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Abstract: These Intelligent Reflecting Surface (IRS)-assisted Multi-User Multiple-Input Single-Output (MU-MISO) communication
has gained considerable attention due to its capability to enhance spectral efficiency by intelligently reshaping the wireless propagation
environment through passive signal reflection. Despite recent progress, most existing deep learning-based IRS optimization techniques
rely on offline training, which limits their robustness under time-varying and noisy channel conditions. To address this limitation, this
paper proposes an online adaptive Bidirectional Long Short-Term Memory (BiLSTM) framework combined with a Wiener filter to
improve noise robustness and spectral efficiency performance. The Wiener filter enables effective noise suppression, while the Bi-LSTM
model continuously updates its parameters in real time to track dynamic channel variations. Extensive simulations are conducted in
Python using the Google Colab platform under three different scenarios, including two baseline models for performance comparison.
Quantitative results demonstrate that the proposed method achieves a spectral efficiency of 26.13 bits/s/Hz and a training loss of 0.62 at
30 dB SNR, consistently outperforming baseline approaches across the entire SNR range. These results confirm that the integration of
online learning with Wiener filtering significantly enhances system stability and adaptability, making the proposed approach a
promising solution for future IRS-assisted wireless communication systems.
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1. Introduction optimization of the base station beamforming and the IRS
phase shift matrix. However, such optimization problems are

The rapid growth of wireless applications and the evolution ~ often  highly ~ non-convex and require significant
toward sixth-generation (6G) communication systems have ~computational effort. Conventional approaches attempt to
increased the demand for higher spectral efficiency (SE), ~ address these challenges by transforming the problem into
improved reliability, and wider coverage. Intelligent CONVEX forms or by adopting minimum mean square error
reflecting surfaces (IRSs) have emerged as an effective (MMSE)-based techniques, which provide performance
technology to address these requirements by enabling control ~ gains but suffer from scalability and adaptability issues under
over the wireless propagation environment. By adjusting the ~ dynamic channel conditions [4]. Furthermore, practical
electromagnetic characteristics of a large number of passive ~ hardware impairments at both the base station and IRS
reflecting elements, IRSs can modify signal propagation and ~ clements create central limitations on achievable SE,
enhance overall system performance without requiring especially at high signal-to-noise ratio (SNR) levels,
complex hardware structures [1]. highlighting the need for more robust and adaptive solutions
[5].

The basic idea of IRS-assisted wireless communication is

based on regulating the phase, amplitude, and polarization of ~ To address the drawbacks of conventional optimization-
incoming signals to reduce unfavorable propagation effects. ~ driven approaches, learning-based methods have gained
In contrast to traditional wireless systems, where the channel ~ attention in IRS-assisted wireless communication systems.
behavior is largely uncontrollable, IRSs provide configurable ~Among these, recurrent neural network (RNN) architectures
control over the radio environment, enabling more flexible —are effective in modeling time-dependent behavior in
communication system design [2]. This capability has led to dynamic wireless channels. Several studies indicate that
significant research interest in IRS-based networks for future ~ Long Short-Term Memory (LSTM), Bidirectional LSTM
wireless systems, covering performance analysis, system (BILSTM), and Gated Recurrent Unit (GRU) models

modeling, and practical application scenarios envisioned for enhapce signal -estimation .and det.ection performance by
6G communications [3]. learning sequential channel information from past and future

observations [6]. Furthermore, deep learning approaches that
From a system performance perspective, one of the key goals ~ combine convolutional neural networks with recurrent
of IRS deployment is the maximization of spectral efficiency mpde}s 1mprove decoding accuracy and trgmmg efﬁcwncy,
in multi-user communication systems. In IRS-assisted multi-  highlighting the usefulness of deep learning techniques in

user multiple-input single-output (MU-MISO) systems, SE compl.ex IRS-enabled communication environments [7].
improvement is generally achieved through joint Additionally, LSTM-based frameworks have been
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successfully applied to improve energy efficiency and
transmission power in IRS-assisted networks, indicating their
adaptability to large-scale and variable systems [8].

