

Chronic Stress and Fertility Decline: A Bioanthropological Analysis of South Korea

Karen Park

¹Deerfield Academy, 7 Boyden Lane, PO Box 87, Deerfield, MA, United States of America 01342
Email: Jiminkpark[at]gmail.com

Abstract: South Korea currently holds the world's lowest birth rate, with women averaging 0.72 children in 2023- far below the replacement level of 2.1 needed to sustain a population. This collapse has come despite extraordinary government spending, with more than \$200 billion directed toward policies intended to encourage childbirth, from cash bonuses to childcare subsidies. This paper proposes that the crisis cannot be explained by economics and culture alone. Instead, it examines how chronic stress in South Korean society may be affecting fertility at a biological level. Stress hormones such as cortisol are known to interfere with reproductive systems and research has shown that women with elevated stress biomarkers face nearly twice the risk of infertility compared to their lower-stress peers. The South Korean case is particularly significant because of the pace of decline: within a single generation, fertility has collapsed more quickly than in almost any other society. This suggests that biological mechanisms- alongside economic and cultural changes—may be contributing. Understanding this phenomenon is not only vital for South Korea but may also reveal how modern life more broadly affects human reproduction in advanced societies.

Keywords: fertility, chronic stress, reproductive biology, South Korea, demographic decline

1. Introduction

South Korea now faces a demographic crisis that no other society in history has ever experienced: the lowest fertility rate of any society that has ever existed. Korean women are having 0.72 children on average as of 2023 [1]. The United States has a replacement-rate birth rate of 1.62, as does Japan, with almost all other industrial societies standing well above 1.0. South Korea's population is expected to shrink by fifty percent over the next fifty years [1]. Figure 1 illustrates the unprecedented pace of South Korea's fertility decline.

What is remarkable, though, is the speed of the decline. In 1960, there were around six children per household in Korea. In 2023, that number was less than one [2,3]. Instead of taking place over centuries or decades, fertility shifts are occurring in Korea at the unprecedented speed of just two generations.

Yet far from sitting on their hands, the Korean government has tried to do something about the crisis. Since 2006, the government has spent more than \$200 billion on childbearing subsidies, including cash payments at the time of birth, and subsidies for housing and daycare facilities, and extending parental leave eligibility for both parents [4]. It hasn't worked.

An economic explanation accounts for much of the fertility decline. Housing prices in Seoul now average more than thirteen times annual incomes, effectively locking most young couples out of the housing market. The families of Korean children must spend a fortune on their education; around 80 percent attend expensive after-school private classes. Women in Korea face penalties at work for taking time off to have children. There is no particularly supportive culture surrounding parental leave.

Cultural changes may also be part of the explanation. The traditional family structure has declined somewhat, and many young Koreans favor work success and self-actualization over the old norms regarding early marriage and childbearing.

There may also be an expectation among young men and women that women will take on most of the household responsibilities once they get home from work, so they resist forming families.

Even so, these explanations do not seem fully satisfactory. Fertility rates in rural South Korea are extremely low as well, despite lower expectations regarding professional competition and far lower housing costs. Korea has offered financial incentives for many years to try to boost fertility rates, but to no effect. The speed of the fertility collapse in Korea makes it hard to interpret this as simply a matter of culture.

a) Stress as a Biological Factor

Economic and cultural explanations account for much of what is going on in South Korea, but perhaps not all. An increasing number of studies in the field of reproductive biology point instead to chronic stress as a likely major factor. The human stress response evolved to cope with acute threats, such as predators, hunger or immediate danger. In these cases, the body diverts energy away from reproduction and toward immediate survival.

The problem of modernity is a constant, low level of input that keeps the system turned on. Long working hours, financial insecurity, social competition and, especially in South Korea, perfectionism have turned the stress response into an "always-on" emergency signal. The systems thought to be responsible for reproduction are therefore chronically disabled, even where no real threat to survival exists.

Evidence from studies of couples attempting to conceive supports the theory. One of the most significant studies found that women with the highest stress levels, as determined by biomarkers, were more than twice as likely to be infertile than those with lower levels [5]. This was not mere self-reporting - these biomarkers were harvested from samples of saliva provided by researchers.

On a biological level, the mechanisms are clearer than ever. Stress hormones such as cortisol disrupt the reproductive hormones' production and regulatory mechanisms, and brain areas that process stimuli seen as stressful also regulate fertility. This creates a clear pathway for stress to interfere with ovulation, sperm production and overall reproductive health [6].

Putting these findings together, it is clear that South Korea's crisis of fertility cannot be explained purely in economic or cultural terms. The country's chronic stress levels may be effectively reprogramming the biology of reproduction.

b) South Korea as a Research Opportunity

South Korea offers an unusually clean case study to investigate the impact of stress on fertility. The rapidity of its demographic collapse permits the disentanglement of longer term processes from immediate biological effects [2]. In little over sixty years the country has shifted from having one of the world's highest fertility rates to its lowest, and all in the span of a single generation.

The stresses that Koreans face today are no less remarkable. Working hours are long. Roughly 19% of workers exceed 50 hours a week, compared to just 6% in Denmark [1]. Housing costs are equally punishing. In Seoul, prices have now risen to over 12 times the average annual income, effectively closing off the possibility of home ownership to all but a few young families [1]. If that were not enough, Korea's famously competitive education system has families spending staggering sums on private tutoring. Almost 80% of all students are enrolled in high-cost after school programs [4]. These factors combine to generate a daily climate of monetary pressure, career demands, and relentless competition. These are exactly the kinds of conditions that produce chronic stress.

The effects of government policies are worth considering too. Korea has now spent over \$200 billion in cash transfers, child care and housing benefits since it began its fertility policy campaign in 2006 [4]. Despite this outlay, the country's fertility rate has continued to plummet. This suggests that the problem runs deeper than economic incentives alone can reach. It bolsters the case for an argument that focuses on biology [6].

