
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Comparative Analysis of Ubuntu Chiseled and

Standard Images for Resource Optimization in K3s-

Orchestrated IoT Applications

Ali Y. Kuti

University of Information Technology and Communication, college of Engineering, Mansor, Baghdad, Iraq

Email: ali.yasir[at]uoitc.edu.iq

Abstract: This study evaluates the operational efficiency of Canonical’s Ubuntu Chiseled images compared to standard Ubuntu images

within K3s-orchestrated environments on IoT hardware. A Python-Flask microservice deployed on Raspberry Pi 4 devices served as the

benchmark workload. The research measured key performance indicators including image size, memory and CPU usage, startup latency,

and network throughput. Results show that chiseled images reduce image size by 85%, memory usage by 62%, and startup time by 56%,

without degrading throughput. These findings support the use of minimalist base images in resource-constrained edge deployments and

represent one of the first orchestration-level performance assessments of chiseled containers in K3s.

Keywords: Ubuntu Chiseled images, container optimization, K3s orchestration, edge computing, resource efficiency

1. Introduction

Containerization has become a basis of modern application

deployment and serves as a critical enabler of cloud-native

and edge computing. It allows developers to package

applications as well as their dependencies in lightweight,

standardized, and portable units. Containers are a

virtualization unit that uses process-level isolation,

contrasting with the OS-level resource separation used in

virtual machines [1].

Historically, container images were built upon full operating

system distributions such as Ubuntu or CentOS, which often

include redundant utilities and libraries [2]. This approach,

even though convenient, results in extended boot times due to

larger size, bloated images, increased attack surface (more

libraries and tools mean more updates, patches, and

background processes), and more storage and memory

consumption. Such drawbacks are particularly challenging

for IoT environments and edge devices, which typically

operate with limited CPU power, RAM, Bandwidth, and

storage capacity [3].

Moreover, as the number of container images within an

ecosystem continues to grow, so does the need for an

organizational structure that enables efficient creation,

versioning, and management of container lifecycles. This

necessity gave rise to platforms like Kubernetes or Docker

Swarm, which have the responsibility of container

orchestration by automating the deployment, scaling, and

coordination of containers across distributed systems [4].

Recognizing its architectural strengths and vibrant ecosystem,

the Cloud Native Computing Foundation (CNCF) designated

Kubernetes as its flagship orchestration platform in 2016.

However, its full range of applications continues to evolve

across diverse computing environments [5].

Among Kubernetes variants, Rancher’s K3s stands out as a

lightweight, fully compliant distribution and has all basic

components optimized for resource-constrained

environments. By minimizing binary size and simplifying

installation, K3s is mostly suitable for IoT and edge

deployments, where efficiency and reliability must coexist

with limited hardware resources.

In response to the shortcomings, many minimalist base

images, such as Alpine Linux and Canonical’s Ubuntu

Chiseled images, have been developed.

These images are constructed to contain only the libraries and

binaries needed for an application to function, eliminating

shell environments, package managers, and other non-critical

components. The chiseling approach aims to largely reduce

image size, container startup time, memory consumption, and

potential vulnerabilities by reducing the system’s attack

surface. Importantly, these images try to retain compatibility

with standard applications, making them a viable solution for

deployment in constrained environments where efficiency is

paramount [6].

While the theoretical advantages of low-size images are

widely acknowledged, there remains an absence of empirical

validation, particularly in orchestrated container

environments that reflect their real-world usage. Most present

works on container image optimization either emphasize

Docker in isolation or discuss image reduction techniques in

abstract or simulated contexts. Unlike prior work that either

examined minimal images such as Alpine Linux in isolation

or applied generic slimming tools (e.g., DockerSlim, δ-

SCALPEL), our study is a leading effort to empirically

evaluate Ubuntu Chiseled images within a Kubernetes (K3s)

edge/IoT environment. By benchmarking deployments on

ARM-based IoT devices, we provide evidence-based insights

into resource savings and startup latency that are related to

production-scale orchestration. This novelty lies in bridging

container image slimming with orchestration-level

performance in constrained environments, which is an area

largely unexplored in the literature.