While most existing learning-based approaches rely on
offline training, real-world wireless environments are
naturally changing, requiring continuous model adaptation.
Online learning has therefore gained attention as an effective
framework for updating model parameters sequentially as
new data become available, allowing systems to adapt to
changing channel conditions in real time [9]. Compared with
offline learning, online learning offers improved flexibility
and reduced storage requirements, making it particularly
suitable for time-dependent wireless environment [10].
Within this framework, online training methods for LSTM
networks have been investigated, where filtering-based
training algorithms such as Kalman filtering enable faster
training stabilization and reduced computational complexity
compared to conventional gradient-based methods [11].

Beyond sequence modeling, deep learning has also been
applied to predictive beamforming in IRS-assisted multi-user
systems to reduce channel estimation load. By learning
historical channel characteristics, deep neural networks can
estimate IRS phase shifts and beamforming vectors,
achieving improved weighted sum-rate performance with
lower signaling cost [12]. Similarly, deep reinforcement
learning (DRL) approaches such as deep deterministic policy
gradient (DDPG) and twin delayed DDPG (TD3) have been
introduced to address the joint optimization of active and
passive beamforming in IRS-assisted systems, showing
significant SE gains under complex non-convex conditions
[13]. DRL-based solutions have also been adapted to secure
IRS-assisted communications, where adaptive beamforming
policies are derived under changing channel and service
requirement limitations [14].

Despite these advancements, learning-based IRS systems
remain susceptible to noise and imperfect channel
observations, particularly under low SNR conditions.
Traditional signal processing techniques, such as the Wiener
filter, provide an effective means of noise suppression and
minimum mean square error estimation by utilizing
statistical characteristics of the signal and noise. The Wiener
filter has long been established as a powerful tool for
smoothing, interpolation, and prediction in noisy
environments, making it a suitable preprocessing stage for
learning-based wireless systems [15].

Building on these insights, this work presents an online-
trained learning approach for IRS-assisted MU-MISO
communication that integrates a Bidirectional Long Short-
Term Memory (BiLSTM) network with a Wiener filter. In
the proposed approach, the received channel signals are first
processed using a Wiener filter to reduce noise and improve
signal quality. The processed observations are then provided
to the BILSTM model, which learns temporal patterns from
both past and future signal information. This bidirectional
learning ability enables more accurate channel predictions
and results in improved spectral efficiency, especially under
severe noisy conditions.

The main aim of this work is to examine the adaptability and
stability of the proposed online learning approach across
varying signal-to-noise ratio (SNR) levels using three
distinct simulation cases. The first two cases are designed to
establish reference performance and enable comparative
analysis, whereas the third case demonstrates the
effectiveness of the proposed online BILSTM—Wiener filter
method in a practical wireless environment.

Scenario 1: The impact of different base station antenna
configurations on spectral efficiency is investigated using
BiLSTM-based offline training. Systems with 2, 4, and 8
base station antennas are considered, showing that the 8-
antenna configuration achieves superior spectral efficiency
due to improved signal quality.

Scenario 2: The spectral efficiency performance is compared
among multiple learning-based approaches, including
BiLSTM with Wiener filter, BILSTM without Wiener filter,
Deep Deterministic Policy Gradient (DDPG), and Deep
Learning-Based Beamforming (DL-BF). Under offline
training conditions, the BILSTM combined with the Wiener
filter achieves the highest spectral efficiency, highlighting
the effectiveness of noise suppression at the receiver.

Scenario 3: The proposed BILSTM with Wiener filter model
is initially trained offline at an SNR of 10 dB and then
further improved through online training across varying SNR
levels. This case highlights the ability of the proposed
approach to adapt to time-varying noise conditions while
maintaining improved spectral efficiency, representing the
main contribution of this work.

2. System Model

Figure 1 shows the IRS-assisted multi-user multiple-input
single-output ~ (MU-MISO)  communication  system
considered in this work. A base station (BS) equipped with
multiple antennas communicates with multiple single-
antenna user equipments (UEs). The direct line-of-sight
(LoS) link between the BS and the UEs is assumed to be
obstructed by surrounding obstacles such as buildings or
dense urban structures. To support reliable transmission, an
intelligent reflecting surface (IRS) with a fixed number of
passive reflecting elements is positioned between the BS and
the UEs. Each IRS element applies a predetermined phase
shift to the incident signals, reflecting them toward the UEs
and establishing an indirect cascaded communication path
formed by the BS—IRS and IRS-UE channels.

