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Abstract: This article presents a framework for bounding the spectral radius of classical graph matrices, specifically the adjacency and
signless Laplacian matrices, using vertex eccentricity as a global structural parameter. By applying the Collatz—Wielandt characterization
and Rayleigh quotient methods with the eccentricity vector as a test input, the study derives both upper and lower bounds that incorporate
global distance distributions. The proposed bounds are shown to be sharp for regular and self-centered graph families and remain useful
for irregular structures. Through these results, eccentricity emerges as a complementary control parameter to degree-based approaches,
providing enhanced insight into how both local and global structures shape spectral behaviour.
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1. Introduction

The study of eigenvalues of graph associated matrices forms
a central part of spectral graph theory. Among these
eigenvalues, the spectral radius, defined as the largest
eigenvalue of a real symmetric graph matrix, plays a decisive
role in understanding structural, extremal, and dynamical
properties of graphs. For the adjacency matrix and the
signless Laplacian matrix, the spectral radius governs
connectivity behaviour, growth of walks, and the stability of
processes on networks, and has therefore been studied
extensively.

Classical bounds for the spectral radius are predominantly
degree based. Inequalities involving the maximum degree,
minimum degree, or average degree have been developed and
refined over several decades and remain fundamental tools in
spectral analysis. These bounds are often sharp for regular or
dense graphs and effectively capture local connectivity
patterns. However, degree-based parameters are inherently
local in nature and do not reflect global distance properties of
a graph. As a result, graphs with similar degree distributions
but substantially different global structures may satisfy
identical degree-based bounds while exhibiting distinct
spectral behaviour.

Global distance parameters provide complementary structural
information. Vertex eccentricity, defined as the maximum
distance from a vertex to all other vertices of the graph,
quantifies how distant a vertex is from the graph’s periphery.
Parameters derived from eccentricity, such as radius and
diameter, measure global remoteness and the extent of graph
expansion or stretch. These distance-based invariants have
long been studied in structural graph theory and have played
an important role in chemical graph theory through distance
dependent indices. Despite this, their direct influence on the
spectral radius of classical graph matrices has not been
examined in a systematic manner.

Recent spectral investigations involving eccentricity have
primarily focused on matrices constructed explicitly from
eccentricity values, such as eccentricity matrices and their
associated energies. Although these approaches introduce

new spectral objects with interesting properties, they do not
directly address how eccentricity influences the spectral
behaviour of the standard adjacency or signless Laplacian
matrices. Consequently, the role of eccentricity as a
controlling parameter, rather than as a matrix defining
ingredient, has not been thoroughly examined.

This study addresses this gap by retaining the classical
adjacency and signless Laplacian matrices and incorporating
vertex eccentricity into their spectral analysis through
established variational principles. In particular, the Collatz—
Wielandt characterization for nonnegative irreducible
matrices and Rayleigh quotient techniques are employed,
with the eccentricity vector serving as a positive test vector.
This strategy allows global distance information to enter
spectral estimates naturally without modifying the underlying
matrix structure.

Within this framework, computable lower and upper bounds
are obtained for the spectral radius of both the adjacency and
signless Laplacian matrices in terms of eccentricity
distributions and degree eccentricity interactions. Equality
conditions are fully characterized, and the bounds are exact
for broad families of regular and self-centered graphs.
Structural limitations are also identified for graphs with
highly nonuniform eccentricity distributions, clarifying the
settings in which eccentricity-based bounds become
inherently coarse.

Overall, the results establish vertex eccentricity as a distance
sensitive spectral control parameter that complements degree-
based bounds. By integrating global distance information into
classical spectral frameworks, the analysis provides a clearer
understanding of how local and global graph structure jointly
influence spectral radii.

2. Related Work

The study of spectral radii of graph matrices has a long- and
well-established  history in spectral graph theory.
Foundational treatments of graph spectra and their structural
implications are presented in standard monographs by
Cvetkovi¢, Doob, and Sachs [3], Chung [2], and Brouwer and
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Haemers [1]. These works formalized the role of eigenvalues
of adjacency and Laplacian type matrices in capturing
fundamental graph properties and laid the groundwork for
subsequent extremal investigations.

Early research on bounding the adjacency spectral radius
focused primarily on degree-based parameters. Hong [4]
derived bounds relating the largest adjacency eigenvalue to
vertex degrees, initiating a systematic study of extremal
degree-based inequalities. This line of research was further
developed by Nikiforov [5], who established sharp bounds
using degree sequences and extremal configurations.
Additional refinements were introduced by Das and Kumar
[6] and by Das and Bapat [7], extending degree-based
techniques to weighted graphs and related spectral settings.
These results remain central to spectral extremal theory and
are particularly effective for regular or nearly regular graphs.

