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Abstract: Modern AI applications- including deep learning inference services, large-language-model (LLM) serving platforms, and real-

time recommendation engines- operate at massive scale and experience high variability in request latency. Individual inference requests 

exhibit heavily skewed latency distributions due to network jitter, contention, memory stalls, and nondeterministic scheduling effects. 

However, performance engineers routinely analyze aggregated metrics such as mean latency, batch averages, and windowed system 

statistics, which display surprisingly stable and Gaussian-like behavior. This paper demonstrates that the Central Limit Theorem (CLT) 

provides the mathematical basis for this stability. We simulate AI inference latency using heavy-tailed distributions, compute aggregated 

batch means, and show that the distribution of batch means converges to a normal distribution even when individual latencies are non-

normal. The findings confirm that CLT is foundational for AI performance monitoring, AIOps-based anomaly detection, confidence-

bound estimation, and large-scale inference stability analysis. 
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1. Introduction 
 

Artificial Intelligence (AI) systems deployed in production 

environments process millions of requests per second. These 

include transformer-based LLMs, deep neural network 

inference endpoints, and recommender systems. Performance 

Engineering for such systems focuses on modeling latency, 

understanding variability, detecting drift, and ensuring 

availability under unpredictable traffic conditions. 

 

Despite the highly non-normal nature of individual request 

latencies, aggregated metrics appear stable and approximately 

Gaussian due to the Central Limit Theorem (CLT). This paper 

presents simulations demonstrating this effect. 

 

2. Central Limit Theorem: Mathematical 

Background 
 

The Central Limit Theorem states that given independent and 

identically distributed random variables with finite mean and 

variance, the normalized sum converges in distribution to a 

standard normal distribution as sample size increases. This 

holds regardless of the underlying distribution, making the 

CLT essential for analyzing aggregated metrics. 

 

3. CLT in AI Performance Engineering 
 

CLT influences multiple aspects of AI system monitoring and 

optimization: 

• Latency modeling and smoothing of skewed inference 

times. 

• Windowed metrics for monitoring and drift detection. 

• Auto-scaling and forecasting. 

• Stabilizing gradient noise during model training. 

4. Simulation Methodology 
 

Simulations were constructed using Python and C to reflect 

real AI inference scenarios. Heavy-tailed latency distributions 

(lognormal and exponential) were generated, and samples 

were grouped into batches of size 1, 4, 16, and 64. Batch 

means were computed and analyzed for convergence. 

 

5. Results 
 

Raw latency distributions were highly skewed. However, 

batch means quickly converged to a Gaussian-like 

distribution as batch size increased. For batch size 64, the 

distribution was nearly symmetric and bell-shaped, validating 

the CLT. 

 

6. Discussion 
 

The results demonstrate that CLT directly governs aggregated 

behaviors in AI inference systems. This justifies the use of Z-

score thresholds, statistical confidence intervals, drift 

detection, and forecasting algorithms widely employed in 

AIOps. 

 

7. Conclusion 
 

CLT is fundamental to modern AI performance engineering. 

It guarantees stable aggregated metrics despite noisy and 

skewed individual latencies. Future work may extend 

simulations to GPU-level batching and distributed inference 

clusters. 
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Appendix A: C Simulation Code for CLT in AI Inference Latency 

The following C program simulates AI inference latency using an exponential distribution, groups requests into batches, 

computes batch-mean latencies, and writes the results to a CSV file. These batch means can be plotted to visually demonstrate 

the Central Limit Theorem (CLT). 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

 

/* 

 * Simulate CLT for AI inference latency in C. 

 * 

 * - Per-request latency ~ base_latency + Exponential(lambda) 

 *   (skewed, heavy-tailed, similar to real-world async/network delays) 

 * - We group requests into batches and compute average latency per batch. 

 * - Output (batch_size, batch_index, batch_mean_latency_ms) to CSV. 