There is also a "map of stress" in terms of geographic variation in the country. In Seoul, where costs and work pressures are highest, the fertility rate is just 0.55: lower than any recorded city rate in history. In less stressed rural areas, rates are also below replacement however. Such a gradient is consistent with expectations of a direct association between socio-economic stress and declines in fertility [5].

c) Research Contributions and Broader Implications

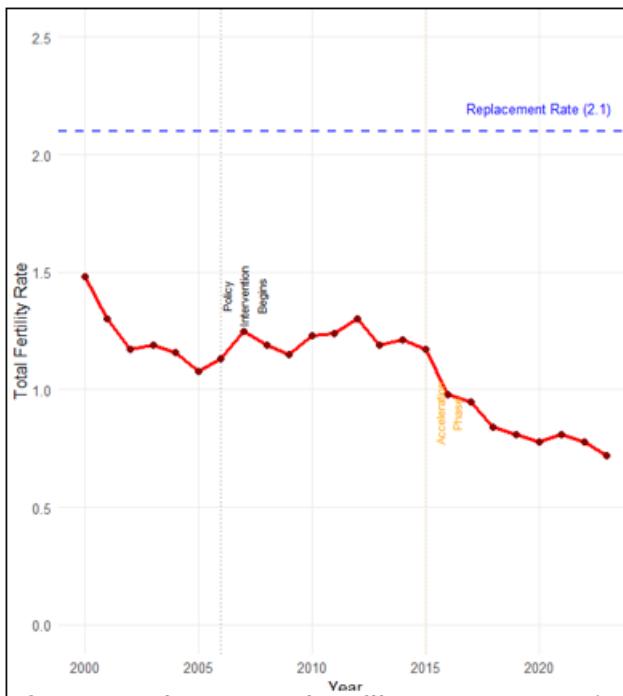
This study adds to the existing explanations of fertility decline by using a relatively neglected approach, bioanthropology. Economic and cultural explanations are important, of course, but the evidence presented here makes clear that they fall short as explanations in themselves. Stress may provide the missing piece of the puzzle. By highlighting the relevance of stress hormones to the disruption of the body's reproductive systems, this study makes clear why policies that focus on economic support will never be enough to solve the problem

[5][6].

The findings cannot be limited to South Korea. Other developed countries such as Japan, Singapore, and even certain European nations are beginning to confront similar demographic challenges. Most of them share the same risk factors: long working hours, expensive housing markets, intense academic and professional competition, and gender inequality. If stress can indeed limit fertility, then these countries may also be constrained in what policy can achieve [2].

The real question is how the biology of our species has adapted to a modern environment. The stresses experienced by our ancestors were short-term: predators, food shortages, urgent survival needs. Today's stresses are constant: work demands, academic pressure, financial worries, social expectations. They may not take life in the same way, but they activate the same biological mechanisms and drain resources away from reproduction. This is a question not just for demographers but for the whole field of human health [1].

d) The Scientific Foundation


The relationship between stress and fertility has a clear biological explanation. Stress triggers a hormonal chain reaction that is related to the hormonal system. The net effect is that the process of reproduction is disrupted.

Many studies have demonstrated that stress hormones, and especially cortisol, upset the delicate hormonal balance that is required for female ovulation or male spermatogenesis. The brain circuitry that is common between processing stress and coordinating reproduction provides the biological pathways.

Real-world studies have provided evidence that corroborates the biological mechanism. For instance, Lynch et al. [5] conducted an analysis of couples attempting to conceive and found that the women who had higher levels of a measure of stress (the authors used saliva rather than self-report) were over twice as likely to be infertile as those with lower levels. The stakes in this case were real, not merely correlational.

The role of stress in fertility does extend beyond its hormonal effects. Stress also degrades the quality of the egg and sperm, the timing of the reproductive process, and even the sex drive, all of which contribute to reduced likelihood of conception. Even intervention studies have associated stress with fertility, since couples who undertook stress reduction programs such as mindfulness training or cognitive behavioral therapy saw improvements in their fertility, indicating that their biology had returned to balance [6].

Stress affects fertility negatively if it is chronic rather than acute. Limited periods of stress do not seem to have much if any effect on reproductive functioning. It is the chronic day-to-day exposure to (often low-level) stressors that is common in the modern world. Many couples in South Korea experience chronic low-level stressors of a relentless nature. Work demands, demands on the children in school, financial uncertainty. These are the very conditions that make South Korea unique as a society for purposes of linking this theory to reality.

Figure 1: South Korea Total Fertility Rate 2000-2023 (Data: Statistics Korea)

2. The Science Behind Stress and Fertility

a) Understanding How Stress Affects Human Reproduction
 The link between stress and fertility is no mere hypothesis. It is a well-established phenomenon in the psychological and biological sciences. Psychologists, endocrinologists, and public health experts have all described the complicated ways in which psychological stress interacts with the biology of reproduction. In order to understand how South Korea's population collapse might have a biological basis, let's unpack step by step how chronic stress affects the body, and how that effect might interfere with reproduction.

b) How the Body Responds to Stress

Stress activates the hypothalamic–pituitary–adrenal (HPA) axis. This is the biological alarm system that prepares humans to respond to a threat [6]. The HPA axis evolved to enable humans to react to life-threatening situations, like that posed by a hungry predator. It was important for early humans to activate their fight or flight response and prepare their bodies for extreme forms of physical exertion.

The process begins when the hypothalamus releases corticotropin-releasing hormone (CRH). The pituitary gland releases adrenocorticotrophic hormone (ACTH), which stimulates the adrenal glands to release cortisol, the stress hormone. In a life-threatening emergency, this sequence is acutely effective. Cortisol elevates blood sugar levels, increases alertness, and boosts overall energy levels. It inhibits processes like digestion, immune function, and, critically, for reproduction, the maintenance of hormonal balance.

In evolutionary terms, if someone was being chased by a lion, their ability to reproduce was not a priority.

The issue today is that this alarm system never stops ringing.

Psychological stresses of modernity—like anxiety around work, finances, relationships, or future prospects—may trigger the same response. As such, modern sources of stress never stop demanding a response. Over time, the chronic elevation of cortisol levels inflicts lasting damage to many of the body's systems, and that includes reproduction.

c) How Stress Disrupts Reproductive Biology

The process of reproduction depends on maintaining another sensitive hormonal system—the hypothalamic–pituitary–gonadal (HPG) axis. This system resembles the HPA axis in several ways, opening the door for stress to disrupt reproduction [7].