However, despite its rising popularity, there remains a lack of

peer-reviewed, benchmark-driven evaluations comparing the

operational behavior of chiseled versus traditional minimal

Paper ID: SR26112020014 DOI: https://dx.doi.org/10.21275/SR26112020014 1470

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

images within K3s environments. This represents a

significant research gap, particularly as edge-native

applications increase [2].

This study seeks to address that gap as we conduct a

comparative evaluation of chiseled and traditional minimal

images under realistic conditions using a K3s cluster

deployed on ARM-based IoT hardware. By profiling metrics

such as memory usage, CPU load, deployment time, and

image size, we aim to provide practical, evidence-based

insights into performance trade-offs and operational

efficiency of image selection.

2. Related Work

Container image optimization has been explored extensively,

with some strategies proposed to minimize size, improve

security, and increase deployment efficiency.

The incorporation of image optimization approaches, such as

minimal base images and multi-stage builds, was studied by

Fachrudin et al., showing image size reduction as much as

94% compared with single-stage images, with better build

latency with no noticeable critical vulnerabilities [5].

Han et al. introduced δ‑SCALPEL, a dependency-aware

approach to thin out the size of Docker images using static

code analysis, reducing image size by up to 61% while

preserving functionality [6].

Distroless containers, introduced by Kim et al., remove shells,

package managers, and other interactive components, leaving

only the application runtime environment. This enhances

security by reducing the attack surface but can complicate

debugging and maintenance workflows [7].

Canonicals’ Ubuntu Chiseled images represent a more recent

development. Built using the Chisel tool and a slice-based

subtractive assembly process, they preserve compatibility

with the GNU C Library (glibc) and Ubuntu’s package

ecosystem while discarding unnecessary components such as

apt, bash, or /bin/sh. This design achieves significant size

reduction (≈ 85% smaller than standard Ubuntu 22.04) while

retaining greater compatibility compared to musl-based

distributions like Alpine Linux [8]. Table 1 compares

container slimming approaches, their methodologies,

efficiency, and limitations.

Table 1: Comparison of container image slimming approaches
Approach Methodology Typical Size Reduction Limitations

Alpine Linux
Minimal OS built with musl libc, very

small base

~90–95% vs. full

Ubuntu

Limited compatibility with glibc binaries; reduced

debugging and tooling [5], [9]

Distroless
Runtime-only images; excludes shell

and package manager
~60–80%

Non-interactive; harder troubleshooting and

maintenance [7]

δ-SCALPEL
Static code dependency analysis to

remove unused libraries
Up to 61%

May miss dynamically loaded dependencies; requires

source code availability [6]

Ubuntu Chiseled
Slice-based subtractive assembly (Chisel

tool) retaining glibc

~85% vs.

Ubuntu 22.04

No shell, apt, or standard tools; slightly larger than

Alpine but more compatible [8]

While that work focuses on operating system and hardware

optimization, our study extends the inquiry to the container

image layer, evaluating how base image selection affects

performance, scalability, and resource consumption in real-

world application scenarios by comparing Ubuntu Chiseled

against normal Ubuntu images within a K3s on IoT devices.

This contributes to the literature by combining base-image

slimming analysis with orchestration-level performance and

security benchmarking.

3. Methodology

This section outlines the experimental environment, container

image selection criteria, deployment procedures, and the

performance metrics and tools used to conduct the

comparative analysis. The study was designed to simulate a

realistic, resource-constrained IoT deployment using a

lightweight Kubernetes distribution (K3s) and to evaluate the

operational impact of minimal container images under

controlled conditions.

 Canonicals’ Ubuntu Chiseled Images Construction

Methodology

Chiseled images are constructed using a technology called

subtractive assembly, where a slice-based tool known as

Chisel chooses only the runtime components explicitly

required by the target application, removing all unnecessary

build-time artefacts, locale files, and debugging symbols,

leaving only the runtime dynamic loader, shared libraries, and

application binaries [7].