Alongside degree-based approaches, distance-based graph
invariants have been extensively studied in structural and
chemical graph theory. Wiener’s pioneering work [8§]
introduced distance dependent indices to relate molecular
structure to physical properties, initiating a broad research
direction centered on global distance measures. Subsequent
studies by Dobrynin, Entringer, and Gutman [9]
systematically developed the theory of distance dependent
invariants and highlighted the structural information captured
by global distance parameters. Estrada [10] further
emphasized the role of global structure in network analysis,
reinforcing the importance of distance sensitive descriptors.

Despite their structural relevance, distance parameters such as
eccentricity, radius, and diameter have appeared only
sporadically in classical spectral radius bounds. More recent
spectral investigations involving eccentricity have largely
focused on matrices constructed explicitly from eccentricity
values. Mahato and collaborators [11] studied the spectral
radius and energy of eccentricity matrices, while Qiu, Li, and
Zhang [12] examined eccentricity energy and eccentricity
spectral radius for graphs under diameter constraints.
Extensions to directed graphs were considered by Yang and
Wang [13]. These contributions demonstrate that
eccentricity-based matrices possess rich spectral behaviour,
but they do not directly address how eccentricity influences
the spectral radius of the standard adjacency or signless
Laplacian matrices.

Research on the signless Laplacian spectral radius has also
expanded in recent years. Chen, Cioaba, and Lin [14]
investigated extremal properties of the signless Laplacian
spectral radius under forbidden odd cycle conditions, while
Chen [15] studied signless Laplacian bounds for book free
graphs. More recently, Malathy and Desikan [16] derived
bounds for the adjacency and signless Laplacian spectral radii
of generalized core satellite graphs. These studies reflect
ongoing interest in refining spectral bounds under
increasingly specialized structural constraints.

The approach adopted here differs fundamentally from the
above directions. Rather than introducing new matrix
constructions or relying solely on degree-based parameters,
the classical adjacency and signless Laplacian matrices are
retained, and vertex eccentricity is incorporated as a control

parameter within established spectral frameworks. By
applying the Collatz—Wielandt characterization and Rayleigh
quotient techniques with eccentricity-based test vectors,
distance sensitive bounds for the spectral radius are obtained
while maintaining direct comparability with classical results.

This perspective also complements recent work on vertex
eccentricity labeled energy [17], where eccentricity is
incorporated into energy based spectral descriptors. In
contrast, the analysis presented here shows that eccentricity
alone, without redefining matrix structure, can effectively
influence the spectral radius of standard graph matrices,
thereby linking distance based structural theory with classical
spectral analysis.

3. Preliminaries

Let G = (V(G),E(G)) be a connected simple undirected
graph with vertex set

V(G) = {v;, vy, ..., v} and edge set E(G). Throughout this
paper, graphs are assumed to be connected unless stated
otherwise.

3.1 Distance and Eccentricity
The distance d(u, v) between two vertices u, v € V(G) is the
length of a shortest path connecting them in G. The

eccentricity of a vertex v € V(G) is defined as
e(v) = urg‘?()é) d(u,v).

The radius and diameter of G are defined respectively by
T = 1, DO = 3, )

A graph is said to be self-centered if all vertices have the same
eccentricity.

3.2 Graph Matrices and Spectral Radius

The adjacency matrix of G, denoted by A(G) = (a;;), is
defined by
— 1’
% = {0,

D(G) = diag(d(v,),d(v,), ..., d(vy,))

ifUin € E(G),
otherwise.
Let

denote the diagonal matrix of vertex degrees. The signless
Laplacian matrix of G is defined as
Q(G) = D(G) + A(G).

Since both A(G) and Q(G) are real symmetric matrices, all of
their eigenvalues are real. The spectral radius of a matrix M,
denoted by p(M), is defined as the largest eigenvalue of M.
For connected graphs, both A(G) and Q(G) are irreducible
nonnegative matrices, and therefore their spectral radii
coincide with their Perron eigenvalues.

3.3 Rayleigh Quotient

Let M be a real symmetric matrix. The Rayleigh quotient
associated with M and a nonzero vector x € R™ is given by

xTMx
RM(x) = xTx
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The spectral radius of M satisfies
p(M) = max Ry (x).
X+

This characterization is used to derive lower bounds for the
spectral radius by selecting appropriate test vectors.