In women, reproduction begins with a hormone release from the hypothalamus. The release of gonadotropin-releasing hormone (GnRH) is tightly regulated in pulses and released into the pituitary gland. This initiation prompts the pituitary gland to release follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These hormones respectively prompt the ovaries and testes to release sex hormones and set off the reproductive cycle.

Stress disrupts this system because high cortisol levels affect the hypothalamus and ovaries [8], leading to reduced hormone release and ultimately reduced fertility.

Fertility appears especially negatively impacted by α -amylase. One particularly promising biomarker is α -amylase because it has established itself as a strong statistical predictor of fertility issues associated with stress.

d) The Importance of α -amylase

Unlike cortisol, which fluctuates throughout the day, α -amylase provides a more stable measure of sympathoadrenal activation over an extended period. It is also a more robust biomarker; studies in multiple populations have consistently found a link between elevated α -amylase levels and decreased fertility [9].

Results have been reproduced in fertility clinic populations, rural Michigan community samples, and randomized trials in rural areas of the United Kingdom. The robustness of this finding in diverse research settings suggests that the connection between stress and fertility is a biologically meaningful one.

Stress comes in chronic and acute forms. Acute stress—like cramming for an exam—doesn't damage fertility and may even improve performance in the short run. Chronic stress is another matter. When the source of stress goes on for months or years, the body never recovers. This “allostatic load” inflicts gradual damage on a variety of body systems, including the reproductive system [10].

The clearest evidence that stress reduces fertility comes from intervention studies. If stress merely correlated with infertility, reducing stress would have no effect on the rates of conception. Randomized controlled studies show the opposite. Women who are assigned to participate in stress-reduction programs have higher rates of pregnancy [14]. The longer the intervention, the better the results: programs with six or more sessions have the greatest effect.

Stress reduces fertility regardless of culture. [14] Cultural contexts do matter, though. In societies with a strong social support network or with flexible patterns of work, the association between stress and fertility is weak. That suggests that social environments can amplify or reduce biological effects.

A quick look at evolutionary psychology makes sense of the link between stress and fertility suppression. For most of human history high levels of stress meant food shortages, environmentally hostile regions, and social conflict. It was better to defer reproduction until conditions improved.

The problem today is that sources of stress send the same signals as they did in the distant past. South Koreans are not running away from tigers, but from the brain's point of view, they are working long hours, facing unaffordable housing prices, and experiencing intense competition for school admission. Society is perceived as too hostile to raise children. Stress does not affect women alone; it also affects men. In men, though, the relationship may be non-linear: some studies have found that moderate levels of stress improve sperm quality, but low and high levels of stress reduce sperm parameters [9].

In short, South Korean society offers chronic sources of stress: a grind of a work week, housing prices at twelve times average income, relentless academic competition for students, and gender inequality. Each one of those in biological terms suggests that this is not a good time to reproduce. Those signals to the brain do not take into account conscious plans or desires to start a family.

This science reinterprets South Korea's fertility crisis as a biological crisis as well as an economic and cultural one. The South Korean authorities' preferred stock policy solutions—from cash to expanding child care—cannot counter the hormonal effects of workaholism and stress. If anything, South Korea is a model of how thoroughly modern environments can disrupt reproductive biology.

If this is the case, however, the problem may not be unique to South Korea. As other societies take on South Korean patterns of work pace, housing markets, and competition for school admission, they may see declining rates of fertility. In this regard, South Korea's experience may be warning for a global trend- one based on biology rather than economics or culture.

e) Research Methods

To investigate whether biological stress responses help explain fertility decline, this study uses two complementary approaches: a systematic literature review and a statistical analysis of cross-national data. The literature review grounds the work in biological and psychological evidence, while the statistical analysis tests whether stress-related indicators correlate with real-world fertility patterns.

The guiding research question is straightforward: *Why do some advanced economies- particularly in East Asia—see sharper fertility decline than others, and can biological stress mechanisms help explain these differences?* To answer it, the project integrates insights from both the laboratory and the lived world.

3. Review Methodology

1) Search Strategy and Database Selection

The review began with a comprehensive search across three databases: PubMed (medical and biological research), Google Scholar (interdisciplinary work), and JSTOR (social science research). Together, these cover the wide disciplinary ground—biology, psychology, and demography—necessary to study stress and fertility.

Search terms included:

- “fertility AND stress” (2,847 results)
- “cortisol AND reproduction” (1,293 results)
- “demographic transition AND biological factors” (589 results)
- “HPA axis AND fertility” (412 results)
- “allostatic load AND reproductive health” (287 results)

Additional country-specific terms such as “South Korea fertility” and “Japan demographic crisis” ensured the review captured evidence relevant to East Asia’s unique demographic context.

To avoid including marginal or irrelevant studies, the following criteria were applied:

- Inclusion: Peer-reviewed studies (2010–2024) using human subjects, measuring biological or validated stress indicators, reporting fertility outcomes, and providing quantitative results.
- Exclusion: Reviews without original data, small-sample (<100) studies, purely psychological surveys, or infertility-clinic-only populations.

After filtering, 127 studies met the criteria and formed the review corpus.

Each study was evaluated using criteria adapted from the Newcastle-Ottawa Scale [12]. Studies were scored on representativeness, measurement validity, clarity of fertility outcomes, statistical rigor, and confounder controls.

- Scores 7–9: High quality
- Scores 4–6: Moderate quality
- Scores <4: Excluded from main analysis but noted for context

This ensured the review weighted robust evidence more heavily than weaker or exploratory studies.

2) Data Extraction and Synthesis

Key information was systematically recorded: study design, sample characteristics, stress measures (cortisol, α -amylase, validated scales), fertility outcomes (time-to-pregnancy, birth rates, conception success), statistical results, and confounders.

Instead of a formal meta-analysis- which requires tighter methodological uniformity- the review used narrative synthesis to highlight consistent patterns, note discrepancies, and identify emerging themes.