Instead of installing and configuring complete Ubuntu

packages via (dpkg), the Chisel system imports (.deb)

packages directly from the official Ubuntu archive, taking

only the necessary runtime components. The Chisel tool uses

a YAML-based text file specification to isolate only required

binaries for the application and their dependencies. The

resulting image typically lacks the Linux basic shell (/bin/sh),

package installation tools like apt, and even common Linux

utilities like ls or bash, rendering it non-interactive but

exceptionally lightweight and secure. Canonical describes

this approach as “slice-based,” where each slice corresponds

to a minimal, verifiable software unit such as (libssl or libc6),

compiled and stored in a deterministic archive format. These

slices are cryptographically verifiable and can be fetched

individually from Canonical’s container infrastructure during

the image build, ensuring both reproducibility and trust. This

approach aligns with the distroless image’s philosophy in

addition to leveraging the compatibility and ecosystem of

Ubuntu, making it more suitable for production grade

workloads in CI/CD, Kubernetes, and edge environments.

Paper ID: SR26112020014 DOI: https://dx.doi.org/10.21275/SR26112020014 1471

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 1: Example of package slice dependency.

In the simple case shown in this figure, both packages A and

B are decomposed into multiple slices. At a package level, B

depends on A, but in real life, there may be files in A that B

doesn’t use (e.g., A_slice3 is not needed for B to function

correctly). With the particular slice definition established

above, Chisel can compose a highly customized slice of the

Ubuntu distribution, which you may think of as a block of

stone that we can cut and chisel to remove small and relevant

pieces that are all we need to execute our applications.

 System Setup

The system under test will be a lightweight Python web

application designed to represent a typical microservice

deployment in constrained IoT environments. The workload

consists of a Flask-based server with a fixed configuration of

two worker processes, bound to TCP port 5000. This

configuration ensures deterministic and reproducible

benchmarking under varying load conditions.

Two base-image variants were selected for evaluation, both

provided by Canonical Ltd. and based on Ubuntu Linux to

ensure vendor uniformity and compatibility with the Ubuntu

ecosystem.

 Image Construction

 The standard Ubuntu Base Image (ubuntu:24.04)

Represents conventional container deployments with

redundant libraries and utilities, introducing higher baseline

memory and CPU usage. This image serves as the

comparative baseline in this study. It includes a full-featured

runtime environment, including a bash shell, a package

manager apt, and a userspace built on top of the glibc library.

Because it supports a wide range of software, it is commonly

used in enterprise containerized deployments; nonetheless, it

adds overhead in higher image sizes and redundant runtime

components, which can impair security and performance in

environments with limited resources [4]. This image

represents conventional full-featured containers in common

use, with a size of 496MB.

 Ubuntu Chiseled Image (ubuntu-24.04 chiseled slices)

The container image was built using Canonical’s Chisel tool

and includes only the runtime components strictly required to

execute Python and Flask, thereby eliminating unnecessary

packages. The Python runtime is composed of the following

Chisel slices: python3_core, python3_standard,

python3_utils, libc6_libs, libc6_gconv, libc6_conFigure,

dash_bins, and base-files, ensuring full functionality while

maintaining minimalism. As a result of this selective

inclusion, the final image size will be approximately 73 MB.

Furthermore, the image is intentionally non-interactive,

excluding standard Linux utilities such as /bin/sh and package

managers like apt. This design choice significantly reduces

the resource footprint and minimizes the attack surface,

making the image well-suited for secure and efficient

production deployments.

The resulting chiseled root filesystem is written to a directory

named rootfs.

chisel cut --release ubuntu-24.04 --root /rootfs \ base-

files_base \ base-files_release-info \ python3_core \

python3_standard \ python3_utils \ dash_bins \ libc6_libs

\ libc6_gconv \ libc6_conFigure

The resulting file will be included in the building of the

chiseled image using the Dockerfile. Directory Structure

Must Be:

└── rootfs/

 ├── bin/

 ├── usr/

 ├── lib/

 └── etc/

Where the Dockerfile contains the instructions to build the

image as follows:

FROM scratch

COPY rootfs/ /

WORKDIR /app

COPY app.py requirements.txt get-pip.py /app/

RUN ["python3", "get-pip.py"]

RUN ["pip", "install", "--no-cache-dir", "-r",

"requirements.txt"] EXPOSE 5000

CMD ["gunicorn", "--workers=2", "--bind=0.0.0.0:5000",

"app:app"]

And the app.py is the example service we used; this small

Python Flask web server will run on the IoT devices. The get-

pip.py file is used for installing the pip package, while the

requirements.txt has all other required packages.

