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Abstract: This study evaluates the operational efficiency of Canonical’s Ubuntu Chiseled images compared to standard Ubuntu images
within K3s-orchestrated environments on IoT hardware. A Python-Flask microservice deployed on Raspberry Pi 4 devices served as the
benchmark workload. The research measured key performance indicators including image size, memory and CPU usage, startup latency,
and network throughput. Results show that chiseled images reduce image size by 85%, memory usage by 62%, and startup time by 56%,
without degrading throughput. These findings support the use of minimalist base images in resource-constrained edge deployments and
represent one of the first orchestration-level performance assessments of chiseled containers in K3s.
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1. Introduction

Containerization has become a basis of modern application
deployment and serves as a critical enabler of cloud-native
and edge computing. It allows developers to package
applications as well as their dependencies in lightweight,
standardized, and portable units. Containers are a
virtualization unit that wuses process-level isolation,
contrasting with the OS-level resource separation used in
virtual machines [1].

Historically, container images were built upon full operating
system distributions such as Ubuntu or CentOS, which often
include redundant utilities and libraries [2]. This approach,
even though convenient, results in extended boot times due to
larger size, bloated images, increased attack surface (more
libraries and tools mean more updates, patches, and
background processes), and more storage and memory
consumption. Such drawbacks are particularly challenging
for IoT environments and edge devices, which typically
operate with limited CPU power, RAM, Bandwidth, and
storage capacity [3].

Moreover, as the number of container images within an
ecosystem continues to grow, so does the need for an
organizational structure that enables efficient creation,
versioning, and management of container lifecycles. This
necessity gave rise to platforms like Kubernetes or Docker
Swarm, which have the responsibility of container
orchestration by automating the deployment, scaling, and
coordination of containers across distributed systems [4].
Recognizing its architectural strengths and vibrant ecosystem,
the Cloud Native Computing Foundation (CNCF) designated
Kubernetes as its flagship orchestration platform in 2016.
However, its full range of applications continues to evolve
across diverse computing environments [5].

Among Kubernetes variants, Rancher’s K3s stands out as a
lightweight, fully compliant distribution and has all basic
components optimized for resource-constrained
environments. By minimizing binary size and simplifying

installation, K3s is mostly suitable for IoT and edge
deployments, where efficiency and reliability must coexist
with limited hardware resources.

In response to the shortcomings, many minimalist base
images, such as Alpine Linux and Canonical’s Ubuntu
Chiseled images, have been developed.

These images are constructed to contain only the libraries and
binaries needed for an application to function, eliminating
shell environments, package managers, and other non-critical
components. The chiseling approach aims to largely reduce
image size, container startup time, memory consumption, and
potential vulnerabilities by reducing the system’s attack
surface. Importantly, these images try to retain compatibility
with standard applications, making them a viable solution for
deployment in constrained environments where efficiency is
paramount [6].

While the theoretical advantages of low-size images are
widely acknowledged, there remains an absence of empirical
validation,  particularly in  orchestrated  container
environments that reflect their real-world usage. Most present
works on container image optimization either emphasize
Docker in isolation or discuss image reduction techniques in
abstract or simulated contexts. Unlike prior work that either
examined minimal images such as Alpine Linux in isolation
or applied generic slimming tools (e.g., DockerSlim, &-
SCALPEL), our study is a leading effort to empirically
evaluate Ubuntu Chiseled images within a Kubernetes (K3s)
edge/loT environment. By benchmarking deployments on
ARM-based IoT devices, we provide evidence-based insights
into resource savings and startup latency that are related to
production-scale orchestration. This novelty lies in bridging
container 1image slimming with orchestration-level
performance in constrained environments, which is an area
largely unexplored in the literature.

However, despite its rising popularity, there remains a lack of
peer-reviewed, benchmark-driven evaluations comparing the
operational behavior of chiseled versus traditional minimal
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images within K3s environments. This
significant research gap, particularly as
applications increase [2].

represents a
edge-native

This study seeks to address that gap as we conduct a
comparative evaluation of chiseled and traditional minimal
images under realistic conditions using a K3s cluster
deployed on ARM-based IoT hardware. By profiling metrics
such as memory usage, CPU load, deployment time, and
image size, we aim to provide practical, evidence-based
insights into performance trade-offs and operational
efficiency of image selection.

2. Related Work

Container image optimization has been explored extensively,
with some strategies proposed to minimize size, improve
security, and increase deployment efficiency.