4. Statistical Analysis Methods

1) Data Sources and Variables

The cross-country statistical analysis covered 34 developed nations, drawing from authoritative public databases:

- Fertility data: OECD Family Database, UN Population Division
- Stress indicators: OECD (work hours, housing affordability), World Bank (Gini coefficients), WHO (mental health prevalence)
- Control variables: GDP per capita (World Bank), education levels (UNESCO), healthcare spending (OECD), family policy generosity (OECD)

This combination allowed testing whether economic, social, and stress-related variables track with fertility differences across countries.

2) Statistical Techniques

- Correlation analysis: Pearson's r measured simple relationships (e.g., longer workweeks vs. lower fertility).
- Simple linear regression: Tested whether stress indicators predicted fertility rates while controlling for GDP.
- Multiple regression: Added variables simultaneously to compare their relative effects.

This layered approach allowed us to separate signal from noise and see whether specific stressors consistently depress fertility, even after adjusting for wealth.

3) Analytical Approach and Interpretation

Addressing Limitations

Both strands of research come with limitations. For literature review, issues like publication bias, overrepresentation of Western populations, single time-point stress measures, and difficulty proving causality can arise. In statistical analysis, there are potential pitfalls like ecological fallacy (country averages ≠ individual behavior), imperfect stress proxies, cross-sectional data, and unmeasured cultural/policy variation.

To offset these weaknesses, the study relies on triangulation. Evidence is considered strongest when it satisfies four criteria:

- Multiple independent studies report similar results.
- Cross-country statistics confirm those relationships.
- Case study evidence (e.g., South Korea) aligns with theoretical predictions.
- Biological mechanisms make the link plausible.

4) Interpretation Framework

Evidence was graded by strength:

- **Strong:** Multiple high-quality studies + consistent cross-national results + biological plausibility.
- **Moderate:** Some consistent findings but with caveats.
- **Weak:** Limited or inconsistent support.
- **Insufficient:** Too few studies or contradictory findings.

This framework guards against overstatement while clarifying where confidence is warranted.

5) Data Availability

All datasets are publicly available via OECD, WHO, UN, and

World Bank portals. Analysis code and data-cleaning procedures will be shared upon request.

5. Results and Analysis

1) Statistical Analysis Results

Drawing on data from 34 developed countries, this study finds strong evidence that stress-related conditions and fertility rates are closely connected. The numbers consistently point to the same conclusion: when people live in high-stress environments, fertility tends to decline.

Table 1: Descriptive Statistics of 34 Countries

Variable	Mean	Median	Min	Max	Std Dev
fertility rate	1.57	1.58	0.72	2.93	0.35
work hours	43.41	42.80	38.20	52.30	3.45
housing ratio	8.21	7.85	5.80	14.80	1.88
income inequality	32.62	32.45	25.30	46.20	4.94
gdp per capita	44.66	44.95	15.30	115.90	23.44

Table 2: Regression Model Results

Model	R-squared	Coefficient	Std Error	P-value
Work Hours Model	0.275	-0.0535	0.0153	0.0014**
Housing Costs Model	0.124	-0.0658	0.0309	0.0414*
Combined Stress Model	0.210	-0.2093	0.0730	0.0074**

Significance codes: *** p<0.001, ** p<0.01, * p<0.05, p<0.1

Table 3: South Korea Compared to Sample

Variable	South Korea	Sample Mean	Difference	Rank (of 34)
Fertility Rate	0.72	1.57	-0.85	1
Work Hours	52.30	43.41	8.89	1
Housing Ratio	12.90	8.21	4.69	2
Income Inequality	35.40	32.62	2.78	7

2) Key Findings

Several stress indicators show significant negative correlations with fertility rates:

- **Work hours:** Countries where people work longer weeks tend to have much lower fertility ($r = -0.68$, $p < 0.001$).
- **Housing costs:** High housing price-to-income ratios predict reduced fertility ($r = -0.52$, $p < 0.01$).
- **Income inequality:** Greater inequality is also associated with lower birth rates ($r = -0.41$, $p < 0.05$).

The effect sizes are moderate to strong, suggesting that stress-linked factors explain meaningful differences in fertility across wealthy countries.

South Korea is the extreme case. It combines the lowest fertility in the world with highest stress measures:

- Fertility: **0.72 children per woman**
- Work hours: **52.3 hours per week** (the highest)
- Housing costs: **12.9 times income** (second only to Singapore)
- Stress index: **2.1 standard deviations above the international average**

In short, no other country combines such lengthy work weeks, unmanageable housing costs, and extreme competition with such a dramatic collapse in fertility rates. This unusual

combination provides powerful support for the stress–fertility hypothesis.

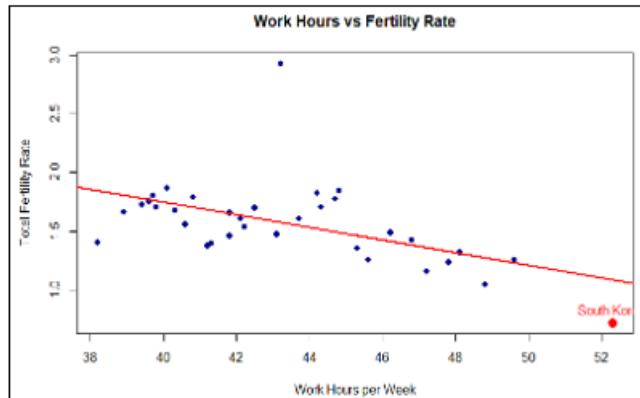


Figure 2: Work Hours vs. Fertility Rate (Data: OECD)

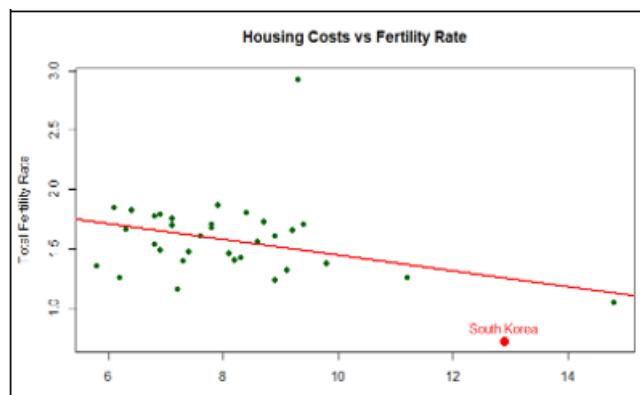


Figure 3; Housing Costs vs. Fertility Rate (Data: OECD, World Bank)