 Image Deployments

The images were deployed within a K3s Kubernetes cluster

comprising a heterogeneous control plane and edge worker

setup:

 Control Plane (Master Node):

• Rocky Linux VM (x86-64 architecture)

• 2 vCPU, 4 GiB RAM, 20 GB storage

 Worker Nodes (IoT Devices):

• Two Raspberry Pi 4 Model B devices (ARM64

architecture).

• Each with 2 GiB RAM, 16 GB microSD storage,

Raspberry Pi OS Lite (64-bit)

All nodes were connected via a wired Ethernet in a local

network with synchronized clocks (NTP) to minimize latency

and ensure reproducibility and a local private Docker registry

hosted both the standard and chiseled images to eliminate

Paper ID: SR26112020014 DOI: https://dx.doi.org/10.21275/SR26112020014 1472

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

variability from public registry network conditions during

image pulls.

 K3s Installation and Configuration

K3s v1.33 was installed using the official Rancher installation

script with embedded containerd as the container runtime,

with worker nodes joining the cluster using the K3s token-

based registration mechanism. The network overlay was

managed via Flannel, which is the default K3s Container

Network Interface (CNI) plugin.

All deployments were orchestrated within a K3s cluster

configured to emulate edge like conditions (e.g.,

heterogeneous nodes, limited RAM/CPU, variable I/O). K3s

was selected due to its widespread adoption in IoT and edge

computing and its compatibility with upstream Kubernetes

APIs [5].

 Metrics and Monitoring Tools

All replicas were deployed with equal resource quotas and

default affinity configurations to ensure balanced node

distribution and guarantee experimental fairness.

 Metrics

To comprehensively assess runtime and operational

efficiency, the following metrics were collected:

• Memory Usage (MiB): Tracked over time to capture

steady-state and transient consumption patterns.

• CPU Utilization (%): Sampled at 1-second intervals

during workload activity to assess compute efficiency.

• Image Size (MB): Measured directly using docker inspect

and validated with OCI compliant registry metadata.

• Startup Time (s): Defined as the duration from Pod

creation to Ready status, including container initialization.

• Network Overhead (MB/s): Measured per container to

detect differences in background service communication

and overhead.

 Data Collection tools

All metrics were collected under uniform load conditions with

identical Kubernetes manifests to isolate the effect of the base

image on system behavior. The following open-source tools

were integrated into the cluster for instrumentation:

• Prometheus: For time-series metrics collection at the node

and system levels.

• cAdvisor: For container-level resource profiling including

CPU, memory, and I/O.

• Grafana Dashboards: Configured for real-time monitoring

and comparative analysis, using a uniform layout for both

image types.

4. Results and Discussion

 Image size reduction

Chiseling a container image will result in a far smaller image

than the original. This will affect not only the storage needed

for the image but also the time it takes to pull and push images

from their repositories.

Figure 2: Container Structure Standard vs. chiseled image.

The libraries in the full Ubuntu distribution (libc6, libgcc_s1,

libssl, libstdc++6, bash, and apt) have redundant

dependencies; these dependencies are a generic part of the

main image. These libraries are not used by the Python

application, which makes the container image larger and

increases its vulnerability to security threats. The chisel code

mentioned in section 3.2.1 includes only part of the base

image required for running the Python application. The

remaining libraries (base-files_base, base-files_releaseinfo,

python3_core, python3_standard, python3_utils, dash_bins,

libc6_libs, libc6_gconv, libc6_config) were installed; they are

the only pieces of code used by the Python app instead of

installing the entire library.

Table 2: Comparative performance Standard vs. Chiseled

Metric
Ubuntu

Standard

Ubuntu

Chiseled

Change

(%)