The incorporation of image optimization approaches, such as
minimal base images and multi-stage builds, was studied by
Fachrudin et al., showing image size reduction as much as

latency with no noticeable critical vulnerabilities [5].

Han et al. introduced 3-SCALPEL, a dependency-aware
approach to thin out the size of Docker images using static
code analysis, reducing image size by up to 61% while
preserving functionality [6].

Distroless containers, introduced by Kim et al., remove shells,
package managers, and other interactive components, leaving
only the application runtime environment. This enhances
security by reducing the attack surface but can complicate
debugging and maintenance workflows [7].

Canonicals’ Ubuntu Chiseled images represent a more recent
development. Built using the Chisel tool and a slice-based
subtractive assembly process, they preserve compatibility
with the GNU C Library (glibc) and Ubuntu’s package
ecosystem while discarding unnecessary components such as
apt, bash, or /bin/sh. This design achieves significant size
reduction (= 85% smaller than standard Ubuntu 22.04) while
retaining greater compatibility compared to musl-based
distributions like Alpine Linux [8]. Table 1 compares

94% compared with single-stage images, with better build container ~slimming approaches, their ~methodologies,
efficiency, and limitations.
Table 1: Comparison of container image slimming approaches
Approach Methodology Typical Size Reduction Limitations
Alpine Linux Minimal OS built with musl libc, very ~90-95% vs. full Limited compatibility with glibc binaries; reduced
P small base Ubuntu debugging and tooling [5], [9]
Distroless Runtime-only images; excludes shell —60-80% Non-interactive; harder troubleshooting and
and package manager maintenance [7]
5-SCALPEL Static code dependency anglysm to Up to 61% IMay miss dynamically loadeq de.pfendenmes; requires
remove unused libraries source code availability [6]
Ubuntu Chiseled Slice-based subtractive assembly (Chisel ~85% vs. No shell, apt, or standard tools; slightly larger than
tool) retaining glibc Ubuntu 22.04 Alpine but more compatible [8]

While that work focuses on operating system and hardware
optimization, our study extends the inquiry to the container
image layer, evaluating how base image selection affects
performance, scalability, and resource consumption in real-
world application scenarios by comparing Ubuntu Chiseled
against normal Ubuntu images within a K3s on IoT devices.
This contributes to the literature by combining base-image
slimming analysis with orchestration-level performance and
security benchmarking.

3. Methodology

This section outlines the experimental environment, container
image selection criteria, deployment procedures, and the
performance metrics and tools used to conduct the
comparative analysis. The study was designed to simulate a
realistic, resource-constrained IoT deployment using a
lightweight Kubernetes distribution (K3s) and to evaluate the
operational impact of minimal container images under
controlled conditions.

3.1. Canonicals’ Ubuntu Chiseled Images Construction
Methodology

Chiseled images are constructed using a technology called
subtractive assembly, where a slice-based tool known as
Chisel chooses only the runtime components explicitly
required by the target application, removing all unnecessary

build-time artefacts, locale files, and debugging symbols,
leaving only the runtime dynamic loader, shared libraries, and
application binaries [7].

Instead of installing and configuring complete Ubuntu
packages via (dpkg), the Chisel system imports (.deb)
packages directly from the official Ubuntu archive, taking
only the necessary runtime components. The Chisel tool uses
a YAML-based text file specification to isolate only required
binaries for the application and their dependencies. The
resulting image typically lacks the Linux basic shell (/bin/sh),
package installation tools like apt, and even common Linux
utilities like Is or bash, rendering it non-interactive but
exceptionally lightweight and secure. Canonical describes
this approach as “slice-based,” where each slice corresponds
to a minimal, verifiable software unit such as (libssl or libc6),
compiled and stored in a deterministic archive format. These
slices are cryptographically verifiable and can be fetched
individually from Canonical’s container infrastructure during
the image build, ensuring both reproducibility and trust. This
approach aligns with the distroless image’s philosophy in
addition to leveraging the compatibility and ecosystem of
Ubuntu, making it more suitable for production grade
workloads in CI/CD, Kubernetes, and edge environments.
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Figure 1: Example of package slice dependency.

In the simple case shown in this figure, both packages A and
B are decomposed into multiple slices. At a package level, B
depends on A, but in real life, there may be files in A that B
doesn’t use (e.g., A_slice3 is not needed for B to function
correctly). With the particular slice definition established
above, Chisel can compose a highly customized slice of the
Ubuntu distribution, which you may think of as a block of
stone that we can cut and chisel to remove small and relevant
pieces that are all we need to execute our applications.

