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Abstract: This study evaluates the operational efficiency of Canonical’s Ubuntu Chiseled images compared to standard Ubuntu images 

within K3s-orchestrated environments on IoT hardware. A Python-Flask microservice deployed on Raspberry Pi 4 devices served as the 

benchmark workload. The research measured key performance indicators including image size, memory and CPU usage, startup latency, 

and network throughput. Results show that chiseled images reduce image size by 85%, memory usage by 62%, and startup time by 56%, 

without degrading throughput. These findings support the use of minimalist base images in resource-constrained edge deployments and 

represent one of the first orchestration-level performance assessments of chiseled containers in K3s. 
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1. Introduction 
 

Containerization has become a basis of modern application 

deployment and serves as a critical enabler of cloud-native 

and edge computing. It allows developers to package 

applications as well as their dependencies in lightweight, 

standardized, and portable units. Containers are a 

virtualization unit that uses process-level isolation, 

contrasting with the OS-level resource separation used in 

virtual machines [1].  

 

Historically, container images were built upon full operating 

system distributions such as Ubuntu or CentOS, which often 

include redundant utilities and libraries [2]. This approach, 

even though convenient, results in extended boot times due to 

larger size, bloated images, increased attack surface (more 

libraries and tools mean more updates, patches, and 

background processes), and more storage and memory 

consumption. Such drawbacks are particularly challenging 

for IoT environments and edge devices, which typically 

operate with limited CPU power, RAM, Bandwidth, and 

storage capacity [3].  

 

Moreover, as the number of container images within an 

ecosystem continues to grow, so does the need for an 

organizational structure that enables efficient creation, 

versioning, and management of container lifecycles. This 

necessity gave rise to platforms like Kubernetes or Docker 

Swarm, which have the responsibility of container 

orchestration by automating the deployment, scaling, and 

coordination of containers across distributed systems [4]. 

Recognizing its architectural strengths and vibrant ecosystem, 

the Cloud Native Computing Foundation (CNCF) designated 

Kubernetes as its flagship orchestration platform in 2016. 

However, its full range of applications continues to evolve 

across diverse computing environments [5].  

 

Among Kubernetes variants, Rancher’s K3s stands out as a 

lightweight, fully compliant distribution and has all basic 

components optimized for resource-constrained 

environments. By minimizing binary size and simplifying 

installation, K3s is mostly suitable for IoT and edge 

deployments, where efficiency and reliability must coexist 

with limited hardware resources.  

 

In response to the shortcomings, many minimalist base 

images, such as Alpine Linux and Canonical’s Ubuntu 

Chiseled images, have been developed.  

 

These images are constructed to contain only the libraries and 

binaries needed for an application to function, eliminating 

shell environments, package managers, and other non-critical 

components. The chiseling approach aims to largely reduce 

image size, container startup time, memory consumption, and 

potential vulnerabilities by reducing the system’s attack 

surface. Importantly, these images try to retain compatibility 

with standard applications, making them a viable solution for 

deployment in constrained environments where efficiency is 

paramount [6].  

 

While the theoretical advantages of low-size images are 

widely acknowledged, there remains an absence of empirical 

validation, particularly in orchestrated container 

environments that reflect their real-world usage. Most present 

works on container image optimization either emphasize 

Docker in isolation or discuss image reduction techniques in 

abstract or simulated contexts. Unlike prior work that either 

examined minimal images such as Alpine Linux in isolation 

or applied generic slimming tools (e.g., DockerSlim, δ-

SCALPEL), our study is a leading effort to empirically 

evaluate Ubuntu Chiseled images within a Kubernetes (K3s) 

edge/IoT environment. By benchmarking deployments on 

ARM-based IoT devices, we provide evidence-based insights 

into resource savings and startup latency that are related to 

production-scale orchestration. This novelty lies in bridging 

container image slimming with orchestration-level 

performance in constrained environments, which is an area 

largely unexplored in the literature.  