Image Size (MB) 496 73.5 ↓ 85.2%

Avg Mem (MiB) 58.4 22.1 ↓ 62.1%

Avg CPU (%) 13.6 9.8 ↓ 27.9%

Startup Time (sec) 46s 26s ↓ 56%

Figure 3: Comparative performance metrics

 Startup Time Reduction

The experimental results show a decrease in container startup

time when using the chiseled base image, dropping from

about 46 seconds to 26 seconds (a 56% improvement) if the

image is being pulled from the registry each time, otherwise

the time to start is less than 2 seconds resulting in marginal

Paper ID: SR26112020014 DOI: https://dx.doi.org/10.21275/SR26112020014 1473

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

differences. This acceleration can be attributed to the smaller

image that needs to be loaded and initialized. In general,

containers with lightweight base images incur less overhead

during startup, as there is less data to pull from storage and

fewer initialization steps. Prior comparisons have observed

that minimal distributions like Alpine Linux (with a base

image of only 5 MB) boot much faster than standard Ubuntu

images, which take slightly longer due to their increased size

and complexity [6]. This aligns with our findings that the

chiseled Ubuntu image make more efficient boot process. The

official Docker documentation similarly emphasizes that

smaller image sizes directly translate to faster image pulls and

container start times, reinforcing the idea that image slimming

yields tangible startup latency benefits [10].

Reducing the image size not only cuts down transfer time but

also minimizes container instantiation latency inside the

runtime. Literature on container performance notes that

factors such as the image’s size and its layering can affect

startup latency [11]. Our 26s startup time, featuring a chiseled

image, aligns with lightweight container distribution trends, a

result well-supported by existing knowledge in the

community and prior works on Alpine and Distroless image

optimizations [9].

 Average CPU and Memory Load Reduction

Adopting the chiseled image led to noticeably lower resource

usage in our web server container. In idle conditions (no

load), the container’s memory residency dropped from 58.4

MiB to 22.1 MiB, a reduction of about 62.1%. This indicates

that the baseline memory overhead (from the OS libraries and

background processes) is much smaller in the lean image.

Similarly, under a representative load, we observed the

average CPU utilization decrease from 13.6% to 9.8%

(approximately 27.9% lower). These improvements suggest

that the chiseled image not only removes unused packages but

also avoids running extraneous daemons or services, thereby

freeing CPU cycles and memory space for the actual

application. Such efficiency gains are particularly relevant in

a microservices or edge environment where dozens of

containers might be co-located on resource-constrained

nodes. Our findings are consistent with reports that

distroless/minimal containers require less CPU and memory

at runtime, improving overall system performance.

Figure 3 provides a visual overview of these improvements,

illustrating the reduction in idle memory and CPU utilization.

These results corroborate trends seen in related benchmarking

studies on micro-containers and Kubernetes optimizations.

Prior work has noted that using lightweight base images (or

even scratch images) can “reduce resource consumption” of

containers alongside faster startup. By cutting idle memory

usage by over half, our chiseled Ubuntu container

demonstrates the kind of memory savings that can

significantly increase container density per node so that more

containers can run on the same hardware. Likewise, the drop

in CPU usage under load suggests that a minimal userspace

leaves less background activity, allowing the application to

utilize the CPU more efficiently. In a Kubernetes context,

such optimizations can accumulate into significant gains – for

example, lightweight Kubernetes distributions designed for

edge computing underscore the importance of efficiency in

resource-constrained environments. Our data provides

concrete evidence that a chiseled image can fulfill those

efficiency promises by cutting idle overhead to a fraction of

what a standard base image would require.

 Network I/O and Storage I/O Reduction

The network throughput and request-handling performance

observed differences between the standard and chiseled

image scenarios were modest. During load testing, the

average network transfer rate measured approximately 0.89

MB/s with the baseline image compared to 0.91 MB/s with

the chiseled image. Similarly, the web service handled

approximately 1,180 requests per second with the standard

image and 1,215 requests per second with the chiseled image,

corresponding to a relative increase of approximately 3%. As

depicted in Figure 3, throughput remained nearly identical,

confirming that efficiency gains did not compromise

performance.

Where the impact of a smaller image is clearer is in storage

and network I/O related to image distribution and caching.

The chiseled image’s significantly reduced size means pulling

the image from the registry imposes less load on the network

and consumes less disk space on each node, shortening the

time of image download and unpack, as reflected in the

reduction of startup time. This is consistent with the known

benefits of image slimming: smaller images result in faster

transfers and lower storage usage.

Prior studies and industry best practices concur with this

point: smaller container images result in faster deployment

(less data to transfer) and reduced storage costs, in contrast to

larger, bloated images that impose higher transmission,

storage, and caching costs [6].

5. Conclusions

By comparing an ultra-minimal Ubuntu Chiseled base image

against the Standard Ubuntu container image, we quantified

several key improvements:

• Reduce image size by 85%, cutting storage and

distribution costs.