3.2, System Setup

The system under test will be a lightweight Python web
application designed to represent a typical microservice
deployment in constrained IoT environments. The workload
consists of a Flask-based server with a fixed configuration of
two worker processes, bound to TCP port 5000. This
configuration ensures deterministic and reproducible
benchmarking under varying load conditions.

Two base-image variants were selected for evaluation, both
provided by Canonical Ltd. and based on Ubuntu Linux to
ensure vendor uniformity and compatibility with the Ubuntu
ecosystem.

3.2.1. Image Construction

a) The standard Ubuntu Base Image (ubuntu:24.04)
Represents conventional container deployments with
redundant libraries and utilities, introducing higher baseline
memory and CPU wusage. This image serves as the
comparative baseline in this study. It includes a full-featured
runtime environment, including a bash shell, a package
manager apt, and a userspace built on top of the glibc library.
Because it supports a wide range of software, it is commonly
used in enterprise containerized deployments; nonetheless, it
adds overhead in higher image sizes and redundant runtime
components, which can impair security and performance in
environments with limited resources [4]. This image
represents conventional full-featured containers in common
use, with a size of 496MB.

b) Ubuntu Chiseled Image (ubuntu-24.04 chiseled slices)
The container image was built using Canonical’s Chisel tool
and includes only the runtime components strictly required to
execute Python and Flask, thereby eliminating unnecessary
packages. The Python runtime is composed of the following
Chisel slices: python3 core, python3_standard,

python3 utils, libc6 libs, libc6 gconv, libc6 conFigure,
dash_bins, and base-files, ensuring full functionality while
maintaining minimalism. As a result of this selective
inclusion, the final image size will be approximately 73 MB.

Furthermore, the image is intentionally non-interactive,
excluding standard Linux utilities such as /bin/sh and package
managers like apt. This design choice significantly reduces
the resource footprint and minimizes the attack surface,
making the image well-suited for secure and efficient
production deployments.

The resulting chiseled root filesystem is written to a directory
named rootfs.

chisel cut --release ubuntu-24.04 --root /rootfs \  base-
files base \  base-files release-info \  python3 core \
python3 standard \ python3 utils\ dash bins\ libc6_libs
\ libc6_gconv \ libc6 conFigure

The resulting file will be included in the building of the
chiseled image using the Dockerfile. Directory Structure
Must Be:

L— rootfs/
—— bin/
—— usr/
—— lib/
—— etc/

Where the Dockerfile contains the instructions to build the
image as follows:

FROM scratch

COPY rootfs/ /

WORKDIR /app

COPY app.py requirements.txt get-pip.py /app/

RUN ["python3", "get-pip.py"]
RUN ["pip", "install",
"requirements.txt"] EXPOSE 5000
CMD ["gunicorn", "--workers=2", "--bind=0.0.0.0:5000",
"app:app"]

And the app.py is the example service we used; this small
Python Flask web server will run on the IoT devices. The get-
pip.py file is used for installing the pip package, while the
requirements.txt has all other required packages.

" "

"--no-cache-dir", ",

3.2.2, Image Deployments

The images were deployed within a K3s Kubernetes cluster
comprising a heterogeneous control plane and edge worker
setup:

a) Control Plane (Master Node):
e Rocky Linux VM (x86-64 architecture)
e« 2vCPU, 4 GiB RAM, 20 GB storage

b) Worker Nodes (IoT Devices):

e Two Raspberry Pi 4 Model
architecture).

e FEach with 2 GiB RAM, 16 GB microSD storage,
Raspberry Pi OS Lite (64-bit)

B devices (ARM64

All nodes were connected via a wired Ethernet in a local
network with synchronized clocks (NTP) to minimize latency
and ensure reproducibility and a local private Docker registry
hosted both the standard and chiseled images to eliminate
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variability from public registry network conditions during
image pulls.

3.2.3. K3s Installation and Configuration

K3sv1.33 was installed using the official Rancher installation
script with embedded containerd as the container runtime,
with worker nodes joining the cluster using the K3s token-
based registration mechanism. The network overlay was
managed via Flannel, which is the default K3s Container
Network Interface (CNI) plugin.

All deployments were orchestrated within a K3s cluster
configured to emulate edge like conditions (e.g.,
heterogeneous nodes, limited RAM/CPU, variable 1/0). K3s
was selected due to its widespread adoption in IoT and edge
computing and its compatibility with upstream Kubernetes
APIs [5].