 

However, despite its rising popularity, there remains a lack of 

peer-reviewed, benchmark-driven evaluations comparing the 

operational behavior of chiseled versus traditional minimal 
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images within K3s environments. This represents a 

significant research gap, particularly as edge-native 

applications increase [2].   

 

This study seeks to address that gap as we conduct a 

comparative evaluation of chiseled and traditional minimal 

images under realistic conditions using a K3s cluster 

deployed on ARM-based IoT hardware. By profiling metrics 

such as memory usage, CPU load, deployment time, and 

image size, we aim to provide practical, evidence-based 

insights into performance trade-offs and operational 

efficiency of image selection. 

 

2. Related Work  
 

Container image optimization has been explored extensively, 

with some strategies proposed to minimize size, improve 

security, and increase deployment efficiency.  

 

The incorporation of image optimization approaches, such as 

minimal base images and multi-stage builds, was studied by 

Fachrudin et al., showing image size reduction as much as 

94% compared with single-stage images, with better build 

latency with no noticeable critical vulnerabilities [5].  

 

Han et al. introduced δ‑SCALPEL, a dependency-aware 

approach to thin out the size of Docker images using static 

code analysis, reducing image size by up to 61% while 

preserving functionality [6]. 

 

Distroless containers, introduced by Kim et al., remove shells, 

package managers, and other interactive components, leaving 

only the application runtime environment. This enhances 

security by reducing the attack surface but can complicate 

debugging and maintenance workflows [7].  

 

Canonicals’ Ubuntu Chiseled images represent a more recent 

development. Built using the Chisel tool and a slice-based 

subtractive assembly process, they preserve compatibility 

with the GNU C Library (glibc) and Ubuntu’s package 

ecosystem while discarding unnecessary components such as 

apt, bash, or /bin/sh. This design achieves significant size 

reduction (≈ 85% smaller than standard Ubuntu 22.04) while 

retaining greater compatibility compared to musl-based 

distributions like Alpine Linux [8]. Table 1 compares 

container slimming approaches, their methodologies, 

efficiency, and limitations.  

 

Table 1: Comparison of container image slimming approaches 
Approach Methodology Typical Size Reduction Limitations 

Alpine Linux 
Minimal OS built with musl libc, very 

small base 

~90–95% vs. full 

Ubuntu 

Limited compatibility with glibc binaries; reduced 

debugging and tooling [5], [9] 

Distroless 
Runtime-only images; excludes shell 

and package manager 
~60–80% 

Non-interactive; harder troubleshooting and 

maintenance [7] 

δ-SCALPEL 
Static code dependency analysis to 

remove unused libraries 
Up to 61% 

May miss dynamically loaded dependencies; requires 

source code availability [6] 

Ubuntu Chiseled 
Slice-based subtractive assembly (Chisel 

tool) retaining glibc 

~85% vs.  

Ubuntu 22.04 

No shell, apt, or standard tools; slightly larger than 

Alpine but more compatible [8] 

  

While that work focuses on operating system and hardware 

optimization, our study extends the inquiry to the container 

image layer, evaluating how base image selection affects 

performance, scalability, and resource consumption in real-

world application scenarios by comparing Ubuntu Chiseled 

against normal Ubuntu images within a K3s on IoT devices. 

This contributes to the literature by combining base-image 

slimming analysis with orchestration-level performance and 

security benchmarking.  

 

3. Methodology 
 

This section outlines the experimental environment, container 

image selection criteria, deployment procedures, and the 

performance metrics and tools used to conduct the 

comparative analysis. The study was designed to simulate a 

realistic, resource-constrained IoT deployment using a 

lightweight Kubernetes distribution (K3s) and to evaluate the 

operational impact of minimal container images under 

controlled conditions.  

 

 Canonicals’ Ubuntu Chiseled Images Construction 

Methodology  

 

Chiseled images are constructed using a technology called 

subtractive assembly, where a slice-based tool known as 

Chisel chooses only the runtime components explicitly 

required by the target application, removing all unnecessary 

build-time artefacts, locale files, and debugging symbols, 

leaving only the runtime dynamic loader, shared libraries, and 

application binaries [7].  

