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Abstract: These Intelligent Reflecting Surface (IRS)-assisted Multi-User Multiple-Input Single-Output (MU-MISO) communication 

has gained considerable attention due to its capability to enhance spectral efficiency by intelligently reshaping the wireless propagation 

environment through passive signal reflection. Despite recent progress, most existing deep learning-based IRS optimization techniques 

rely on offline training, which limits their robustness under time-varying and noisy channel conditions. To address this limitation, this 

paper proposes an online adaptive Bidirectional Long Short-Term Memory (BiLSTM) framework combined with a Wiener filter to 

improve noise robustness and spectral efficiency performance. The Wiener filter enables effective noise suppression, while the Bi-LSTM 

model continuously updates its parameters in real time to track dynamic channel variations. Extensive simulations are conducted in 

Python using the Google Colab platform under three different scenarios, including two baseline models for performance comparison. 

Quantitative results demonstrate that the proposed method achieves a spectral efficiency of 26.13 bits/s/Hz and a training loss of 0.62 at 

30 dB SNR, consistently outperforming baseline approaches across the entire SNR range. These results confirm that the integration of 

online learning with Wiener filtering significantly enhances system stability and adaptability, making the proposed approach a 

promising solution for future IRS-assisted wireless communication systems. 
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1. Introduction 
 

The rapid growth of wireless applications and the evolution 

toward sixth-generation (6G) communication systems have 

increased the demand for higher spectral efficiency (SE), 

improved reliability, and wider coverage. Intelligent 

reflecting surfaces (IRSs) have emerged as an effective 

technology to address these requirements by enabling control 

over the wireless propagation environment. By adjusting the 

electromagnetic characteristics of a large number of passive 

reflecting elements, IRSs can modify signal propagation and 

enhance overall system performance without requiring 

complex hardware structures [1]. 

 

The basic idea of IRS-assisted wireless communication is 

based on regulating the phase, amplitude, and polarization of 

incoming signals to reduce unfavorable propagation effects. 

In contrast to traditional wireless systems, where the channel 

behavior is largely uncontrollable, IRSs provide configurable 

control over the radio environment, enabling more flexible 

communication system design [2]. This capability has led to 

significant research interest in IRS-based networks for future 

wireless systems, covering performance analysis, system 

modeling, and practical application scenarios envisioned for 

6G communications [3]. 

 

From a system performance perspective, one of the key goals 

of IRS deployment is the maximization of spectral efficiency 

in multi-user communication systems. In IRS-assisted multi-

user multiple-input single-output (MU-MISO) systems, SE 

improvement is generally achieved through joint 

optimization of the base station beamforming and the IRS 

phase shift matrix. However, such optimization problems are 

often highly non-convex and require significant 

computational effort. Conventional approaches attempt to 

address these challenges by transforming the problem into 

convex forms or by adopting minimum mean square error 

(MMSE)-based techniques, which provide performance 

gains but suffer from scalability and adaptability issues under 

dynamic channel conditions [4]. Furthermore, practical 

hardware impairments at both the base station and IRS 

elements create central limitations on achievable SE, 

especially at high signal-to-noise ratio (SNR) levels, 

highlighting the need for more robust and adaptive solutions 

[5]. 

 

To address the drawbacks of conventional optimization-

driven approaches, learning-based methods have gained 

attention in IRS-assisted wireless communication systems. 

Among these, recurrent neural network (RNN) architectures 

are effective in modeling time-dependent behavior in 

dynamic wireless channels. Several studies indicate that 

Long Short-Term Memory (LSTM), Bidirectional LSTM 

(BiLSTM), and Gated Recurrent Unit (GRU) models 

enhance signal estimation and detection performance by 

learning sequential channel information from past and future 

observations [6]. Furthermore, deep learning approaches that 

combine convolutional neural networks with recurrent 

models improve decoding accuracy and training efficiency, 

highlighting the usefulness of deep learning techniques in 

complex IRS-enabled communication environments [7]. 