3.3. Metrics and Monitoring Tools

All replicas were deployed with equal resource quotas and
default affinity configurations to ensure balanced node
distribution and guarantee experimental fairness.

3.3.1. Metrics

To comprehensively assess runtime and operational

efficiency, the following metrics were collected:

e Memory Usage (MiB): Tracked over time to capture
steady-state and transient consumption patterns.

e CPU Utilization (%): Sampled at 1-second intervals
during workload activity to assess compute efficiency.

o Image Size (MB): Measured directly using docker inspect
and validated with OCI compliant registry metadata.

e Startup Time (s): Defined as the duration from Pod
creation to Ready status, including container initialization.

e Network Overhead (MB/s): Measured per container to
detect differences in background service communication
and overhead.

3.3.2. Data Collection tools

All metrics were collected under uniform load conditions with

identical Kubernetes manifests to isolate the effect of the base

image on system behavior. The following open-source tools

were integrated into the cluster for instrumentation:

o Prometheus: For time-series metrics collection at the node
and system levels.

o cAdvisor: For container-level resource profiling including
CPU, memory, and I/O.

e Grafana Dashboards: Configured for real-time monitoring
and comparative analysis, using a uniform layout for both
image types.

4. Results and Discussion

4.1. Image size reduction

Chiseling a container image will result in a far smaller image
than the original. This will affect not only the storage needed

for the image but also the time it takes to pull and push images
from their repositories.

Full Ubuntu distro + app

Chiseled Ubuntu container
My App for Python + app
My A
Python Flask web app ’ ks
base-files_base
| libcB H libgee_st | base-files_release-info
- - python3_core
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496MB T35M8

Figure 2: Container Structure Standard vs. chiseled image.

The libraries in the full Ubuntu distribution (libc6, libgec sl,
libssl, libstdc++6, bash, and apt) have redundant
dependencies; these dependencies are a generic part of the
main image. These libraries are not used by the Python
application, which makes the container image larger and
increases its vulnerability to security threats. The chisel code
mentioned in section 3.2.1 includes only part of the base
image required for running the Python application. The
remaining libraries (base-files base, base-files releaseinfo,
python3 core, python3 standard, python3 utils, dash bins,
libc6_libs, libc6_gconv, libc6_config) were installed; they are
the only pieces of code used by the Python app instead of
installing the entire library.

Table 2: Comparative performance Standard vs. Chiseled

Metric Ubuntu Ubuntu Change
Standard | Chiseled (%)
Image Size (MB) 496 73.5 1 85.2%
Avg Mem (MiB) 584 22.1 1 62.1%
Avg CPU (%) 13.6 9.8 127.9%
Startup Time (sec) 46s 26s | 56%
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Figure 3: Comparative performance metrics
4.2, Startup Time Reduction

The experimental results show a decrease in container startup
time when using the chiseled base image, dropping from
about 46 seconds to 26 seconds (a 56% improvement) if the
image is being pulled from the registry each time, otherwise
the time to start is less than 2 seconds resulting in marginal

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
Www.ijsr.net

Paper |D: SR26112020014

DOI: https://dx.doi.org/10.21275/SR26112020014

1473


http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

differences. This acceleration can be attributed to the smaller
image that needs to be loaded and initialized. In general,
containers with lightweight base images incur less overhead
during startup, as there is less data to pull from storage and
fewer initialization steps. Prior comparisons have observed
that minimal distributions like Alpine Linux (with a base
image of only 5 MB) boot much faster than standard Ubuntu
images, which take slightly longer due to their increased size
and complexity [6]. This aligns with our findings that the
chiseled Ubuntu image make more efficient boot process. The
official Docker documentation similarly emphasizes that
smaller image sizes directly translate to faster image pulls and
container start times, reinforcing the idea that image slimming
yields tangible startup latency benefits [10].

Reducing the image size not only cuts down transfer time but
also minimizes container instantiation latency inside the
runtime. Literature on container performance notes that
factors such as the image’s size and its layering can affect
startup latency [11]. Our 26s startup time, featuring a chiseled
image, aligns with lightweight container distribution trends, a
result well-supported by existing knowledge in the
community and prior works on Alpine and Distroless image
optimizations [9].