Fixed Phase Shifts
|

IRS with Fixed
Reflecting Elements

Base Station

Multiple Users
(BS) (MU-MISO)

Passive Reflecting Surface  Cascaded Channel

Figure 1: IRS-Assisted MU-MISO communication system
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2.1 Received Signal Model with Online Training

In [1], all system parameters were assumed to be static, and
the analysis focused on offline training scenarios. In contrast,
the present work considers BILSTM with wiener filter using
online training, which enables the model to adapt to dynamic
noise variations across different SNR levels, thereby
improving spectral efficiency in the IRS-assisted MU-MISO
system.

In the proposed model, the intelligent reflecting surface
(IRS) contains N passive elements arranged in a uniform
planar array (UPA). The base station (BS) is furnished with
M antennas arranged linearly in a uniform configuration,
while each user equipment (UE) has a single antenna. The
network accommodates I users in total, and the signal
received by the i-th UE isi=1, 2, 3, .... I can be written as

yi(t)=h5; @ Hy x +ni(t) (1)

The channel vector from the IRS to Ith UE is denoted by h;
€ CY¥*! while the channel matrix from BS to the IRS is
represented as H; € CNM, The IRS phase shift matrix is
defined as @ = diag (e/*1, 2, ..., e/®N), where o, € [0,27]
corresponds to the phase shift applied by the n-th reflecting
element. The combined IRS to UE channel matrix is
expressed as Ho=[hy,1, hap, ..., ho ] € CPN. The transmitted
signal vector x is represented as x = Yi_, v;s;, where s; ~
CN(0,1) represents the data symbol for the i-th user, V = [vy,
V2, ..., vi] € CMTis the precoding matrix, and n;(t) ~
CN(0,6%(t)) denotes the additive white Gaussian noise
(AWGN) with noise variance 6%(t).

2.2 Online Adaptive Cascaded Channel Model

In this work, the direct transmission link between BS and
UEs is neglected due to severe propagation loss and non-
line-of-sight (NLoS) conditions commonly observed in
practical  millimeter-wave (mmWave) environments.
Considering the high frequency propagation characteristics
of mmWave signals, the reflected and scattered components
dominate the transmission. Therefore, a three-dimensional
(3D) Saleh-Valenzuela channel model with L scatters is
adopted to accurately represent the multipath environment.
The complex channel matrix between BS and IRS, denoted
as Hi , can thus be expressed as

MN -
Hi= . Ztlzol Bi, au(Puy, » Ouy,) ab (bry,) 2

Here, ’? serves as the normalization factor, B ~ CN(0,1)
1

denotes the complex gain associated with the Ith scatter. The
term al! (cl)b_ll) and a, (¢y,1,, 0y,,) corresponds to the array
response vector of the BS and IRS, respectively.
Furthermore, (§y,,), (6yy) and (bp,,) indicate the
azimuth angles of arrival (AOA) and departure (AOD), as
well as the zenith angles of departure (ZOD). The array
response vector for the UPA comprising N reflecting
elements can thus be represented as

1 '(z—n)d(ﬁsin¢sin6+ cos6
2,($,0) = = [1,..,¢(3 veoso,
‘(2—”1\)1((N -1)dsindsin®+(Ny—1)cos6
.’eJ 7 x y ]T (3)

Here, B and y represent the indices of the reflecting elements
along the horizontal and vertical axes, respectively, with N =
Nx Ny, 0<B<Ny-1and 0 <y < Ny,-1. The spacing between
reflective elements is denoted by d, while 4 corresponds to
the signal wavelength. Based on these definitions, the array
response vector of the uniform linear array (ULA) at the base
station (BS) can be formulated as

LA PP (2T . T
@) = = [1,/FIsime,_ IF)0r-Dasme 17 g

The channel connecting the IRS to the i-th UE, denoted by
hy;, can be represented mathematically as

N olp-1
h3; :\[g 2o By ap (D15, Op11) (5)

. . [N o
In this expression, T serves as the normalization factor,
2

[312; ~ CN(0,1) denotes the complex gain corresponding to the

Ith scatter, and L, represents the total number of propagation
paths between the IRS and the UEs. Based on this, the
overall cascaded channel Hefr linking the BS to the IRS and
subsequently to the UEs can be expressed as

Herr=Hz ¢ Hi + ni(t) (6)

The overall downlink spectral efficiency, denoted by X' , for
the proposed system can be expressed as