• Lower startup latency by nearly half and decrease idle

memory by 62% and CPU load by 28%.

• Higher efficiency, thus more containers can run per node,

and workloads consume fewer resources for the same

throughput.

These findings show that chiseled container images can

substantially improve resource efficiency without negatively

affecting application performance. The results encourage

broader adoption of minimal base images, especially in cloud-

native and edge deployments where resources are limited.

Indeed, our study supports the narrative that container

optimization is a key to improving scalability of

infrastructures and constitutes a novel contribution as the first

orchestration-level empirical assessment of Ubuntu Chiseled

images in a K3s environment in IoT devices.

6. Future Work

While this study provided valuable insights, it also opened

Paper ID: SR26112020014 DOI: https://dx.doi.org/10.21275/SR26112020014 1474

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

several avenues for further investigation, including:

Generalizing this analysis to broader classes of applications,

including compute-intensive workloads.

Integrate our approach into an automated analysis pipeline.

Rather than manually swapping base images, we envision

using tools to automatically slim down images by analyzing

application dependencies.

CI/CD pipelines can be used to optimize images, or using

CI/CD benchmarking. Combining such tools with our

performance benchmarking would allow continuous

verification that the slimmed images indeed run correctly and

efficiently.

Integrating static analysis techniques (δ-SCALPEL) into s

hybrid approach that uses static analysis can be exploited to

identify unnecessary components and dynamic runtime to

ensure those components are truly not used, yielding an even

smaller image without breaking functionality. We believe that

such efforts, inspired by our initial findings, can accelerate the

adoption of chiseled images in both edge and cloud settings,

leading to leaner, more efficient deployments without

sacrificing reliability.

References

[1] J. Turnbull, The Docker Book: Containerization is the

New Virtualization. San Francisco, CA, USA: James

Turnbull, 2014.

[2] D. Merkel, "Docker: Lightweight Linux containers for

consistent development and deployment," Linux

Journal, no. 239, pp. 2-11, 2014.

[3] R. Shu, X. Gu, and W. Enck, "A study of security

vulnerabilities on docker hub," in Proceedings of the

Seventh ACM on Conference on Data and Application

Security and Privacy, 2017, pp. 269-280.

[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J.

Wilkes, "Borg, Omega, and Kubernetes,"

Communications of the ACM, vol. 59, no. 5, pp. 50-57,

2016, doi: 10.1145/2890784.

[5] D. Yakubov and D. Hästbacka, "Comparative Analysis

of Lightweight Kubernetes Distributions for Edge

Computing: Security, Resilience and Maintainability,"

in European Conference on Service-Oriented and

Cloud Computing, 2025: Springer, pp. 96-104.

[6] J. Han, C. Huang, J. Liu, and T. Zhang, "An Effective

Docker Image Slimming Approach Based on Source

Code Data Dependency Analysis," 2025. [Online].

Available: https://arxiv.org/abs/2501.03736

[7] S. Kim, J. Woo, and H. Oh, "Distroless containers: A

secure and lightweight approach for cloud

deployments," 2020, pp. 258-265.

[8] Canonical, "Chiseled Ubuntu Whitepaper," Canonical,

2023. [Online]. Available:

https://ubuntu.com/blog/introducing-chiselled-ubuntu-

containers

[9] A. Mouat, "Minimal Container Images: Towards a

More Secure Future," 2022. [Online]. Available:

https://www.chainguard.dev/unchained/minimal-

container-images-towards-a-more-secure-future.

[10] I. Docker. "Best practices for building images."

https://docs.docker.com/build/building/best-practices/

(accessed.

[11] K. Eng and A. Hindle, Revisiting Dockerfiles in Open

Source Software Over Time. 2021.

Paper ID: SR26112020014 DOI: https://dx.doi.org/10.21275/SR26112020014 1475

http://www.ijsr.net/
https://arxiv.org/abs/2501.03736
https://ubuntu.com/blog/introducing-chiselled-ubuntu-containers
https://ubuntu.com/blog/introducing-chiselled-ubuntu-containers
https://www.chainguard.dev/unchained/minimal-container-images-towards-a-more-secure-future
https://www.chainguard.dev/unchained/minimal-container-images-towards-a-more-secure-future
https://docs.docker.com/build/building/best-practices/