4.3. Average CPU and Memory Load Reduction

Adopting the chiseled image led to noticeably lower resource
usage in our web server container. In idle conditions (no
load), the container’s memory residency dropped from 58.4
MiB to 22.1 MiB, a reduction of about 62.1%. This indicates
that the baseline memory overhead (from the OS libraries and
background processes) is much smaller in the lean image.
Similarly, under a representative load, we observed the
average CPU utilization decrease from 13.6% to 9.8%
(approximately 27.9% lower). These improvements suggest
that the chiseled image not only removes unused packages but
also avoids running extraneous daemons or services, thereby
freeing CPU cycles and memory space for the actual
application. Such efficiency gains are particularly relevant in
a microservices or edge environment where dozens of
containers might be co-located on resource-constrained
nodes. Our findings are consistent with reports that
distroless/minimal containers require less CPU and memory
at runtime, improving overall system performance.

Figure 3 provides a visual overview of these improvements,
illustrating the reduction in idle memory and CPU utilization.
These results corroborate trends seen in related benchmarking
studies on micro-containers and Kubernetes optimizations.
Prior work has noted that using lightweight base images (or
even scratch images) can “reduce resource consumption” of
containers alongside faster startup. By cutting idle memory
usage by over half, our chiseled Ubuntu container
demonstrates the kind of memory savings that can
significantly increase container density per node so that more
containers can run on the same hardware. Likewise, the drop
in CPU usage under load suggests that a minimal userspace
leaves less background activity, allowing the application to
utilize the CPU more efficiently. In a Kubernetes context,
such optimizations can accumulate into significant gains — for
example, lightweight Kubernetes distributions designed for
edge computing underscore the importance of efficiency in

resource-constrained environments. Our data provides
concrete evidence that a chiseled image can fulfill those
efficiency promises by cutting idle overhead to a fraction of
what a standard base image would require.

4.4. Network I/O and Storage I/O Reduction

The network throughput and request-handling performance
observed differences between the standard and chiseled
image scenarios were modest. During load testing, the
average network transfer rate measured approximately 0.89
MB/s with the baseline image compared to 0.91 MB/s with
the chiseled image. Similarly, the web service handled
approximately 1,180 requests per second with the standard
image and 1,215 requests per second with the chiseled image,
corresponding to a relative increase of approximately 3%. As
depicted in Figure 3, throughput remained nearly identical,
confirming that efficiency gains did not compromise
performance.

Where the impact of a smaller image is clearer is in storage
and network I/O related to image distribution and caching.
The chiseled image’s significantly reduced size means pulling
the image from the registry imposes less load on the network
and consumes less disk space on each node, shortening the
time of image download and unpack, as reflected in the
reduction of startup time. This is consistent with the known
benefits of image slimming: smaller images result in faster
transfers and lower storage usage.

Prior studies and industry best practices concur with this
point: smaller container images result in faster deployment
(less data to transfer) and reduced storage costs, in contrast to
larger, bloated images that impose higher transmission,
storage, and caching costs [6].

5. Conclusions

By comparing an ultra-minimal Ubuntu Chiseled base image

against the Standard Ubuntu container image, we quantified

several key improvements:

e Reduce image size by 85%,
distribution costs.

o Lower startup latency by nearly half and decrease idle
memory by 62% and CPU load by 28%.

o Higher efficiency, thus more containers can run per node,
and workloads consume fewer resources for the same
throughput.

cutting storage and

These findings show that chiseled container images can
substantially improve resource efficiency without negatively
affecting application performance. The results encourage
broader adoption of minimal base images, especially in cloud-
native and edge deployments where resources are limited.
Indeed, our study supports the narrative that container
optimization is a key to improving scalability of
infrastructures and constitutes a novel contribution as the first
orchestration-level empirical assessment of Ubuntu Chiseled
images in a K3s environment in IoT devices.

6. Future Work

While this study provided valuable insights, it also opened
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several avenues for further investigation, including:

Generalizing this analysis to broader classes of applications,
including compute-intensive workloads.

Integrate our approach into an automated analysis pipeline.
Rather than manually swapping base images, we envision
using tools to automatically slim down images by analyzing
application dependencies.

CI/CD pipelines can be used to optimize images, or using
CI/CD benchmarking. Combining such tools with our
performance benchmarking would allow continuous
verification that the slimmed images indeed run correctly and
efficiently.

Integrating static analysis techniques (6-SCALPEL) into s
hybrid approach that uses static analysis can be exploited to
identify unnecessary components and dynamic runtime to
ensure those components are truly not used, yielding an even
smaller image without breaking functionality. We believe that
such efforts, inspired by our initial findings, can accelerate the
adoption of chiseled images in both edge and cloud settings,
leading to leaner, more efficient deployments without
sacrificing reliability.
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