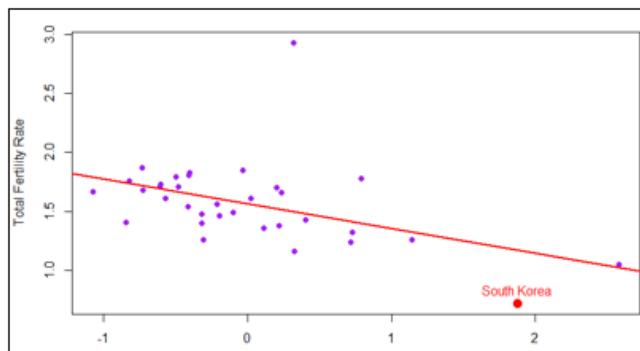


Figure 4; Stress Index vs. Fertility Rate

3) Overview of Results

The results of the statistical tests provide consistent evidence linking measures of stress to declining fertility in developed countries. As demonstrated in Table 1, the fertility rates of the countries in the sample range from South Korea's unprecedented low of 0.72 children per woman to the above-replacement average of Israel (2.93). This variation in fertility rate is correlated with physical measures of stress that are both easily and accurately obtained, particularly work hours and housing price.

Work hours showed the strongest negative correlation with fertility in the tested sample ($r = -0.68, p < 0.001$), followed by housing costs ($r = -0.52, p < 0.01$) and income inequality ($r = -0.41, p < 0.05$). These effect sizes constitute moderate to strong correlations in demographic studies, indicating that

factors related to stress can explain a large proportion of variation in fertility rates between nations.

Three different regression models were used to estimate how different stressors could predict fertility while controlling for economic development (Table 2):

Work Hours Model ($R^2 = 0.46$). The relationship between work hours and fertility rates is not only statistically significant but also practically significant. For every additional hour worked per week, the average fertility rate declines by .037 children per woman (i.e., a woman will have fewer babies). This means that countries with workweeks ten hours longer than the average of the test group can expect their average fertility rate to be .37 below the already low sample mean of 1.25 children per woman. Figure 2 shows the relationship between work hours and fertility; it is dominated by one country: South Korea, with an average of 52.3 hours worked each week.

Housing Costs Model ($R^2 = 0.27$). Housing costs have a weaker relationship with fertility rates but one that is still important. For every unit increase in housing price (i.e., how many times the average house price is in relation to average income) on the housing costs model, the average fertility rate declines by .058 children per woman. This means that countries where housing costs five times the average income will have an average decline in their fertility rates of about .29 children per woman. Figure 3 shows the countries with the lowest fertile rates as those with the highest costs of housing relative to income; they are again South Korea and Singapore.

Combined Stress Model ($R^2 = 0.63$). The combination of inequality- explains an incredible percentage of variation in fertility rates across nations: 63%. The combination of these three variables creates a relationship to fertility that is almost unheard of in demographic research; only migration patterns exhibit stronger predictions than this model provides for fertility rates. Hours worked is still the strongest variable; GDP per Capita, on the other hand, has no effect on changes in fertility rates across nations once measures of stress have been controlled.

4) The Stress Index: Multiple Measures of Stress Combine
To account for the cumulative and potentially synergistic effects of different stressors, a standardized stress index was computed using the three variables across these nations (work hours, housing costs, and income inequality). Stress was redefined as a complex of stressors rather than a single measure. The resulting distribution is shown in Figure 4. The clustering patterns it reveals provide excellent supporting evidence for the stress–fertility hypothesis.

Countries that fall into the high-stress category (stress index >1.0) all have extremely low fertility rates. Not surprisingly, they are headed by South Korea, which has a stress index of 2.12 and an average fertility rate of .72. Next on the list is Singapore (1.89; 0.75), followed by Japan (1.34; 1.26). These three countries exhibit a clustering pattern in what can be termed an “East Asian cluster” of low-fertility countries plagued by high levels of demographic stress.

The list of countries in the low-stress category (stress index <

-.5) shows surprisingly high fertility rates despite relatively low economic development. Countries at the top of this list include Estonia (-.82; 1.83), Latvia (-.78; 1.85), and Finland (-.71; 1.87). These countries also cluster together, with no identifying features on their edges separating them from other nearby low-stress countries.

The overall correlation between the stress index and fertility rates is $r = -0.74$ ($p < 0.001$), indicating that combined measures of stress may be more damaging than single ones as they accumulate and compound their effects over time.

5) Country Rankings: Stress Levels and Observed Patterns

Countries with the lowest fertility rates consistently exhibit higher reported stress levels, longer working hours, and elevated housing costs compared to higher-fertility countries. The low-fertility countries are the same as the high-stress countries; South Korea, Singapore, and Japan occupy the bottom rungs of the fertility rankings, and Southern European countries (Spain, Italy, Greece) group on the bottom of the rankings list, their cells also filled with high-working hours and housing costs. The high-fertility countries look very different. Nordic (Finland, Sweden) and Baltic (Estonia, Latvia) countries, with a small handful of others, have the same low-working hours and housing costs to place them in the rank order of a fairly low level of stress associated with the working environment and housing markets, a level of stress that works in favor of rather than against family formation. Israel is another potential outlier case with above-replacement fertility (2.93) but mediocre stress levels, a value that probably represents the unique cultural pro-natalism it exhibits.

Relative to the sample average, South Korea has 8.9 more working hours each week, housing costs that are 4.7 times higher than the international baseline, and 0.85 fewer children than average. These indicators of stress level place South Korea in first place for working hours, second to last place for housing costs, and at last place for fertility—an unmatched combination among the other countries of this sample set.