 

Instead of installing and configuring complete Ubuntu 

packages via (dpkg), the Chisel system imports (.deb) 

packages directly from the official Ubuntu archive, taking 

only the necessary runtime components. The Chisel tool uses 

a YAML-based text file specification to isolate only required 

binaries for the application and their dependencies. The 

resulting image typically lacks the Linux basic shell (/bin/sh), 

package installation tools like apt, and even common Linux 

utilities like ls or bash, rendering it non-interactive but 

exceptionally lightweight and secure. Canonical describes 

this approach as “slice-based,” where each slice corresponds 

to a minimal, verifiable software unit such as (libssl or libc6), 

compiled and stored in a deterministic archive format. These 

slices are cryptographically verifiable and can be fetched 

individually from Canonical’s container infrastructure during 

the image build, ensuring both reproducibility and trust. This 

approach aligns with the distroless image’s philosophy in 

addition to leveraging the compatibility and ecosystem of 

Ubuntu, making it more suitable for production grade 

workloads in CI/CD, Kubernetes, and edge environments.  
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Figure 1: Example of package slice dependency. 

 

In the simple case shown in this figure, both packages A and 

B are decomposed into multiple slices. At a package level, B 

depends on A, but in real life, there may be files in A that B 

doesn’t use (e.g., A_slice3 is not needed for B to function 

correctly). With the particular slice definition established 

above, Chisel can compose a highly customized slice of the 

Ubuntu distribution, which you may think of as a block of 

stone that we can cut and chisel to remove small and relevant 

pieces that are all we need to execute our applications.  

 

 System Setup 

 

The system under test will be a lightweight Python web 

application designed to represent a typical microservice 

deployment in constrained IoT environments. The workload 

consists of a Flask-based server with a fixed configuration of 

two worker processes, bound to TCP port 5000. This 

configuration ensures deterministic and reproducible 

benchmarking under varying load conditions.  

 

Two base-image variants were selected for evaluation, both 

provided by Canonical Ltd. and based on Ubuntu Linux to 

ensure vendor uniformity and compatibility with the Ubuntu 

ecosystem.  

 

 Image Construction   

 The standard Ubuntu Base Image (ubuntu:24.04) 

Represents conventional container deployments with 

redundant libraries and utilities, introducing higher baseline 

memory and CPU usage. This image serves as the 

comparative baseline in this study. It includes a full-featured 

runtime environment, including a bash shell, a package 

manager apt, and a userspace built on top of the glibc library. 

Because it supports a wide range of software, it is commonly 

used in enterprise containerized deployments; nonetheless, it 

adds overhead in higher image sizes and redundant runtime 

components, which can impair security and performance in 

environments with limited resources [4]. This image 

represents conventional full-featured containers in common 

use, with a size of 496MB.  

 

 Ubuntu Chiseled Image (ubuntu-24.04 chiseled slices)  

The container image was built using Canonical’s Chisel tool 

and includes only the runtime components strictly required to 

execute Python and Flask, thereby eliminating unnecessary 

packages. The Python runtime is composed of the following 

Chisel slices: python3_core, python3_standard, 

python3_utils, libc6_libs, libc6_gconv, libc6_conFigure, 

dash_bins, and base-files, ensuring full functionality while 

maintaining minimalism. As a result of this selective 

inclusion, the final image size will be approximately 73 MB. 

 

Furthermore, the image is intentionally non-interactive, 

excluding standard Linux utilities such as /bin/sh and package 

managers like apt. This design choice significantly reduces 

the resource footprint and minimizes the attack surface, 

making the image well-suited for secure and efficient 

production deployments. 