Additionally, LSTM-based frameworks have been 
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successfully applied to improve energy efficiency and 

transmission power in IRS-assisted networks, indicating their 

adaptability to large-scale and variable systems [8]. 

 

While most existing learning-based approaches rely on 

offline training, real-world wireless environments are 

naturally changing, requiring continuous model adaptation. 

Online learning has therefore gained attention as an effective 

framework for updating model parameters sequentially as 

new data become available, allowing systems to adapt to 

changing channel conditions in real time [9]. Compared with 

offline learning, online learning offers improved flexibility 

and reduced storage requirements, making it particularly 

suitable for time-dependent wireless environment [10]. 

Within this framework, online training methods for LSTM 

networks have been investigated, where filtering-based 

training algorithms such as Kalman filtering enable faster 

training stabilization and reduced computational complexity 

compared to conventional gradient-based methods [11]. 

 

Beyond sequence modeling, deep learning has also been 

applied to predictive beamforming in IRS-assisted multi-user 

systems to reduce channel estimation load. By learning 

historical channel characteristics, deep neural networks can 

estimate IRS phase shifts and beamforming vectors, 

achieving improved weighted sum-rate performance with 

lower signaling cost [12]. Similarly, deep reinforcement 

learning (DRL) approaches such as deep deterministic policy 

gradient (DDPG) and twin delayed DDPG (TD3) have been 

introduced to address the joint optimization of active and 

passive beamforming in IRS-assisted systems, showing 

significant SE gains under complex non-convex conditions 

[13]. DRL-based solutions have also been adapted to secure 

IRS-assisted communications, where adaptive beamforming 

policies are derived under changing channel and service 

requirement limitations [14]. 

 

Despite these advancements, learning-based IRS systems 

remain susceptible to noise and imperfect channel 

observations, particularly under low SNR conditions. 

Traditional signal processing techniques, such as the Wiener 

filter, provide an effective means of noise suppression and 

minimum mean square error estimation by utilizing 

statistical characteristics of the signal and noise. The Wiener 

filter has long been established as a powerful tool for 

smoothing, interpolation, and prediction in noisy 

environments, making it a suitable preprocessing stage for 

learning-based wireless systems [15]. 

 

Building on these insights, this work presents an online-

trained learning approach for IRS-assisted MU-MISO 

communication that integrates a Bidirectional Long Short-

Term Memory (BiLSTM) network with a Wiener filter. In 

the proposed approach, the received channel signals are first 

processed using a Wiener filter to reduce noise and improve 

signal quality. The processed observations are then provided 

to the BiLSTM model, which learns temporal patterns from 

both past and future signal information. This bidirectional 

learning ability enables more accurate channel predictions 

and results in improved spectral efficiency, especially under 

severe noisy conditions. 

 

The main aim of this work is to examine the adaptability and 

stability of the proposed online learning approach across 

varying signal-to-noise ratio (SNR) levels using three 

distinct simulation cases. The first two cases are designed to 

establish reference performance and enable comparative 

analysis, whereas the third case demonstrates the 

effectiveness of the proposed online BiLSTM–Wiener filter 

method in a practical wireless environment. 

 

Scenario 1: The impact of different base station antenna 

configurations on spectral efficiency is investigated using 

BiLSTM-based offline training. Systems with 2, 4, and 8 

base station antennas are considered, showing that the 8-

antenna configuration achieves superior spectral efficiency 

due to improved signal quality. 

 

Scenario 2: The spectral efficiency performance is compared 

among multiple learning-based approaches, including 

BiLSTM with Wiener filter, BiLSTM without Wiener filter, 

Deep Deterministic Policy Gradient (DDPG), and Deep 

Learning-Based Beamforming (DL-BF). Under offline 

training conditions, the BiLSTM combined with the Wiener 

filter achieves the highest spectral efficiency, highlighting 

the effectiveness of noise suppression at the receiver. 