[Hepsvil® > )

2
Siwil Hepr vil + a2(t)

X' =¥l_,log <1 +

2.3 Online Wiener Filter for Noise-Adaptive Weight
Update

In this work, the IRS contains 16 passive reflecting elements
with fixed phase shifts; therefore, no IRS phase optimization
is performed. Instead, the Wiener filter is employed to
generate noise-adaptive linear combining weights based on
the cascaded channel. The Wiener filter is designed to
minimize the mean square error (MSE) between the received
signal and the desired signal, ensuring optimal noise
suppression. Since the channel remains static while the noise
variance changes across different SNR levels, the Wiener
filter produces updated complex weights that vary with the
instantaneous noise level. This enables the system to
maintain stable signal quality despite dynamic noise
conditions. The noise-adaptive Wiener weight update is
computed as

Wontine(t) = (HegeHer + 0%(t) I Hege (®

Where Her represents the cascaded channel matrix
corresponding the BS, IRS and users. The term 6%(t) denotes
the instantaneous noise variance during the adaptation
process, while I refers to the identity matrix included to
maintain numerical stability.
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The complex-valued weight matrix Wonine(t) adapts
automatically as noise variance changes, providing improved
robustness and enhanced spectral efficiency across varying
SNR levels. Since the IRS phases remain fixed, the obtained
Wiener weights are used only for adaptive signal
enhancement, without reconfiguring the IRS.

3. Deep Learning Framework
3.1 BiLSTM-Based Network Architecture

The Bidirectional Long Short-Term Memory (BiLSTM)
network is an advanced form of recurrent neural network
architecture that models long-range temporal patterns by
processing sequence data in both forward and backward
directions. Unlike a conventional LSTM that relies solely on
information from earlier time steps, a BILSTM combines the
outputs of two independently trained LSTM layers to utilize
information available from both past and future directions.
This  bidirectional  processing  enables  sequence
representations and improves learning performance for time-
dependent signals.

Outputlayer Yo
+
=
S— a
Bachward %
— [ 1sm 1
]
foward r i
e 15— %
-— @ @ @ -

Figure 2: Architecture of the BILSTM network

The architecture of the BiLSTM network, illustrated in
Figure 2, begins by feeding the input sequence
simultaneously into a forward LSTM layer that processes the
data from X; to Xr, and backward LSTM layer that
processes the same sequence in reverse, from Xr to Xii.
Each LSTM cell uses the input, forget, and output gates to
manage the flow of information, keeping important temporal
features while reducing the influence of irrelevant
components. The outputs from the forward and backward
directions are then combined, either through concatenation or
summation, to form a unified context vector that is passed to
the output layer to produce the final prediction.

3.2 Dataset Generation and Preprocessing

The dataset is generated using a simulated multi-user
multiple-input single-output (MU-MISO) system assisted by
16 IRS elements. The Saleh—Valenzuela channel model is
adopted to capture multipath propagation between the BS,
IRS, and users. The SNR range is varied from 0 dB to 30 dB,
with equal spacing of 5 dB. Additive White Gaussian Noise
(AWGN) is applied to all generated channels. Each input
sequence is represented using 10 time steps, with real and
imaginary components concatenated during preprocessing.
Before training, all inputs are normalized to ensure stable
learning.

Scenario 1: For BS antenna configurations of 2, 4, and 8
antennas, 3000 channel realizations are generated for each
configuration. Samples are equally distributed across the
SNR range of (0-30) dB. The dataset is partitioned using an
85% training, with the remaining 15% used for both
validation and testing split.

Scenario 2: For comparing different deep learning methods,
an MU-MISO system with 8 BS antennas is simulated. A
total of 3000 realizations are generated and uniformly
distributed across all SNR levels. The dataset is divided as
80% for training and remaining 20% divided between
validation and testing.

Scenario 3: For the BiLSTM with Wiener filter using online
training, an MU-MISO system with 8 BS antennas and 4
users is simulated. 5000 realizations per SNR level (0-30
dB) are generated. The dataset is split into 68% training,
20% testing, and 12% validation.

