

Enhancing Chip Fabrication Reliability Through AI-Powered Predictive Maintenance and Anomaly Detection: A Study

Megha Potdar¹, Dr. Andhe Dharani²

¹Research Scholar, VTU Research Centre, Department of MCA, RV College of Engineering, Bangalore, India

²Professor, Department of MCA, RV College of Engineering, Bangalore, India

Abstract: The semiconductor industry is pivotal in advancing technology, with computer chip fabrication being a core component. Maintaining high efficiency and reliability in these fabrication processes is critical, and the integration of artificial intelligence (AI) has shown significant promise in achieving these goals. This literature survey explores the application of AI techniques in predictive maintenance and anomaly detection within computer chip fabrication processes. Predictive maintenance utilizes AI algorithms to foresee potential equipment failures, thereby minimizing downtime and optimizing operational efficiency. Anomaly detection leverages AI to identify deviations from normal operational patterns, enabling early detection of defects and process irregularities. This survey reviews various AI methodologies, including machine learning models, neural networks, and data analytics, that have been implemented or proposed in recent studies. Furthermore, it examines the challenges, benefits, and future directions of integrating AI in semiconductor manufacturing. The findings underscore the transformative potential of AI in enhancing the productivity, quality, and sustainability of computer chip fabrication processes.

Keywords: Predictive Maintenance, Chip Fabrication, Semiconductors, AI Analysis, Immediate Insights

1. Introduction

The semiconductor industry plays a crucial role in driving technological advancements, with computer chip fabrication at its core. To maintain high efficiency and reliability in these processes, the integration of artificial intelligence (AI) has emerged as a promising approach. This literature survey explores the application of AI techniques, such as predictive maintenance and anomaly detection, within computer chip fabrication. Predictive maintenance uses AI algorithms to predict equipment failures, minimizing downtime and optimizing operational efficiency. Anomaly detection identifies deviations from normal patterns, enabling early defect detection and process irregularity identification. The survey reviews various AI methodologies like machine learning, neural networks, and data analytics in recent studies. It also discusses challenges, benefits, and future directions of AI integration in semiconductor manufacturing, highlighting its potential to enhance productivity, quality, and sustainability in chip fabrication processes.

2. Literature Review

The use of AI in predictive maintenance and anomaly detection in computer chip fabrication processes has been widely explored. Lima (2021) and Johanesa (2024) both highlight the effectiveness of AI, particularly machine learning and deep learning algorithms, in failure classification and detection, with a focus on sensor data from mission critical assets. Xu (2023) further extends this by proposing a real-time aging detection technique for semiconductor devices, combining deep learning and evolutionary algorithms. These studies collectively underscore the potential of AI in improving the reliability and stability of computer chip fabrication processes. However, Miller (2003) emphasizes the need for easily

programmable and adaptable systems for effective utilization in the production environment.

3. Methodology

This methodology provides a structured approach to implementing AI for predictive maintenance and anomaly detection in chip fabrication processes. It starts by defining objectives, identifying critical fabrication equipment, and establishing KPIs like defect rates and process variability. Data from sensors and equipment logs is collected, preprocessed, and used to train models such as LSTM and Isolation Forests. These models are integrated into real-time monitoring systems, tested in pilot fabrication lines, and scaled across additional processes. Continuous feedback loops and model updates ensure sustained optimization and adaptability to evolving chip fabrication requirements.

1) Problem Definition and Scope Identification

The main goal is to enhance operational efficiency and reliability in semiconductor manufacturing through AI-driven solutions, focusing on:

- Reducing downtime:** By enabling predictive maintenance, unplanned equipment failures can be minimized.
- Reliability Theory:** Reliability theory helps predict and model equipment performance and the likelihood of failure.
- Mean Time Between Failures (MTBF):** MTBF is the average time between failures and is a key metric for equipment reliability:

$$\text{MTBF} = \frac{\text{Total Operational Time}}{\text{Number of Failures}}$$

- Reliability Function (R(t)):** The reliability function gives the probability that equipment operates without failure up to time t:

$$R(t) = P(T > t) = e^{-\lambda t}$$

Where:

- T : Time to failure (random variable).
- λ : Failure rate (constant for exponential distributions).

2) Hazard Rate ($\lambda(t)$)

The hazard rate (instantaneous failure rate) models the likelihood of failure at time t , given survival up to t :

$$\lambda(t) = R(t)/f(t) = -d/dt \ln R(t)$$

Where:

$f(t)$: Probability density function (PDF) of failure times.

By estimating $\lambda(t)$, we can predict when failures are most likely and plan maintenance accordingly.

3) Remaining Useful Life (RUL)

Predictive maintenance involves estimating the remaining time until failure (RUL). This can be modeled using machine learning:

$$RUL = T - t$$

Where:

- T : Predicted time of failure.
- t : Current time.

To predict T , a regression model can be employed. The model learns a mapping function $f(X)$ that relates sensor data X to the predicted failure time: $T = f(X)$

4) Data Collection and Management

a) Identify Data Sources:

- Sensors (temperature, pressure, vibration).
- Logs from equipment (e.g., error codes, usage stats).
- Historical maintenance and production records.

b) Data Integration: Create pipelines to consolidate data from various sources into a centralized system.

c) Preprocessing:

- Data cleaning: Handle missing values, noise, and anomalies.
- Feature engineering: Extract relevant features like trends, cycles, and thresholds.
- Data labeling: Annotate historical data with failure and non-failure events for supervised learning.

5) Model Selection and Development

a) Choose Techniques:

Predictive Maintenance: Time-series forecasting (e.g., ARIMA, LSTM), machine learning (e.g., Random Forest, Gradient Boosting).