 

Scenario 3: The proposed BiLSTM with Wiener filter model 

is initially trained offline at an SNR of 10 dB and then 

further improved through online training across varying SNR 

levels. This case highlights the ability of the proposed 

approach to adapt to time-varying noise conditions while 

maintaining improved spectral efficiency, representing the 

main contribution of this work. 

 

2. System Model 
 

Figure 1 shows the IRS-assisted multi-user multiple-input 

single-output (MU-MISO) communication system 

considered in this work. A base station (BS) equipped with 

multiple antennas communicates with multiple single-

antenna user equipments (UEs). The direct line-of-sight 

(LoS) link between the BS and the UEs is assumed to be 

obstructed by surrounding obstacles such as buildings or 

dense urban structures. To support reliable transmission, an 

intelligent reflecting surface (IRS) with a fixed number of 

passive reflecting elements is positioned between the BS and 

the UEs. Each IRS element applies a predetermined phase 

shift to the incident signals, reflecting them toward the UEs 

and establishing an indirect cascaded communication path 

formed by the BS–IRS and IRS–UE channels. 

 

 
Figure 1: IRS-Assisted MU-MISO communication system 
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2.1 Received Signal Model with Online Training 

 

In [1], all system parameters were assumed to be static, and 

the analysis focused on offline training scenarios. In contrast, 

the present work considers BiLSTM with wiener filter using 

online training, which enables the model to adapt to dynamic 

noise variations across different SNR levels, thereby 

improving spectral efficiency in the IRS-assisted MU-MISO 

system. 

 

In the proposed model, the intelligent reflecting surface 

(IRS) contains N passive elements arranged in a uniform 

planar array (UPA). The base station (BS) is furnished with 

M antennas arranged linearly in a uniform configuration, 

while each user equipment (UE) has a single antenna. The 

network accommodates I users in total, and the signal 

received by the i-th UE is i = 1, 2, 3, …. I can be written as 

 

            yi
′(t) = h2,i

H  Φ H1 x + ni (t)                                         (1) 

 

The channel vector from the IRS to Ith UE is denoted by h2,i 

∈ CN×1, while the channel matrix from BS to the IRS  is 

represented as H1 ∈ CN×M. The IRS phase shift matrix is 

defined as Φ = diag (ejω1 , ejω2 , … , ejωN), where ωn ∈ [0,2π] 

corresponds to the phase shift applied by the n-th reflecting 

element. The combined IRS to UE channel matrix is 

expressed as H2=[h2,1, h2,2, … , h2,I]H ∈ CI×N. The transmitted 

signal vector x is represented as x = ∑ 𝑣𝑖𝑠𝑖
𝐼
𝑖=1 , where si ⁓ 

CN(0,1) represents the data symbol for the i-th user, V = [v1, 

v2 , … , vI] ∈ CM×I is the precoding matrix, and  ni(t) ⁓ 

CN(0,σ2(t)) denotes the additive white Gaussian noise 

(AWGN) with noise variance σ2(t). 

 

2.2 Online Adaptive Cascaded Channel Model 

 

In this work, the direct transmission link between BS and 

UEs is neglected due to severe propagation loss and non-

line-of-sight (NLoS) conditions commonly observed in 

practical millimeter-wave (mmWave) environments. 

Considering the high frequency propagation characteristics 

of mmWave signals, the reflected and scattered components 

dominate the transmission. Therefore, a three-dimensional 

(3D) Saleh-Valenzuela channel model with L scatters is 

adopted to accurately represent the multipath environment. 

The complex channel matrix between BS and IRS, denoted 

as H1 , can thus be expressed as 

 

    H1=√
M N

L1
  ∑ βl1 au(ɸu,l1 , ϴu,l1

) ab
H(ɸb,l1

)
L1−1
l1=0               (2) 

 

Here, √
M N

L1
 serves as the normalization factor, βl1

⁓ CN(0,1) 

denotes the complex gain associated with the lth scatter. The 

term 𝑎𝑏
𝐻(ɸ𝑏,𝑙1

) and 𝑎𝑢(ɸ𝑢,𝑙1
, 𝛳𝑢,𝑙1

) corresponds to the array 

response vector of the BS and IRS, respectively. 