3.3 Proposed Deep Learning Model

In this work, Scenarios 1 and 2 utilize an offline BiLSTM
framework that includes an input layer, a single BiLSTM
layer, a fully connected stage, and a final output layer.
Scenario 3 differs by employing online training, where two
BiLSTM layers are stacked to capture more detailed
temporal patterns and adjust to changing channel conditions
during operation. The focus of the study is mainly on
Scenario 3, as it demonstrates stronger adaptability when the
channel experiences noise fluctuations.

[ Input Layer }

1!

BiLSTM Layer 1 }

!

BILSTM Layer 2 J

{

[ Fully Connected Layer }

[ QOutput Layer }

Figure 3: Layered architecture of the proposed BiLSTM
based online training model

The proposed deep learning model consists of an input layer
followed by two stacked Bidirectional Long Short-Term
Memory (BiLSTM) layers with 64 hidden units each, a fully
connected (dense) layer, and a linear output layer, as shown
in Figure 3. The input layer receives time-sequenced channel
features derived from the real and imaginary components of
the channel coefficients along with fixed IRS parameters.
The first BILSTM layer captures temporal dependencies in
both forward and backward directions, learning short-term
and long-term patterns in the channel data. The second
BIiLSTM layer further refines these temporal features,
producing a high-dimensional sequential representation that
preserves the dynamics of the time-varying channel. The
output of the second BiLSTM layer is passed through the
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fully connected layer, which transforms the sequential
features into a fixed-length vector. This vector is then
processed by the linear output layer to generate continuous-
valued predictions of the effective channel coefficients in a
regression-based framework. During training, feedback in
the form of prediction error is backpropagated through the
network to update all trainable parameters, minimizing the
regression loss. When integrated with the Wiener filter, this
architecture supports noise-aware online adaptation and
enhanced spectral efficiency in time-varying wireless
environments.

3.4 Training and Evaluation Procedure

The deep learning models are trained using the Adam
optimizer with a learning rate of 0.001, batch size 128, and
MSE (loss). Model performance is evaluated using spectral
efficiency (SE) and mean squared error (MSE) across SNR
levels from 0-30 dB. Each scenario follows the dataset splits
defined in sub-heading 3.2.

Scenario 1: For MU-MISO systems with 2, 4, and 8 BS
antennas, a BILSTM model with one hidden layer of 32 units
is trained for 10 epochs under offline training. A Wiener
filter is applied at the preprocessing stage to enhance noise
suppression before the BiLSTM processes each input
sequence, which consists of 10 time steps. Model
performance is evaluated using SE and MSE across all SNR
levels, and results show that spectral efficiency improves as
the number of BS antennas increases.

Scenario 2: To compare different DL methods, simulations
are performed for an MU-MISO system with 8 BS antennas
and 16 IRS elements. The four deep learning methods are
trained offline, including BiLSTM with Wiener filter using
64 units, BiLSTM without Wiener filter using 64 units,
supervised deep learning based beamforming (DL-BF), and
the Deep Deterministic Policy Gradient (DDPG) method.
Each method is trained for 5 epochs. Model performance is
evaluated across all SNR levels using spectral efficiency and
mean squared error. The results demonstrate that the
BiLSTM model equipped with the Wiener filter provides the
highest spectral efficiency and the lowest MSE among the
compared methods.

Scenario 3: For the proposed BiLSTM model with the
Wiener filter using online training, two BiLSTM layers with
64 hidden units each are employed, and the training process
is carried out in two stages. The first stage involves offline
pretraining at an SNR of 10 dB for 5 epochs, while the
second stage performs online adaptation across all SNR
levels with 5 epochs for each SNR. The Wiener filter is
incorporated to enhance noise suppression and stabilize the
online learning process. Model performance is evaluated
across all SNR levels using spectral efficiency and mean
squared error.

4. Results and Discussion
4.1 Simulation Setup

The proposed system's performance is evaluated under three
scenarios which are antenna configuration, DL methods, and

the BILSTM with Wiener filter using online training.
Scenarios 1 and 2 serve as baselines for comparison,
validating the effectiveness of the proposed BiLSTM with
wiener filter framework using online training (scenario 3).
Spectral efficiency (SE) is analyzed using the simulation
parameters in Table 1 for consistent evaluation.