 

The resulting chiseled root filesystem is written to a directory 

named rootfs.  

chisel cut --release ubuntu-24.04 --root /rootfs \   base-

files_base \   base-files_release-info \   python3_core \   

python3_standard \   python3_utils \   dash_bins \   libc6_libs 

\   libc6_gconv \   libc6_conFigure   

The resulting file will be included in the building of the 

chiseled image using the Dockerfile.  Directory Structure 

Must Be:  

  

└── rootfs/  

    ├── bin/  

    ├── usr/  

    ├── lib/  

    └── etc/  

  

Where the Dockerfile contains the instructions to build the 

image as follows:  

FROM scratch  

COPY rootfs/ /  

WORKDIR /app  

COPY app.py requirements.txt get-pip.py /app/  

RUN ["python3", "get-pip.py"]  

RUN ["pip", "install", "--no-cache-dir", "-r", 

"requirements.txt"] EXPOSE 5000  

CMD ["gunicorn", "--workers=2", "--bind=0.0.0.0:5000",  

"app:app"]  

And the app.py is the example service we used; this small 

Python Flask web server will run on the IoT devices. The get-

pip.py file is used for installing the pip package, while the 

requirements.txt has all other required packages.  

 

 Image Deployments   

The images were deployed within a K3s Kubernetes cluster 

comprising a heterogeneous control plane and edge worker 

setup:  

 

 Control Plane (Master Node):  

• Rocky Linux VM (x86-64 architecture)  

• 2 vCPU, 4 GiB RAM, 20 GB storage  

 

 Worker Nodes (IoT Devices):  

• Two Raspberry Pi 4 Model B devices (ARM64 

architecture). 

• Each with 2 GiB RAM, 16 GB microSD storage, 

Raspberry Pi OS Lite (64-bit)  

 

All nodes were connected via a wired Ethernet in a local 

network with synchronized clocks (NTP) to minimize latency 

and ensure reproducibility and a local private Docker registry 

hosted both the standard and chiseled images to eliminate 
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variability from public registry network conditions during 

image pulls.  

 

 K3s Installation and Configuration  

K3s v1.33 was installed using the official Rancher installation 

script with embedded containerd as the container runtime, 

with worker nodes joining the cluster using the K3s token-

based registration mechanism. The network overlay was 

managed via Flannel, which is the default K3s Container 

Network Interface (CNI) plugin.  

 

All deployments were orchestrated within a K3s cluster 

configured to emulate edge like conditions (e.g., 

heterogeneous nodes, limited RAM/CPU, variable I/O). K3s 

was selected due to its widespread adoption in IoT and edge 

computing and its compatibility with upstream Kubernetes 

APIs [5].  

 

 Metrics and Monitoring Tools  

 

All replicas were deployed with equal resource quotas and 

default affinity configurations to ensure balanced node 

distribution and guarantee experimental fairness.  

 

 Metrics 

To comprehensively assess runtime and operational 

efficiency, the following metrics were collected:  

• Memory Usage (MiB): Tracked over time to capture 

steady-state and transient consumption patterns.  

• CPU Utilization (%): Sampled at 1-second intervals 

during workload activity to assess compute efficiency.  

• Image Size (MB): Measured directly using docker inspect 

and validated with OCI compliant registry metadata.  

• Startup Time (s): Defined as the duration from Pod 

creation to Ready status, including container initialization.  

• Network Overhead (MB/s): Measured per container to 

detect differences in background service communication 

and overhead.  

 

 Data Collection tools 

All metrics were collected under uniform load conditions with 

identical Kubernetes manifests to isolate the effect of the base 

image on system behavior. The following open-source tools 

were integrated into the cluster for instrumentation:  

• Prometheus: For time-series metrics collection at the node 

and system levels.  

• cAdvisor: For container-level resource profiling including 

CPU, memory, and I/O.  

• Grafana Dashboards: Configured for real-time monitoring 

and comparative analysis, using a uniform layout for both 

image types.  

 

4. Results and Discussion   
 

 Image size reduction  

 

Chiseling a container image will result in a far smaller image 

than the original. This will affect not only the storage needed 

for the image but also the time it takes to pull and push images 

from their repositories.  