Furthermore, (ɸ𝑢,𝑙1
), (𝛳𝑢,𝑙1

) and (ɸ𝑏,𝑙1
) indicate the 

azimuth angles of arrival (AOA) and departure (AOD), as 

well as the zenith angles of departure (ZOD). The array 

response vector for the UPA comprising N reflecting 

elements can thus be represented as 

 

au(ɸ, ϴ) =  
1

√N 
  [ 1, … , ej(

2π
λ

)d(βsinɸsinϴ+γcosϴ , 

                     … , 𝑒𝑗(
2𝜋

𝜆
)((𝑁𝑥−1)𝑑𝑠𝑖𝑛ɸ𝑠𝑖𝑛𝛳+(𝑁𝑦−1)𝑐𝑜𝑠𝛳  ]T          (3) 

 

Here, β and 𝛾 represent the indices of the reflecting elements 

along the horizontal and vertical axes, respectively, with N = 

Nx Ny , 0 ≤ β ≤ Nx–1 and 0 ≤ 𝛾 ≤ Ny–1. The spacing between 

reflective elements is denoted by d, while 𝜆 corresponds to 

the signal wavelength. Based on these definitions, the array 

response vector of the uniform linear array (ULA) at the base 

station (BS) can be formulated as 

 

        ab(ɸ) = 
1

√M
 [1, 𝑒𝑗(

2𝜋

𝜆
)𝑑𝑠𝑖𝑛ɸ, … , 𝑒𝑗(

2𝜋

𝜆
)(𝑀−1)𝑑𝑠𝑖𝑛ɸ ]

𝑇

       (4) 

 

The channel connecting the IRS to the i-th UE, denoted by 

h2,i, can be represented mathematically as 

 

          h2,i
H  = √

𝑁

𝐿2
  ∑ βl2

′
L2−1

l2
′ =0

 ab
H (ɸb,l2

′ , ϴb,l2
′ )                       (5) 

 

In this expression, √
N

L2 
 serves as the normalization factor, 

βl2
′

2  ⁓ CN(0,1) denotes the complex gain corresponding to the 

lth scatter, and L2 represents the total number of propagation 

paths between the IRS and the UEs. Based on this, the 

overall cascaded channel Heff linking the BS to the  IRS and 

subsequently to the UEs can be expressed as 

 

             Heff = H2 ɸ H1 + ni(t)                                                (6) 

 

The overall downlink spectral efficiency, denoted by X′ , for 

the proposed system can be expressed as 

 

         𝑋′ = ∑ 𝑙𝑜𝑔  𝐼
𝑖=1 (1 +  

|𝐻𝑒𝑓𝑓 𝑣𝑖|
2

∑ | 𝐻𝑒𝑓𝑓 𝑣𝑖|
2

+ 𝜎2(𝑡)𝑙≠𝑖

)                    (7) 

 
 

2.3 Online Wiener Filter for Noise-Adaptive Weight 

Update 

 

In this work, the IRS contains 16 passive reflecting elements 

with fixed phase shifts; therefore, no IRS phase optimization 

is performed. Instead, the Wiener filter is employed to 

generate noise-adaptive linear combining weights based on 

the cascaded channel. The Wiener filter is designed to 

minimize the mean square error (MSE) between the received 

signal and the desired signal, ensuring optimal noise 

suppression. Since the channel remains static while the noise 

variance changes across different SNR levels, the Wiener 

filter produces updated complex weights that vary with the 

instantaneous noise level. This enables the system to 

maintain stable signal quality despite dynamic noise 

conditions. The noise-adaptive Wiener weight update is 

computed as 

 

    Wonline(t) = (HeffHeff
H   + σ2(t) I)-1 Heff

H                            (8) 

 

Where Heff represents the cascaded channel matrix 

corresponding the BS, IRS and users. The term σ2(t) denotes 

the instantaneous noise variance during the adaptation 

process, while I refers to the identity matrix included to 

maintain numerical stability.  
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The complex-valued weight matrix Wonline(t) adapts 

automatically as noise variance changes, providing improved 

robustness and enhanced spectral efficiency across varying 

SNR levels. Since the IRS phases remain fixed, the obtained 

Wiener weights are used only for adaptive signal 

enhancement, without reconfiguring the IRS. 