Table 1: Simulation Parameters of the Proposed System
under Three Scenarios

Parameters Antenna | Deep Learning| BiLSTM Online
Configuration Methods Training
No. of BS [2,4.8] ] ]
antennas
No. of IRS 16 16 16
elements
No. of Samples 3000 3000 5000
SNR range (0-30) dB (0-30) dB (0-30) dB
No. of LSTM . . 2 (64 hidden units
hidden layer 1 (32 units) 1 (64 units) per layer)
No. of epoch 10 5 € offh.ne &3
online)
Batch Size 128 128 128
Learning rate 0.001 0.001 0.001
Time step 10 10 10
Optimizer Adam Adam Adam

The parameter values are carefully selected to achieve
reliable and meaningful performance comparisons across all
scenarios. The results are presented in the following
subheadings with respective graphs.

4.2 Antenna Configuration

Figure 4 illustrates the variation of spectral efficiency (SE)
with respect to SNR for different base station antenna
configurations. As the SNR increases, SE improves
consistently across all configurations, confirming the
expected gain in system performance under higher signal
quality. Among the evaluated configurations, the 8-antenna
configuration achieves the highest SE, reaching
approximately 15 bits/s/Hz at 30 dB, whereas the 4-antenna
and 2-antenna cases attain around 14 bits/s/Hz and 12.8
bits/s/Hz, respectively. These results indicate that increasing
the number of transmit antennas leads to improved
throughput, making larger antenna arrays more suitable for
high-capacity wireless communication systems.

SE vs SNR

—— 7 antennas
== 4 antennas
== B antennas

spectral Efficiency (bits/siHz)
-

Figure 4: SE vs SNR for different BS antenna
configurations
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Figure 5 illustrates the variation of mean squared error
(MSE) with respect to SNR for different base station antenna
configurations. The MSE decreases consistently as the SNR
increases for all configurations, reflecting improved
estimation accuracy under higher signal quality. At 30 dB,
the 8-antenna configuration achieves the lowest loss of
approximately 0.68, while the 4-antenna and 2-antenna cases
attain higher losses of about 0.77 and 0.85, respectively. This
trend demonstrates that increasing the number of antennas
enhances training stability and robustness, leading to more
reliable learning and accurate signal estimation in MU-MISO
systems.

Figure 7 shows the mean squared error (MSE) versus SNR
performance for different deep learning—based methods. For
all approaches, the loss decreases as the SNR increases,
indicating improved estimation accuracy under higher signal
quality. The proposed BiLSTM—Wiener model achieves the
lowest loss, reaching approximately 0.14 at 30 dB, followed
by the BiLSTM without the Wiener filter at around 0.18, the
DL-based beamforming method at nearly 0.25, and the
DDPG approach at about 0.28. These results demonstrate the
robustness and training stability of the BiLSTM-Wiener
framework, highlighting its effectiveness in reducing noise
and improving channel estimation performance.

Loss vs SNR

184 —— F aniennas
—— 4 ANLENNET
== B antennas

Loss (MSE]

20 5 50

] - ] 10

15
SNR (dB)

Figure 5: loss vs SNR for different BS antenna
configurations

4.3 Comparison of Deep Learning Methods

Figure 6 presents the spectral efficiency (SE) versus SNR
performance for different deep learning—based methods. For
all approaches, SE improves as the SNR increases; however,
the proposed BiLSTM—Wiener model consistently achieves
the highest performance across the entire SNR range. At 30
dB, it attains an SE of approximately 15.81 bits/s/Hz,
significantly outperforming the BiLSTM model without the
Wiener filter with about 9.10 bits/s/Hz, the DL-based
beamforming method with nearly 4.21 bits/s/Hz, and the
DDPG approach with around 2.00 bits/s/Hz. These results
confirm that integrating the Wiener filter with the BiLSTM
network effectively enhances noise suppression and feature
learning, leading to superior spectral utilization, higher data
rates, and improved overall communication efficiency.

SE vs SHR

16 4= BUSTM Wiener
4= BUSTM wehout Whener
144 == DL8F
0RG

K (8

Figure 6: SE vs SNR for different DL methods
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Figure 7: loss vs SNR for different DL methods

4.4 BiLSTM with Wiener Filter through Online Training

Figure 8 shows the spectral efficiency (SE) versus SNR
performance of the BiLSTM model with a Wiener filter
under online training. The SE increases steadily from
approximately 2.55 bits/s/Hz at 0 dB to 26.13 bits/s/Hz at 30
dB, indicating a significant improvement in data
transmission capability as the signal quality improves. This
consistent growth confirms the effectiveness of the online
BiLSTM—Wiener framework in adapting to noise variations,
enabling efficient spectral utilization and enhanced
throughput under dynamic wireless channel conditions.