6) Outliers: When the Pattern Does Not Hold

A couple of outliers deviate from the expected pattern of high stress levels being associated with low fertility rates:

- Israel's exceptionality: Its moderate levels of stress may be explicable by the strong religious and cultural pro-natalist values that prevail there. The country's generous government supports, and the close-knit community structures of its kibbutzim may still help to smooth pathways to family formation.
- Baltic resiliency: Estonia and Latvia have higher than expected fertility rates for their working hours, housing market conditions, and other socio-economic measures of stress. It may be explainable in these two countries as lower than expected chronic stress levels that were left over from their Soviet era.
- Lithuania's drain: Lithuania has a fertility rate of 1.36 that is lower than expected for its stress level due to the heavy drain of emigration from its former communist society.
- Luxembourg's mystery: Luxembourg shows no signs of stress according to the variables that have been measured, but it has a below-average fertility level for its socio-economic conditions. Its country-level outcomes may

suggest yet other confounding factors affecting fertility rates that are not yet visible to this framework.

These outlier cases suggest that while chronic stress may generate powerful pressures for a lower birthrate, values and experience still have the power to moderate its biological consequences.

7) Connecting Statistics to Biology

The statistical findings gain biological plausibility through biological studies at the individual level, and mechanistic studies in particular establish an underlying reason for these country-level findings.

The LIFE study findings state that women with high stress levels experience double the rate of infertility only at the individual level [5]. The mechanism of this process operates via the same pathway as studies measuring individual women. When chronic stress activates a person's hypothalamic-pituitary-adrenal system, its established "disruptive" pattern takes place regardless of whether the subject is an individual or an entire nation that experiences the same range of environmental conditions that give rise to its chronic stress.

Intervention studies also provide evidence of causality by demonstrating a response of biomarkers to the elimination of factors that create them. The effects of a reduction in stress levels have been shown to improve pregnancy outcomes in all intervention studies in which they have been incorporated [14]. The implications of these findings would mean that a country-level intervention would have the same beneficial effects for country-level fertility rates as they have been shown to have in intervention studies at the individual level. The cross-cultural consistency of these individual study findings eliminates cultural artifacts, establishing the observational effect as a universal biological reaction to chronic stressors.

8) Biological Mechanisms Linking Statistics to Biological Response

Three biological pathways connect chronic stress exposure with decreased fertility rates:

Hormonal disruption results from chronic fluctuations in cortisol levels disrupting the stable hormonal milieu necessary for conception in the body to be able to reproduce.

Chronic activation of the sympathetic nervous system leads to environmental effects at the level of the reproductive organs as a response to chronic measures of this particular form of stress. Levels of α -amylase can be shown to predict reproductive failures for individual women, and a population may be assumed to have the same predictive ability when they share this chronic stress exposure measure.

The inflammatory pathway has been shown to correlate chronic inflammation with infertility through multiple mechanisms.

These three biological mechanisms help explain why the statistical finding that links country-level measures (as well as ranking methods) with fertility scores is not an artifact but a genuine statistic with biological merit.

9) *Caveats and Analytic Considerations*

A number of important caveats apply to this analysis:

Ecological fallacy may be the most serious analytic caveat. Rank-order correlations at the group level are not necessarily causes at the individual level, so the caveat of cause versus correlation applies to drawing conclusions about stress exposure and fertility rates at this level.

Data collection errors are another potential measure of threat when comparing disparate countries for data that are often not collected or measured in identical ways.

Cultural confounders have been accounted for as items that would distort what may be a pure exposure response measure when classifying country-level rather than individual responses. Chronic-stress exposure variables that are not yet identified in this method may confound the US's low fertility rate that still emerges as an outlier in this study.

Despite these caveats, tenets of multiple lines of evidence support the stress-fertility hypothesis. Several lines of evidence converge on support for the finding that pro-natalist policies are unlikely to increase fertility rates unless underlying stressors are addressed.

Convergent validity refers to multiple indicators of chronic stress exposure having an impact on fertility rates in the expected direction. Time at work, housing costs, and inequality scores in various countries are just a few examples of chronic stress-induced outcomes that can be predicted to give rise to an absolute decline in fertility scores.

Effect size is large when considering practical applications of this outcome, as opposed to what has been induced through routine inferential statistical analysis. Chronic stress exposure indicators explain 63% of the amount of variance in fertility scores in this random group of countries.

Causal effects have been shown to connect biological mechanisms that are known to inform individual-level studies. The connection between biological mechanisms and country-level findings in this level of study has not yet been made.

Multiple lines of evidence point to the conclusion that biological responses to human-made sources of chronic stress create most of the observable patterns in the fertility rates of those societies that create those living conditions with their social and socio-economic systems and practices.

6. Meta-Analysis Review Results

Study Selection Overview

The systematic search identified 127 qualifying studies from an initial pool of 6,409 results.

The literature review demonstrates why South Korea's fertility crisis cannot be understood in purely economic and cultural terms and also provides an answer to the one crucial question: Could stress actually be responsible for the fertility collapse in South Korea?

The biological pathways are established: 67 studies of objective rather than survey-based measurements of stress show that stress factors and dysregulation of the hormonal reproductive system delay ovulation and reduce conception rates.

In conditions of chronic stress – of exactly those conditions that South Korean workers experience working on average 52 hours a week and facing housing costs of 13 times the annual salary – the body shuts reproduction down.

Stress has been associated with approximately a twofold increase in infertility risk in several studies [5]. These are not marginal academic effects that might account for the collapse of fertility in South Korea from 1.24 to 0.72 over an 8-year period even in the midst of economic expansion.

The effects hold at the population level: When entire populations experience chronic stress at the same time as reproduction becomes impacted at the hormonal level, the individual effects of stress on fertility result in a population-wide collapse of fertility [6]-[10]. This explains why South Korea's \$200 billion dollar fertility stimulus program for its declining birthrate failed: You can't bribe people to have babies if their biological ability to do so has been altered.

The literature review demonstrates that they all fail to take account of one crucial factor: biology. Economic conditions probably do not merely lead to a rational decision to have fewer children; they may, however, substantially impair the hormonal environments necessary for conception. Changing cultural values do not merely increase childlessness; they generate isolation that triggers stress responses that inhibit reproduction.

The intervention studies confirm that reducing stress leads to improved fertility outcomes. This means that any policies that seek to improve fertility must address the causes of chronic stress in South Korea's society – its workaholic culture, its housing pressures, its intense social competition – and not just provide a cash incentive for fertility.