 

3. Deep Learning Framework 
 

3.1 BiLSTM-Based Network Architecture 

 

The Bidirectional Long Short-Term Memory (BiLSTM) 

network is an advanced form of recurrent neural network 

architecture that models long-range temporal patterns by 

processing sequence data in both forward and backward 

directions. Unlike a conventional LSTM that relies solely on 

information from earlier time steps, a BiLSTM combines the 

outputs of two independently trained LSTM layers to utilize 

information available from both past and future directions. 

This bidirectional processing enables sequence 

representations and improves learning performance for time-

dependent signals. 

 

Figure 2: Architecture of the BiLSTM network 

 

The architecture of the BiLSTM network, illustrated in 

Figure 2, begins by feeding the input sequence 

simultaneously into a forward LSTM layer that processes the 

data from Xt-1 to XT, and backward LSTM layer that 

processes the same sequence in reverse, from XT to Xt-1. 

Each LSTM cell uses the input, forget, and output gates to 

manage the flow of information, keeping important temporal 

features while reducing the influence of irrelevant 

components. The outputs from the forward and backward 

directions are then combined, either through concatenation or 

summation, to form a unified context vector that is passed to 

the output layer to produce the final prediction. 

 

3.2 Dataset Generation and Preprocessing 

 

The dataset is generated using a simulated multi-user 

multiple-input single-output (MU-MISO) system assisted by 

16 IRS elements. The Saleh–Valenzuela channel model is 

adopted to capture multipath propagation between the BS, 

IRS, and users. The SNR range is varied from 0 dB to 30 dB, 

with equal spacing of 5 dB. Additive White Gaussian Noise 

(AWGN) is applied to all generated channels. Each input 

sequence is represented using 10 time steps, with real and 

imaginary components concatenated during preprocessing. 

Before training, all inputs are normalized to ensure stable 

learning. 

Scenario 1: For BS antenna configurations of 2, 4, and 8 

antennas, 3000 channel realizations are generated for each 

configuration. Samples are equally distributed across the 

SNR range of (0–30) dB. The dataset is partitioned using an 

85% training, with the remaining 15% used for both 

validation and testing split. 

 

Scenario 2: For comparing different deep learning methods, 

an MU-MISO system with 8 BS antennas is simulated. A 

total of 3000 realizations are generated and uniformly 

distributed across all SNR levels. The dataset is divided as 

80% for training and remaining 20% divided between 

validation and testing. 

 

Scenario 3: For the BiLSTM with Wiener filter using online 

training, an MU-MISO system with 8 BS antennas and 4 

users is simulated. 5000 realizations per SNR level (0–30 

dB) are generated. The dataset is split into 68% training, 

20% testing, and 12% validation. 

 

3.3 Proposed Deep Learning Model 

 

In this work, Scenarios 1 and 2 utilize an offline BiLSTM 

framework that includes an input layer, a single BiLSTM 

layer, a fully connected stage, and a final output layer. 

Scenario 3 differs by employing online training, where two 

BiLSTM layers are stacked to capture more detailed 

temporal patterns and adjust to changing channel conditions 

during operation. The focus of the study is mainly on 

Scenario 3, as it demonstrates stronger adaptability when the 

channel experiences noise fluctuations. 

 

 
Figure 3: Layered architecture of the proposed BiLSTM 

based online training model 

 

The proposed deep learning model consists of an input layer 

followed by two stacked Bidirectional Long Short-Term 

Memory (BiLSTM) layers with 64 hidden units each, a fully 

connected (dense) layer, and a linear output layer, as shown 

in Figure 3. The input layer receives time-sequenced channel 

features derived from the real and imaginary components of 

the channel coefficients along with fixed IRS parameters. 