SE vs SNR (MU-MISO Online BILSTM + Wiener)

spectral Efficiency (bits/s/Hz)

o L} 10 15 20 25 30
SNR (dBj)

Figure 8: SE vs SNR for BiLSTM with Wiener Filter

Figure 9 shows the mean squared error (MSE) versus SNR
performance of the BiLSTM model with a Wiener filter
under online training. The loss decreases steadily from
approximately 0.92 at 0 dB to 0.61 at 30 dB, indicating
improved learning accuracy as the signal quality increases.
This decreasing trend confirms the effectiveness of the
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online BILSTM—Wiener framework in maintaining stable
training, enhancing noise resilience, and achieving adaptive
optimization under noise-varying channel conditions.

Loss ws SNR (MU-MISO Online BILSTM + Wiener)

0.30

0.85

2
@
<

Loss (MSE)
=]
~
v

0.65

0.60

o 5 10 15 20 25 30
SNA (dB)

Figure 9: loss vs SNR for BILSTM with Wiener Filter

The performance analysis of the proposed BiLSTM model
integrated with the Wiener filter using online training, in
terms of Spectral Efficiency (SE) and Loss across varying
Signal-to-Noise Ratio (SNR) levels, is presented in Table 2.

Table 2 Spectral Efficiency (SE) and MSE (Loss)
performance of the Proposed System

SNR (dB) | Spectral Efficiency (bits/s/Hz) | MSE (Loss)
0 2.55 0.92
5 3.98 0.73
10 6.41 0.67
15 10.00 0.64
20 15.11 0.62
25 20.06 0.61
30 26.13 0.61

Table 2 presents the spectral efficiency and loss performance
of the proposed system. The proposed BiLSTM with Wiener
filter model using online training demonstrates a consistent
improvement relationship between spectral efficiency and
signal quality, with spectral efficiency increasing from 2.55
bits/s/Hz to 26.13 bits/s/Hz as the SNR increases from 0 dB
to 30 dB. Concurrently, the loss decreases from 0.92 to 0.61,
indicating enhanced model accuracy and stable behavior
during online training. These results confirm the
effectiveness of the proposed framework in achieving
adaptive spectral utilization and robust noise suppression
under noise varying conditions. Such performance is
particularly beneficial in static deployment environments
such as indoor networks, fixed wireless access links,
industrial communication setups, and backhaul systems,
where the fixed IRS configuration and cascaded MU-MISO
structure effectively improve multiuser connectivity and
overall spectral efficiency.

5. Conclusion

This research investigated an online adaptive BiLSTM
framework integrated with a Wiener filter to improve
spectral efficiency in IRS-assisted MU-MISO
communication under noisy conditions. Performance
analysis indicates that the proposed online approach

consistently performs better than conventional offline-trained
deep learning models and different antenna configuration in
terms of spectral efficiency, noise handling capability, and
system stability. At an SNR of 30 dB, the system achieves a
spectral efficiency of 26.13 bits/s/Hz with a low loss value of
0.61, confirming the effectiveness of the online learning
approach. The Wiener filter supports noise-aware signal
processing, while the BiLSTM structure captures temporal
channel wvariations effectively, enabling adaptive and
dependable performance across a wide range of SNR levels.
Overall, the proposed framework offers a clear improvement
compared to earlier offline learning-based methods.

6. Future Scope

Although the proposed framework provides notable
improvements in spectral efficiency, it is currently tested
under controlled simulation settings with fixed IRS
configurations and ideal synchronization, which may not
fully reflect practical wireless scenarios. In real deployments,
factors such as hardware imperfections, user movement,
inaccurate channel information, and processing limitations
can influence system performance. While the online training
strategy enhances adaptation to noise variations, extending
this capability to fast-changing channel conditions remains
an important area for future research. Further studies may
focus on real-time implementation, reducing computational
delay and power consumption, and jointly optimizing IRS
phase control using reinforcement learning or combined deep
learning approaches. Moreover, improving scalability and
computational efficiency will be essential for applying the
proposed framework to large-scale and dense 6G
communication networks.
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