 
Figure 2: Container Structure Standard vs. chiseled image. 

 

The libraries in the full Ubuntu distribution (libc6, libgcc_s1, 

libssl, libstdc++6, bash, and apt) have redundant 

dependencies; these dependencies are a generic part of the 

main image. These libraries are not used by the Python 

application, which makes the container image larger and 

increases its vulnerability to security threats.  The chisel code 

mentioned in section 3.2.1 includes only part of the base 

image required for running the Python application. The 

remaining libraries (base-files_base, base-files_releaseinfo, 

python3_core, python3_standard, python3_utils, dash_bins, 

libc6_libs, libc6_gconv, libc6_config) were installed; they are 

the only pieces of code used by the Python app instead of 

installing the entire library. 

 

Table 2: Comparative performance Standard vs. Chiseled 

Metric 
Ubuntu 

Standard 

Ubuntu 

Chiseled 

Change  

(%) 

Image Size (MB) 496 73.5 ↓ 85.2% 

Avg Mem (MiB) 58.4 22.1 ↓ 62.1% 

Avg CPU (%) 13.6 9.8 ↓ 27.9% 

Startup Time (sec) 46s 26s ↓ 56% 

 

 
Figure 3: Comparative performance metrics 

 

 Startup Time Reduction  

 

The experimental results show a decrease in container startup 

time when using the chiseled base image, dropping from 

about 46 seconds to 26 seconds (a 56% improvement) if the 

image is being pulled from the registry each time, otherwise 

the time to start is less than 2 seconds resulting in marginal 
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differences. This acceleration can be attributed to the smaller 

image that needs to be loaded and initialized. In general, 

containers with lightweight base images incur less overhead 

during startup, as there is less data to pull from storage and 

fewer initialization steps. Prior comparisons have observed 

that minimal distributions like Alpine Linux (with a base 

image of only 5 MB) boot much faster than standard Ubuntu 

images, which take slightly longer due to their increased size 

and complexity [6]. This aligns with our findings that the 

chiseled Ubuntu image make more efficient boot process. The 

official Docker documentation similarly emphasizes that 

smaller image sizes directly translate to faster image pulls and 

container start times, reinforcing the idea that image slimming 

yields tangible startup latency benefits [10].  

 

Reducing the image size not only cuts down transfer time but 

also minimizes container instantiation latency inside the 

runtime. Literature on container performance notes that 

factors such as the image’s size and its layering can affect 

startup latency [11]. Our 26s startup time, featuring a chiseled 

image, aligns with lightweight container distribution trends, a 

result well-supported by existing knowledge in the 

community and prior works on Alpine and Distroless image 

optimizations [9].  

 

 Average CPU and Memory Load Reduction   

 

Adopting the chiseled image led to noticeably lower resource 

usage in our web server container. In idle conditions (no 

load), the container’s memory residency dropped from 58.4 

MiB to 22.1 MiB, a reduction of about 62.1%. This indicates 

that the baseline memory overhead (from the OS libraries and 

background processes) is much smaller in the lean image. 

Similarly, under a representative load, we observed the 

average CPU utilization decrease from 13.6% to 9.8% 

(approximately 27.9% lower). These improvements suggest 

that the chiseled image not only removes unused packages but 

also avoids running extraneous daemons or services, thereby 

freeing CPU cycles and memory space for the actual 

application. Such efficiency gains are particularly relevant in 

a microservices or edge environment where dozens of 

containers might be co-located on resource-constrained 

nodes. Our findings are consistent with reports that 

distroless/minimal containers require less CPU and memory 

at runtime, improving overall system performance. 

 

Figure 3 provides a visual overview of these improvements, 

illustrating the reduction in idle memory and CPU utilization. 

These results corroborate trends seen in related benchmarking 

studies on micro-containers and Kubernetes optimizations. 