The first BiLSTM layer captures temporal dependencies in 

both forward and backward directions, learning short-term 

and long-term patterns in the channel data. The second 

BiLSTM layer further refines these temporal features, 

producing a high-dimensional sequential representation that 

preserves the dynamics of the time-varying channel. The 

output of the second BiLSTM layer is passed through the 
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fully connected layer, which transforms the sequential 

features into a fixed-length vector. This vector is then 

processed by the linear output layer to generate continuous-

valued predictions of the effective channel coefficients in a 

regression-based framework. During training, feedback in 

the form of prediction error is backpropagated through the 

network to update all trainable parameters, minimizing the 

regression loss. When integrated with the Wiener filter, this 

architecture supports noise-aware online adaptation and 

enhanced spectral efficiency in time-varying wireless 

environments. 

 

3.4 Training and Evaluation Procedure 

 

The deep learning models are trained using the Adam 

optimizer with a learning rate of 0.001, batch size 128, and 

MSE (loss). Model performance is evaluated using spectral 

efficiency (SE) and mean squared error (MSE) across SNR 

levels from 0–30 dB. Each scenario follows the dataset splits 

defined in sub-heading 3.2. 

 

Scenario 1: For MU-MISO systems with 2, 4, and 8 BS 

antennas, a BiLSTM model with one hidden layer of 32 units 

is trained for 10 epochs under offline training. A Wiener 

filter is applied at the preprocessing stage to enhance noise 

suppression before the BiLSTM processes each input 

sequence, which consists of 10 time steps. Model 

performance is evaluated using SE and MSE across all SNR 

levels, and results show that spectral efficiency improves as 

the number of BS antennas increases. 

 

Scenario 2: To compare different DL methods, simulations 

are performed for an MU-MISO system with 8 BS antennas 

and 16 IRS elements. The four deep learning methods are 

trained offline, including BiLSTM with Wiener filter using 

64 units, BiLSTM without Wiener filter using 64 units, 

supervised deep learning based beamforming (DL-BF), and 

the Deep Deterministic Policy Gradient (DDPG) method. 

Each method is trained for 5 epochs. Model performance is 

evaluated across all SNR levels using spectral efficiency and 

mean squared error. The results demonstrate that the 

BiLSTM model equipped with the Wiener filter provides the 

highest spectral efficiency and the lowest MSE among the 

compared methods. 

 

Scenario 3: For the proposed BiLSTM model with the 

Wiener filter using online training, two BiLSTM layers with 

64 hidden units each are employed, and the training process 

is carried out in two stages. The first stage involves offline 

pretraining at an SNR of 10 dB for 5 epochs, while the 

second stage performs online adaptation across all SNR 

levels with 5 epochs for each SNR. The Wiener filter is 

incorporated to enhance noise suppression and stabilize the 

online learning process. Model performance is evaluated 

across all SNR levels using spectral efficiency and mean 

squared error. 
 

4. Results and Discussion 
 

4.1 Simulation Setup 

 

The proposed system's performance is evaluated under three 

scenarios which are antenna configuration, DL methods, and 

the BiLSTM with Wiener filter using online training. 

Scenarios 1 and 2 serve as baselines for comparison, 

validating the effectiveness of the proposed BiLSTM with 

wiener filter framework using online training (scenario 3). 

Spectral efficiency (SE) is analyzed using the simulation 

parameters in Table 1 for consistent evaluation. 

 

Table 1: Simulation Parameters of the Proposed System 

under Three Scenarios 

Parameters 
Antenna 

Configuration 

Deep Learning 

Methods 

BiLSTM Online 

Training 

No. of BS 

antennas 
[2,4,8] 8 8 

No. of IRS 

elements 
16 16 16 

No. of Samples 3000 3000 5000 

SNR range (0-30) dB (0-30) dB (0-30) dB 

No. of LSTM 

hidden layer 
1 (32 units) 1 (64 units) 

2 (64 hidden units 

per layer) 

No. of epoch 10 5 
(5 offline & 5 

online) 

Batch Size 128 128 128 

Learning rate 0.001 0.001 0.001 

Time step 10 10 10 

Optimizer Adam Adam Adam 

 
The parameter values are carefully selected to achieve 

reliable and meaningful performance comparisons across all 

scenarios. The results are presented in the following 

subheadings with respective graphs. 