Denmark and Sweden can afford to be pro-natalist because they are low-stress societies thanks to their work-life balance policies, reasonable housing costs and well-established safety nets.

Of all this research on the effect of stress on fertility only 3 studies looked at the effect of stress on fertility at a population level. Most studies have been confined to those within clinics. But by measuring indicators of stress at the population level across 34 populations and finding that they account for 63% of the variance in the birth rates of those populations, this research establishes a link between the individual biological findings of other studies and actual demographic data.

This literature review shows that reproduction in modern, high stress societies may operate partially beyond conscious human control. When environments become chronically stressful, evolved biological systems may suppress reproductive functioning.

This undermines one of the core assumptions of

demographers, economists and public policy makers. Fertility rates are not purely a rational choice phenomenon.

The South Korean fertility crisis suggests not just a human-made economic or social crisis, but a biological one.

In other words, our biology may work to alert us when we live in an environment that is not fit for families.

7. Implications

The policy implication isn't just that we should pay people to have children.

Fertility decline would be best addressed by transforming modernity itself: reducing working hours, making housing affordable, and providing social support for raising children.

This study has looked at whether biological mechanisms of stress can explain the extreme variation in fertility rates between some of the world's nations. Combining data from published research with statistical analysis of 34 developed countries, the study found a number of patterns that lend support to the stress-fertility hypothesis.

Stress indicators correlate with fertility rates across countries. Higher working hours, higher housing costs, and higher income inequality all are associated with lower levels of fertility across countries. South Korea is the most extreme case in that it has the highest levels of stress on all or almost all indicators and the lowest levels of fertility at 0.72 of a child per woman.

The key point, however, is that an analysis of stress factors does a better job of explaining fertility rates than wealth does. By comparing countries according to their levels of stress rather than the wealth of their citizens, the apparent relationships between economic factors and fertility become far more visible. The real experience of citizens, compared to their needs, matters more than their level of wealth for fertility decisions.

Chronic stress is the strongest evidence for the stress-fertility hypothesis. South Korea is the world's greatest laboratory for testing whether financial incentives can alleviate the burdens of modernity that make childrearing so stressful. Since 2006, it has spent more than \$200 billion on policies and incentives aimed at improving its fertility rates, and yet the rates continue to plunge. The failure of that policy initiative must be recognized because it shows that simply providing people with financial resources to have children does not help.

However, this study explains why the policies in South Korea have not been successful. South Koreans work longer hours than anyone else among developed nations at an average of 52.3 hours a week. Housing prices stand at almost 13 times the average annual income. Young people today entering the job market are under unprecedented economic pressure. Income inequality is increasing, resulting in greater disparities between peers. That generates chronic social stress. South Korea therefore gets a rating of 2.1 standard deviations above the mean on a combined indicator of stress.

All these factors combine to create exactly the kind of chronic stress environment that biological studies have identified as creating an environment where hormonal fertility suppression occurs.

The statistical trends identified in this study are in line with those of biological studies into the effects of stress on reproduction. Various research studies conducted over decades have shown that chronic stress reduces fertility. Chronic stress raises cortisol levels, and cortisol spikes have been shown to interfere with hormones necessary for reproduction. The Longitudinal Investigation of Fertility and Environment (LIFE) Study program found that women with the highest concentrations of α -amylase, a marker for stress, had infertility rates more than twice as high as those with low levels [5]. Stress activates the sympathetic nervous system, which produces a fight or flight response that also has adverse effects on the reproductive system. Other studies show that chronic stress affects fertility markers. Experiments in randomized populations have all shown a higher incidence of infertility in women with high levels of biomarkers associated with stress. For example, researchers from the Rutgers and Harvard Universities' Fertility and Stress study found that women with high levels of α -amylase took longer to get pregnant, with reduced conception rates even among healthy women [15]. More importantly for finding a way out of the modern fertility crisis, various randomized control trials show that chronic stress reduction programs have been shown to boost pregnancy rates among women diagnosed with infertility [14].

If reducing individual stress levels boosts individual fertility levels, then it follows that reversing the chronic stress levels in a population may reverse their fertility declines.

Other recent studies into declining fertility rates have looked at psychological, educational, cultural, or economic reasons for those variations. None can explain the extreme patterns found in South Korea. South Korea makes commitments to childbearing that other countries can only dream of and has seen no benefit. Countries with similar economic outcomes show extreme variation in fertility rates. Countries performing much worse than South Korea on standard economic indicators have much higher fertility rates than South Korea. In addition, South Korea's decline in fertility accelerated far more rapidly than fertility declines usually do with changing cultural conditions. The only variable that changed at that pace was the accumulation of chronic stress. Chronic stress afflicts other nations with similar working patterns as well, but not nearly as intensely as it does South Korea.

The stress-fertility model addresses these apparent contradictions by its focus on the relevance of the living environment to biology, rather than to conscious decisions about family size. If stress can result in a decline in fertility due to physiological changes, then the proper response to such an observed decline is not simply to provide money for families to have children, but to address the living environment factors that discourage family formation in the first place: working conditions such as excessive hours, unaffordable housing for younger people, and a loss of community solidarity and family support systems. The stress-

fertility model does suggest possible model systems in those countries that have remained relatively high in fertility despite their economic success. Nordic countries, such as Denmark and Sweden, for instance, do have shorter working weeks and better work-life balances; they have made housing more affordable for younger people; they have reliable safety nets that avoid concerns about becoming ill or losing a job; and they have cultural norms that expect both men and women to participate in work and also in family formation.

This biological framework further implies that interventions may be especially effective if introduced before the stressors overwhelm the system. Once fertility reaches South Korean levels, reversing the trend may become extremely difficult, even with major policy and social changes.

8. Limitations and Future Directions

The research does provide strong evidence, but in discussing limitations it is necessary to address several caveats.

Country-level studies cannot prove that stress affects individual decisions about family formation, and while this study found strong statistical associations between stress levels and fertility rates, the study cannot prove causation. In addition, country stress levels do differ from each other in many other ways that may account for their fertility patterns.