 */ 

 

#define NUM_REQUESTS 200000 

#define NUM_BATCH_SIZES 4 

 

/* Generate uniform random number in (0,1) */ 

static double rand_uniform() { 

    return (rand() + 1.0) / ((double)RAND_MAX + 2.0);  // avoid log(0) 

} 

 

/* Generate exponential random variable with rate lambda */ 

static double rand_exponential(double lambda) { 

    double u = rand_uniform(); 

    return -log(u) / lambda; 

} 

 

int main(void) { 

    int i, b; 

    int batch_sizes[NUM_BATCH_SIZES] = {1, 4, 16, 64}; 

    double *latencies = NULL; 

    double base_latency_ms = 50.0; 

    double lambda = 1.0 / 20.0;   // mean ~ 20ms for exponential noise 

 

    /* Seed RNG */ 

    srand((unsigned int)time(NULL)); 

 

    /* Allocate memory for simulated latencies */ 

    latencies = (double *)malloc(NUM_REQUESTS * sizeof(double)); 

    if (!latencies) { 

        fprintf(stderr, "Failed to allocate memory\n"); 

        return 1; 

    } 

 

    /* Step 1: simulate per-request latency */ 

    for (i = 0; i < NUM_REQUESTS; ++i) { 

        double noise = rand_exponential(lambda); 

        latencies[i] = base_latency_ms + noise;  // ms 

    } 

 

    /* Print some basic stats for raw latencies */ 

    double sum = 0.0, sum_sq = 0.0, min = latencies[0], max = latencies[0]; 
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    for (i = 0; i < NUM_REQUESTS; ++i) { 

        double x = latencies[i]; 

        sum += x; 

        sum_sq += x * x; 

        if (x < min) min = x; 

        if (x > max) max = x; 

    } 

    double mean = sum / NUM_REQUESTS; 

    double var = (sum_sq / NUM_REQUESTS) - (mean * mean); 

    double std = (var > 0) ? sqrt(var) : 0.0; 

 

    printf("Raw latency stats (ms):\n"); 

    printf("  mean = %.3f\n", mean); 

    printf("  std  = %.3f\n", std); 

    printf("  min  = %.3f\n", min); 

    printf("  max  = %.3f\n\n", max); 

 

    /* Step 2: open CSV output */ 

    FILE *fp = fopen("clt_ai_inference_batch_means.csv", "w"); 

    if (!fp) { 

        fprintf(stderr, "Failed to open output CSV file\n"); 

        free(latencies); 

        return 1; 

    } 

 

    fprintf(fp, "batch_size,batch_index,batch_mean_latency_ms\n"); 

 

    /* Step 3: compute batch means for each batch size */ 

    for (b = 0; b < NUM_BATCH_SIZES; ++b) { 

        int batch_size = batch_sizes[b]; 

        int num_batches = NUM_REQUESTS / batch_size; 

 

        printf("Batch size = %d, num_batches = %d\n", batch_size, num_batches); 

 

        double global_sum = 0.0; 

        double global_sum_sq = 0.0; 

 

        for (i = 0; i < num_batches; ++i) { 

            double batch_sum = 0.0; 

            int j; 

            for (j = 0; j < batch_size; ++j) { 

                int idx = i * batch_size + j; 

                batch_sum += latencies[idx]; 

            } 

            double batch_mean = batch_sum / batch_size; 

 

            /* write to CSV */ 

            fprintf(fp, "%d,%d,%.6f\n", batch_size, i, batch_mean); 

 

            /* accumulate for batch-mean stats */ 

            global_sum += batch_mean; 

            global_sum_sq += batch_mean * batch_mean; 

        } 

 

        double mean_b = global_sum / num_batches; 

        double var_b = (global_sum_sq / num_batches) - (mean_b * mean_b); 

        double std_b = (var_b > 0) ? sqrt(var_b) : 0.0; 

 

        printf("  batch-mean stats: mean = %.3f ms, std = %.3f ms\n\n", mean_b, std_b); 

    } 

 

    fclose(fp); 

    free(latencies); 
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    printf("Wrote batch mean latencies to clt_ai_inference_batch_means.csv\n"); 

    printf("You can plot histograms grouped by batch_size to see CLT in action.\n"); 

 

    return 0; 

} 
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