 

4.2 Antenna Configuration 

 

Figure 4 illustrates the variation of spectral efficiency (SE) 

with respect to SNR for different base station antenna 

configurations. As the SNR increases, SE improves 

consistently across all configurations, confirming the 

expected gain in system performance under higher signal 

quality. Among the evaluated configurations, the 8-antenna 

configuration achieves the highest SE, reaching 

approximately 15 bits/s/Hz at 30 dB, whereas the 4-antenna 

and 2-antenna cases attain around 14 bits/s/Hz and 12.8 

bits/s/Hz, respectively. These results indicate that increasing 

the number of transmit antennas leads to improved 

throughput, making larger antenna arrays more suitable for 

high-capacity wireless communication systems. 

 

 
Figure 4: SE vs SNR for different BS antenna 

configurations 
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Figure 5 illustrates the variation of mean squared error 

(MSE) with respect to SNR for different base station antenna 

configurations. The MSE decreases consistently as the SNR 

increases for all configurations, reflecting improved 

estimation accuracy under higher signal quality. At 30 dB, 

the 8-antenna configuration achieves the lowest loss of 

approximately 0.68, while the 4-antenna and 2-antenna cases 

attain higher losses of about 0.77 and 0.85, respectively. This 

trend demonstrates that increasing the number of antennas 

enhances training stability and robustness, leading to more 

reliable learning and accurate signal estimation in MU-MISO 

systems. 

 

Figure 5: loss vs SNR for different BS antenna 

configurations 

 

4.3 Comparison of Deep Learning Methods 

 

Figure 6 presents the spectral efficiency (SE) versus SNR 

performance for different deep learning–based methods. For 

all approaches, SE improves as the SNR increases; however, 

the proposed BiLSTM–Wiener model consistently achieves 

the highest performance across the entire SNR range. At 30 

dB, it attains an SE of approximately 15.81 bits/s/Hz, 

significantly outperforming the BiLSTM model without the 

Wiener filter with about 9.10 bits/s/Hz, the DL-based 

beamforming method with nearly 4.21 bits/s/Hz, and the 

DDPG approach with around 2.00 bits/s/Hz. These results 

confirm that integrating the Wiener filter with the BiLSTM 

network effectively enhances noise suppression and feature 

learning, leading to superior spectral utilization, higher data 

rates, and improved overall communication efficiency. 

 

 
Figure 6: SE vs SNR for different DL methods 

 

Figure 7 shows the mean squared error (MSE) versus SNR 

performance for different deep learning–based methods. For 

all approaches, the loss decreases as the SNR increases, 

indicating improved estimation accuracy under higher signal 

quality. The proposed BiLSTM–Wiener model achieves the 

lowest loss, reaching approximately 0.14 at 30 dB, followed 

by the BiLSTM without the Wiener filter at around 0.18, the 

DL-based beamforming method at nearly 0.25, and the 

DDPG approach at about 0.28. These results demonstrate the 

robustness and training stability of the BiLSTM–Wiener 

framework, highlighting its effectiveness in reducing noise 

and improving channel estimation performance. 

 

 
Figure 7: loss vs SNR for different DL methods 

 

4.4 BiLSTM with Wiener Filter through Online Training 

 

Figure 8 shows the spectral efficiency (SE) versus SNR 

performance of the BiLSTM model with a Wiener filter 
under online training. The SE increases steadily from 

approximately 2.55 bits/s/Hz at 0 dB to 26.13 bits/s/Hz at 30 

dB, indicating a significant improvement in data 

transmission capability as the signal quality improves. This 

consistent growth confirms the effectiveness of the online 

BiLSTM–Wiener framework in adapting to noise variations, 

enabling efficient spectral utilization and enhanced 

throughput under dynamic wireless channel conditions. 