Anomaly Detection: Autoencoders, Isolation Forests, or Statistical Process Control (SPC).

b) Training and Validation:

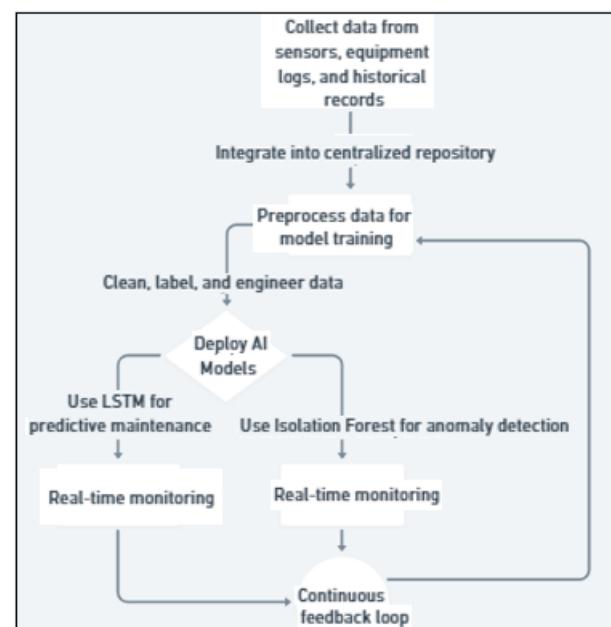
- Split data into training, validation, and testing sets.
- Use cross-validation to ensure robustness.
- Evaluate model performance with metrics such as accuracy, precision, recall, and F1-score.
- **Hyperparameter Tuning:** Use grid search or Bayesian optimization for fine-tuning model performance.

6) Evaluation and Continuous Improvement

- **Periodic Review:** Analyze system performance against KPIs.
- **Model Updates:** Re-train models with new data to account for evolving processes and equipment wear.
- **Advanced Techniques:** Explore advanced AI approaches like reinforcement learning or federated learning for further optimization.

4. System Architecture

The architecture begins with collecting data from sensors, equipment logs, and historical records, which is integrated into a centralized repository. Preprocessing ensures clean, labeled, and engineered data for model training. AI models like LSTM for predictive maintenance and Isolation Forest for anomaly detection are deployed for real-time monitoring. Alerts and insights help mitigate equipment failures, while a continuous feedback loop enables model updates and performance optimization to adapt to evolving fabrication needs.



5. Conclusion

The integration of AI techniques such as predictive maintenance and anomaly detection presents a significant opportunity to revolutionize the semiconductor manufacturing industry. These AI-driven methodologies, particularly machine learning models, neural networks, and data analytics, offer the ability to predict and prevent equipment failures before they occur, minimizing unplanned downtime and optimizing the overall operational efficiency of chip fabrication processes. Predictive maintenance helps ensure the longevity of critical machinery by forecasting potential failures based on sensor data and historical patterns, while anomaly detection identifies deviations from normal operational behavior, enabling early intervention to prevent defects and process irregularities. This proactive approach not only improves the reliability and stability of production lines but also enhances product quality and consistency, reducing the likelihood of defective chips reaching the market. Furthermore, continuous model updates

based on real-time data allow for ongoing system optimization, ensuring that the AI models remain adaptable to the ever-evolving demands and challenges of semiconductor manufacturing. As AI technology continues to evolve and mature, its application in semiconductor fabrication processes is expected to yield even greater improvements in productivity, cost-efficiency, and sustainability. By addressing key challenges in the industry, AI holds the potential to significantly transform semiconductor manufacturing, paving the way for more resilient, efficient, and innovative production processes in the future.

References

- [1] Dongin kim, hyung joo lee, sanghyun choi, seungpyo hong, seungjae lee, doohwan kwak, srividya jayaram, seungwon paek, minho kwon, yeongdo kim, hyobe jung, ivan kissiov, melody tao, andres torres, nathan greeneltch, and ho lee "ai-guided reliability diagnosis for 5,7nm automotive process", proc. spie 12496, metrology, inspection, and process control xxxvii, 124963j (27 April 2023)
- [2] Lugofer, Edwin & Zavoianu, Ciprian & Pratama, Mahardhika & Radauer, Thomas. (2019). Automated Process Optimization in Manufacturing Systems Based on Static and Dynamic Prediction Models: Advanced Methods, Decision Support Tools and Real-World Applications. 10.1007/978-3-030-05645-2_17.
- [3] Murdock, J.L. and Hayes-Roth, B. Intelligent monitoring and control of semiconductor manufacturing equipment. *IEEE Expert*, vol. 6, no. 6, pp. 19-31, December 1991.
- [4] Skrijelj, Hivzo, and Srđaj Jović. 2018. "Chip Form Prediciton by Computational Intelligence Techniques". *Journal of Production Engineering* 21 (1):6-10.
- [5] Katari, M., Shanmugam, L., & Arasu Malaiyappan, J. N. (2024). Integration of AI and Machine Learning in Semiconductor Manufacturing for Defect Detection and Yield Improvement. *Journal of Artificial Intelligence General Science (JAIGS)* ISSN:3006-4023, 3(1), 418–431.
- [6] Munirathinam, Sathyan & Balakrishnan, Ramadoss. (2016). Predictive Models for Equipment Fault Detection in the Semiconductor Manufacturing Process. *International Journal of Engineering and Technology*. 8. 273-285. 10.7763/IJET.2016.V8.898.
- [7] Tanyıldız, H., Batur Şahin, C., & Batur Dinler, Ö. (2024). Disrupting Downtime: Different Deep Learning Journeys into Predictive Maintenance Anomaly Detection. *NATURENGS*, 5(1), 47-53. <https://doi.org/10.46572/naturengs.1490748>