3.4 Collatz—Wielandt Characterization

Let M be a nonnegative irreducible matrix and let x € R™ be
a positive vector. The spectral radius p(M) satisfies
. (Mx); (Mx);
min

< p(M) < max .
isisn X pM) 1sisn X

Equality holds if and only if x is a Perron eigenvector of M.

This result is used to establish both lower and upper bounds
for the spectral radii of A(G) and Q(G) by choosing the
eccentricity vector as a test vector.

3.5 Eccentricity Vector

The eccentricity vector of G is defined by
x = (e(vy),e(vy), ..,e(vy))".

Since G is connected, e(v) = 1 for all v € V(G), and hence
x is a positive vector. This vector plays a central role in the
spectral bounds derived in subsequent sections.

4. Methodology and Approach

Let G = (V(G),E(G)) be a simple connected graph of order
n. The methodology adopted here relies on classical
variational principles for real symmetric matrices, combined
with vertex eccentricity as a global structural parameter.

The approach retains the standard graph matrices, namely the
adjacency matrix A(G) and the signless Laplacian matrix
Q(G), and incorporates eccentricity information through the
choice of appropriate test vectors rather than by modifying the
matrix structure itself. In this way, global distance
characteristics influence spectral estimates while preserving
full compatibility with classical spectral theory.

4.1 Variational Framework

Since A(G) and Q(G) are real symmetric matrices, their
spectral radii admit Rayleigh quotient characterizations. For
any nonzero vector x € R",

xTMx

pM) z—=—,
where M € {A(G), Q(G)}. Equality holds if and only if x is
an eigenvector corresponding to the spectral radius.

Lower bounds are obtained by selecting test vectors derived
from vertex eccentricities. Specifically, the eccentricity
vector

x = (e(vr),e(Vz), ...,e(vy))"

is used to introduce global distance information into the
Rayleigh quotient. Since G is connected, this vector is
positive and therefore admissible for spectral estimation.

4.2 Collatz—Wielandt Bounds

Upper bounds are derived using Perron—Frobenius theory for
nonnegative irreducible matrices. The Collatz—Wielandt
characterization states that

X); Mx);
)i <pM) < max ( x.)L.

1

min
i .

4

for any positive vector x. Substituting the eccentricity vector
into this inequality yields bounds expressed in terms of
extremal eccentricity contributions across adjacent vertices.

This formulation connects the spectral radius to structural
configurations in which adjacency and global remoteness
interact, emphasizing vertex pairs that are both adjacent and
distant from the remainder of the graph.

4.3 Diameter-Based Arguments

Lower bounds depending on the diameter are obtained using
induced subgraphs and eigenvalue interlacing. In particular,
any diametral path of G induces a path subgraph whose
spectral radius provides a theoretical lower bound for
p(A(G)). This argument shows that increased graph length
directly influences the spectral radius.

4.4 Extension to the Signless Laplacian

The same framework extends naturally to the signless
Laplacian matrix Q(G) = D(G) + A(G). Since Q(G)
combines degree and adjacency information, eccentricity-
based test vectors lead to bounds involving both local
connectivity and global distance parameters.

This unified methodology produces parallel results for A(G)
and Q(G), allowing a consistent comparison between
adjacency based and degree augmented spectral behavior.

4.5 Validation via Standard Graph Families

To assess the effectiveness and limitations of the derived
bounds, the results are evaluated on classical graph families,
including complete graphs, stars, paths, cycles, and complete
bipartite graphs. These examples illustrate cases in which
eccentricity-based bounds are sharp, asymptotically tight, or
necessarily conservative, depending on the underlying
distance structure.

5. Results and Discussion

This section presents eccentricity-based bounds for the
spectral radius of the adjacency matrix and the signless
Laplacian matrix of a connected graph. The results are
derived using classical variational principles and show how
vertex eccentricity functions as a global distance sensitive
control parameter for spectral radii. Equality conditions and
structural limitations are also identified.

Throughout this section, G = (V(G),E(G)) denotes a
connected simple graph of order n.
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5.1 Eccentricity Based Bounds for the Adjacency Matrix
Theorem 5.1 (Collatz—Wielandt Eccentricity Bounds)

Let G be a connected graph. Then
2@ DI CD)
Zuv <« < Zu~y 7
< p(A(G)) = vrg‘jaé) e(v)

min
vev(G) e(v)

Proof.