Prior work has noted that using lightweight base images (or 

even scratch images) can “reduce resource consumption” of 

containers alongside faster startup. By cutting idle memory 

usage by over half, our chiseled Ubuntu container 

demonstrates the kind of memory savings that can 

significantly increase container density per node so that more 

containers can run on the same hardware. Likewise, the drop 

in CPU usage under load suggests that a minimal userspace 

leaves less background activity, allowing the application to 

utilize the CPU more efficiently. In a Kubernetes context, 

such optimizations can accumulate into significant gains – for 

example, lightweight Kubernetes distributions designed for 

edge computing underscore the importance of efficiency in 

resource-constrained environments. Our data provides 

concrete evidence that a chiseled image can fulfill those 

efficiency promises by cutting idle overhead to a fraction of 

what a standard base image would require.  

 

 Network I/O and Storage I/O Reduction  

 

The network throughput and request-handling performance 

observed differences between the standard and chiseled 

image scenarios were modest. During load testing, the 

average network transfer rate measured approximately 0.89 

MB/s with the baseline image compared to 0.91 MB/s with 

the chiseled image. Similarly, the web service handled 

approximately 1,180 requests per second with the standard 

image and 1,215 requests per second with the chiseled image, 

corresponding to a relative increase of approximately 3%. As 

depicted in Figure 3, throughput remained nearly identical, 

confirming that efficiency gains did not compromise 

performance.  

 

Where the impact of a smaller image is clearer is in storage 

and network I/O related to image distribution and caching. 

The chiseled image’s significantly reduced size means pulling 

the image from the registry imposes less load on the network 

and consumes less disk space on each node, shortening the 

time of image download and unpack, as reflected in the 

reduction of startup time. This is consistent with the known 

benefits of image slimming: smaller images result in faster 

transfers and lower storage usage.  

 

Prior studies and industry best practices concur with this 

point: smaller container images result in faster deployment 

(less data to transfer) and reduced storage costs, in contrast to 

larger, bloated images that impose higher transmission, 

storage, and caching costs [6].  

 

5. Conclusions  
 

By comparing an ultra-minimal Ubuntu Chiseled base image 

against the Standard Ubuntu container image, we quantified 

several key improvements:  

• Reduce image size by 85%, cutting storage and 

distribution costs.  

• Lower startup latency by nearly half and decrease idle 

memory by 62% and CPU load by 28%.  

• Higher efficiency, thus more containers can run per node, 

and workloads consume fewer resources for the same 

throughput.  

 

These findings show that chiseled container images can 

substantially improve resource efficiency without negatively 

affecting application performance. The results encourage 

broader adoption of minimal base images, especially in cloud-

native and edge deployments where resources are limited. 

Indeed, our study supports the narrative that container 

optimization is a key to improving scalability of 

infrastructures and constitutes a novel contribution as the first 

orchestration-level empirical assessment of Ubuntu Chiseled 

images in a K3s environment in IoT devices.  

 

6. Future Work  
 

While this study provided valuable insights, it also opened 
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several avenues for further investigation, including:  

 

Generalizing this analysis to broader classes of applications, 

including compute-intensive workloads.  

 

Integrate our approach into an automated analysis pipeline. 

Rather than manually swapping base images, we envision 

using tools to automatically slim down images by analyzing 

application dependencies.   

 

CI/CD pipelines can be used to optimize images, or using 

CI/CD benchmarking. Combining such tools with our 

performance benchmarking would allow continuous 

verification that the slimmed images indeed run correctly and 

efficiently.  

 

Integrating static analysis techniques (δ-SCALPEL) into s 

hybrid approach that uses static analysis can be exploited to 

identify unnecessary components and dynamic runtime to 

ensure those components are truly not used, yielding an even 

smaller image without breaking functionality. We believe that 

such efforts, inspired by our initial findings, can accelerate the 

adoption of chiseled images in both edge and cloud settings, 

leading to leaner, more efficient deployments without 

sacrificing reliability.  
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