 

Figure 8: SE vs SNR for BiLSTM with Wiener Filter  
 

Figure 9 shows the mean squared error (MSE) versus SNR 

performance of the BiLSTM model with a Wiener filter 

under online training. The loss decreases steadily from 

approximately 0.92 at 0 dB to 0.61 at 30 dB, indicating 

improved learning accuracy as the signal quality increases. 

This decreasing trend confirms the effectiveness of the 
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online BiLSTM–Wiener framework in maintaining stable 

training, enhancing noise resilience, and achieving adaptive 

optimization under noise-varying channel conditions. 

 

 
Figure 9: loss vs SNR for BiLSTM with Wiener Filter 

 

The performance analysis of the proposed BiLSTM model 

integrated with the Wiener filter using online training, in 

terms of Spectral Efficiency (SE) and Loss across varying 

Signal-to-Noise Ratio (SNR) levels, is presented in Table 2. 

 

Table 2 Spectral Efficiency (SE) and MSE (Loss) 

performance of the Proposed System 
SNR (dB) Spectral Efficiency (bits/s/Hz) MSE (Loss) 

0 2.55 0.92 

5 3.98 0.73 

10 6.41 0.67 

15 10.00 0.64 

20 15.11 0.62 

25 20.06 0.61 

30 26.13 0.61 

 

Table 2 presents the spectral efficiency and loss performance 

of the proposed system. The proposed BiLSTM with Wiener 

filter model using online training demonstrates a consistent 

improvement relationship between spectral efficiency and 

signal quality, with spectral efficiency increasing from 2.55 

bits/s/Hz to 26.13 bits/s/Hz as the SNR increases from 0 dB 

to 30 dB. Concurrently, the loss decreases from 0.92 to 0.61, 

indicating enhanced model accuracy and stable behavior 

during online training. These results confirm the 

effectiveness of the proposed framework in achieving 

adaptive spectral utilization and robust noise suppression 

under noise varying conditions. Such performance is 

particularly beneficial in static deployment environments 

such as indoor networks, fixed wireless access links, 

industrial communication setups, and backhaul systems, 

where the fixed IRS configuration and cascaded MU-MISO 

structure effectively improve multiuser connectivity and 

overall spectral efficiency. 

 

5. Conclusion 
 

This research investigated an online adaptive BiLSTM 

framework integrated with a Wiener filter to improve 

spectral efficiency in IRS-assisted MU-MISO 

communication under noisy conditions. Performance 

analysis indicates that the proposed online approach 

consistently performs better than conventional offline-trained 

deep learning models and different antenna configuration in 

terms of spectral efficiency, noise handling capability, and 

system stability. At an SNR of 30 dB, the system achieves a 

spectral efficiency of 26.13 bits/s/Hz with a low loss value of 

0.61, confirming the effectiveness of the online learning 

approach. The Wiener filter supports noise-aware signal 

processing, while the BiLSTM structure captures temporal 

channel variations effectively, enabling adaptive and 

dependable performance across a wide range of SNR levels. 

Overall, the proposed framework offers a clear improvement 

compared to earlier offline learning-based methods. 

 

6. Future Scope 
 

Although the proposed framework provides notable 

improvements in spectral efficiency, it is currently tested 

under controlled simulation settings with fixed IRS 

configurations and ideal synchronization, which may not 

fully reflect practical wireless scenarios. In real deployments, 

factors such as hardware imperfections, user movement, 

inaccurate channel information, and processing limitations 

can influence system performance. While the online training 

strategy enhances adaptation to noise variations, extending 

this capability to fast-changing channel conditions remains 

an important area for future research. Further studies may 

focus on real-time implementation, reducing computational 

delay and power consumption, and jointly optimizing IRS 

phase control using reinforcement learning or combined deep 

learning approaches. Moreover, improving scalability and 

computational efficiency will be essential for applying the 

proposed framework to large-scale and dense 6G 

communication networks. 
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