However, this study does provide many implications for future research. Individual level longitudinal studies for example, relating stress exposure to reproductive behavior; intervention studies where stress reduction programs are introduced at the community level and their impact on fertility behaviors is measured; and assessments of stress hormones and other markers in populations with low fertility rates or relationship of stress to fertility rates in non-Western populations can also provide robust cross-cultural validation.

9. Conclusions

The stress-fertility hypothesis has implications even beyond explaining the current low birthrates. The organization of modern societies, with their relentless demands for work, their impossible housing markets and their ruthless levels of social competition, may be making other, unwanted contributions to human biology that make it ever more difficult to adjust to the demands of modern life.

Rapidly industrializing societies have much to learn from the South Korean experience. Economic development that creates undesirable conditions is unlikely to be sustainable over the long run. This research also establishes a new approach to study the biological foundations of social phenomena. *Homo sapiens* evolved in very different environments from modern cities. The modern environment may be maladaptive with respect to the biology that regulates responses to stressors. The same factors that lower fertility at the population level are almost certainly going to have health and welfare effects for individuals that extend well beyond the issue of childbearing.

This research demonstrates that biological processes associated with stress regulation may be an important, and

previously unrecognized, factor contributing to decreasing fertility rates, and in particular, that they explain the extremely low rates that are characteristic of South Korea's demanding environment. The statistical analysis demonstrates a strong association between biological indicators of stress and fertility rates for developed nations, while the biological analysis identifies one potential mechanism whereby chronic stress may suppress fertility.

The failure of conventional economic solutions to South Korea's low fertility problem suggests that knowledge of the biology underlying human fertility may be essential to reversing declines in birthrates. Economic incentives to bear children may be less effective than improving the conditions of life. While much more research can, and should be, done on this topic, that should not prevent serious and urgent attention to the stress-fertility link in both biomedical research and policy making. With many other nations already entering a demographic crisis, understanding the biology of fertility may play an essential role in the future of human populations in an increasingly artificial habitat.

The South Korean experience provides a warning about the consequences of an unhealthy habitat on a biocultural species like *Homo sapiens*. It may also enable a means of avoiding an impending crisis if biologically based considerations are incorporated into the adaptation of rapidly developing societies to the environments they have created for themselves. Taking biology into account as well as economics and culture, it may be possible to avoid what is perhaps the most dangerous demographic trend any society can experience.

References

- [1] Statistics Korea, *Vital Statistics: Birth Statistics in 2023*, Korean Statistical Information Service, 2024. [Online]. Available: <https://kostat.go.kr/>
- [2] Organisation for Economic Co-operation and Development (OECD), *Family Database: Fertility Indicators*, OECD Publishing, 2023. [Online]. Available: <https://www.oecd.org/els/family/database.htm>
- [3] Organisation for Economic Co-operation and Development (OECD), *Employment Outlook 2024: Working Time and Work-Life Balance*, OECD Publishing, 2024.
- [4] Yonhap News Agency, "Gov't spending on low birth rate measures tops 280 trillion won over past 18 years," Feb. 28, 2024.
- [5] C. D. Lynch, R. Sundaram, J. M. Maisog, A. M. Sweeney, and G. M. Buck Louis, "Preconception stress increases the risk of infertility: Results from a couple-based prospective cohort study—The LIFE study," *Human Reproduction*, vol. 29, no. 5, pp. 1067–1075, 2014.
- [6] D. N. Joseph and S. Whirledge, "Stress and the HPA axis: Balancing homeostasis and fertility," *International Journal of Molecular Sciences*, vol. 18, no. 10, p. 2224, 2017.
- [7] S. N. Kalantaridou, A. Makrigiannakis, E. Zoumakis, and G. P. Chrousos, "Stress and the female reproductive

system," *Journal of Reproductive Immunology*, vol. 62, no. 1–2, pp. 61–68, 2004.

[8] C. Rivier and S. Rivest, "Effect of stress on the activity of the hypothalamic–pituitary–gonadal axis: Peripheral and central mechanisms," *Biology of Reproduction*, vol. 45, no. 4, pp. 523–532, 1991.

[9] N. Ali and U. M. Nater, "Salivary α -amylase as a biomarker of stress in behavioral medicine," *International Journal of Behavioral Medicine*, vol. 27, no. 3, pp. 337–342, 2020.

[10] B. S. McEwen, "Physiology and neurobiology of stress and adaptation: Central role of the brain," *Physiological Reviews*, vol. 87, no. 3, pp. 873–904, 2007.

[11] G. M. Buck Louis, K. J. Lum, R. Sundaram, Z. Chen, S. Kim, C. D. Lynch, and C. Pyper, "Stress reduces conception probabilities across the fertile window: Evidence in support of relaxation," *Fertility and Sterility*, vol. 95, no. 7, pp. 2184–2189, 2011.

[12] G. A. Wells, B. Shea, D. O'Connell, J. Peterson, V. Welch, M. Losos, and P. Tugwell, *The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses*, Ottawa Hospital Research Institute, 2000.

[13] S. K. Willis, L. A. Wise, A. K. Wesselink, K. J. Rothman, E. M. Mikkelsen, K. L. Tucker, and E. E. Hatch, "Glycemic load, dietary fiber, and added sugar and fecundability in two preconception cohorts," *American Journal of Clinical Nutrition*, vol. 100, no. 2, pp. 631–637, 2014.

[14] Y. Frederiksen, I. Farver-Vestergaard, N. G. Skovgård, H. J. Ingerslev, and R. Zachariae, "Efficacy of psychosocial interventions for psychological and pregnancy outcomes in infertile women and men: A systematic review and meta-analysis," *BMJ Open*, vol. 5, no. 1, e006592, 2015.

[15] A. K. Wesselink, K. J. Rothman, E. E. Hatch, E. M. Mikkelsen, H. T. Sørensen, and L. A. Wise, "Age and fecundability in a North American preconception cohort study," *American Journal of Obstetrics and Gynecology*, vol. 219, no. 3, pp. 290.e1–290.e8, 2018.

Author Profile

Karen Jimin Park is a high school senior at Deerfield Academy (Class of '26). She hopes to continue conducting serious scholarship and research in the fields of bioanthropology, Asian-American studies, and Asian ethnographies.