to GPU-level batching and distributed inference
clusters.
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Appendix A: C Simulation Code for CLT in Al Inference Latency

The following C program simulates Al inference latency using an exponential distribution, groups requests into batches,
computes batch-mean latencies, and writes the results to a CSV file. These batch means can be plotted to visually demonstrate
the Central Limit Theorem (CLT).

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

/*

* Simulate CLT for Al inference latency in C.

*

* - Per-request latency ~ base_latency + Exponential(lambda)

*  (skewed, heavy-tailed, similar to real-world async/network delays)

* - We group requests into batches and compute average latency per batch.
* - Output (batch_size, batch_index, batch_mean_latency ms) to CSV.

*/

#define NUM_REQUESTS 200000
#define NUM_BATCH_SIZES 4

/* Generate uniform random number in (0,1) */
static double rand_uniform() {
return (rand() + 1.0) / ((double)RAND MAX + 2.0); // avoid log(0)

}

/* Generate exponential random variable with rate lambda */
static double rand_exponential(double lambda) {

double u =rand_uniform();

return -log(u) / lambda;

H

int main(void) {
inti, b;
int batch_sizes]NUM_BATCH_SIZES] = {1, 4, 16, 64};
double *latencies = NULL;
double base latency ms = 50.0;
double lambda = 1.0 / 20.0; // mean ~ 20ms for exponential noise

/* Seed RNG */
srand((unsigned int)time(NULL));

/* Allocate memory for simulated latencies */
latencies = (double *)malloc(NUM_REQUESTS * sizeof(double));
if (!latencies) {

fprintf(stderr, "Failed to allocate memory\n");

return 1;

}

/* Step 1: simulate per-request latency */

for (1=0; 1 <NUM_REQUESTS; ++i) {
double noise = rand_exponential(lambda);
latencies[i] = base latency ms + noise; // ms

}

/* Print some basic stats for raw latencies */
double sum = 0.0, sum_sq = 0.0, min = latencies[0], max = latencies[0];
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for (i=0; i <NUM_REQUESTS; ++i) {
double x = latencies[i];
sum += X;
sum_sq +=X * x;
if (x < min) min = x;
if (x > max) max = x;
H
double mean = sum / NUM_REQUESTS;
double var = (sum_sq/ NUM_REQUESTS) - (mean * mean);
double std = (var > 0) ? sqrt(var) : 0.0;

printf("Raw latency stats (ms):\n");
printf(" mean = %.3f\n", mean);
printf(" std = %.3f\n", std);
printf(" min = %.3f\n", min);
printf(" max = %.3f\n\n", max);

/* Step 2: open CSV output */
FILE *fp = fopen("clt_ai_inference batch means.csv", "w");
if (!fp) {
fprintf(stderr, "Failed to open output CSV file\n");
free(latencies);
return 1;

}

fprintf(fp, "batch_size,batch_index,batch_mean_latency ms\n");

/* Step 3: compute batch means for each batch size */
for (b =0; b <NUM_BATCH SIZES; ++b) {

int batch_size = batch_sizes[b];

int num_batches = NUM_REQUESTS / batch_size;

printf("Batch size = %d, num_batches = %d\n", batch_size, num_batches);

double global sum = 0.0;
double global sum_sq=0.0;

for (i=0; i <num_batches; ++i) {
double batch_sum = 0.0;
int j;
for (j =0; j <batch_size; ++j) {
int idx =1 * batch_size + j;
batch_sum += latencies[idx];

}

double batch_mean = batch_sum / batch_size;

/* write to CSV */
fprintf(fp, "%d,%d,%.6f\n", batch_size, i, batch_mean);

/* accumulate for batch-mean stats */
global sum += batch mean;
global sum sq +=batch mean * batch mean;

}

double mean_b = global sum / num_batches;
double var b = (global sum_sq/num_batches) - (mean_b * mean_b);
double std b= (var_b > 0) ? sqrt(var_b) : 0.0;

printf(" batch-mean stats: mean = %.3f ms, std = %.3f ms\n\n", mean_b, std_b);

}

fclose(fp);
free(latencies);
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printf("Wrote batch mean latencies to clt_ai_inference batch _means.csv\n");
printf("You can plot histograms grouped by batch_size to see CLT in action.\n");

return 0;
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