Since G is connected, the adjacency matrix A(G) is
nonnegative and irreducible. Let x € R™ be the eccentricity
vector defined by x, =e(v). By the Collatz—Wielandt
characterization for nonnegative irreducible matrices,

(4x); < p(A(G)) < m?x (Ax)i.

L

min
i i

For each vertex v,

(A, = ) e(w.

u~v
Dividing by e(v) yields the stated inequalities.

Theorem 5.2 (Rayleigh Quotient Lower Bound)
For any connected graph G,

2 ver eWe®)
Z VEV(G) e (U)Z

p(A(G)) =

Proof.
The adjacency matrix is real and symmetric. By the Rayleigh
quotient,

-
A

p(4) = max 4 = y.
y*0 y'y

Choosing y = x, where x,, = e(v), gives
T

A
p(AG) 2 =

Since

xTAx =2 e(we(v),
uveE(G)
the result follows.

Theorem 5.3 (Degree Eccentricity Envelope)
Let
emin = Min_e(v), enax = max e(v).

vev(G) VvEV(G)
Then
A d)
emin U0 2 0) < p(A(G)) < emax X 0y
Proof.

For each vertex v,
AW)enin < ) e(u) < d(V) ey

u~v
Substituting these bounds into Theorem 5.1 yields the result.

Theorem 5.4 (Equality Characterization)

Equality holds in both bounds of Theorem 5.1 if and only if
A(G)x = p(A(G))x,

where x, = e(v).

Proof.
By the equality condition of the Collatz—Wielandt theorem,

equality occurs if and only if the chosen positive vector xis a
Perron eigenvector of A(G).

Theorem 5.5 (Self-centered Regular Graphs)
If G is k-regular and self-centered, then

p(A(G)) =k,
and Theorem 5.1 yields exact bounds in this case.

Proof.
In a self-centered graph, all vertices have the same
eccentricity, so x is a scalar multiple of the all-ones vector.
Since G is k-regular,

A(G)1 = k1.
Hence p(A(G)) = k.

5.2 Eccentricity Based Bounds for the Signless Laplacian
Matrix

Theorem 5.6 (Collatz—Wielandt Bounds for Q(G))

Let G be connected. Then

d +
min @)e() Zu~ve(u)SP(Q(G))

vEV(G) e(v)
dwe)+ Y, e
X .

a
veV(6) e(v)

Proof.

The signless Laplacian matrix Q(G) is nonnegative and
irreducible. Applying the Collatz—Wielandt inequalities with
the eccentricity vector x yields the stated bounds.

Theorem 5.7 (Rayleigh Lower Bound for Q(G))
For any connected graph G,

Zev (e 4 +2 X epq) eWe®)

p(Q(G)) 2

Z vEV(G) e(v)2
Proof.
By the Rayleigh quotient,
T
y Qy
p@Q) = max vy

Substituting y = x and expanding Q =D + A gives the
result.

Theorem 5.8 (Exactness for Regular Self-Centered
Graphs)
If G is k-regular and self-centered, then

p(Q(G)) = 2k,

and the bounds in Theorem 5.6 are exact.

Proof.
For a k-regular graph,
Q(G)1 = 2k1.
Since x is proportional to 1, equality follows from Theorem
5.6.

5.3 Corollaries and Structural Consequences

Corollary 5.1.
For any connected graph, epi, = 7(G), emax = D(G).
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Corollary 5.2.

The quantity min Zu-p°®) provides a computable lower
vev(G) e

bound for p(A(G)).

Corollary 5.3.

dw)eW)+ ), e

The quantity min ) provides a computable

veV(G) e(v)
lower bound for p(Q(G)).

Proposition 5.4 (Cycles). For the cycle graph C,,

P(A(C) = 2,p(Q(CL) = 4,
and the eccentricity-based bounds are exact.

Proposition 5.5 (Complete Graphs).
For the complete graph K,,,

p(A(Ky)) =n—1,p(Q(Ky)) = 2(n - 1),
and the eccentricity-based bounds are exact.

Proposition 5.6 (Complete Bipartite Graphs).
For K, .,

pP(A(K; ) =t p(Q(Ke ) = 2¢,
and the eccentricity-based bounds are exact.

Remark 5.7 (Structural Limitation).

For graphs with highly nonuniform eccentricity distributions,
such as star graphs, ratio-based bounds may be relatively
loose. In such cases, Rayleigh type bounds provide sharper
estimates, reflecting an inherent limitation of ratio-based
eccentricity bounds.

5.3 Discussion

The results presented above establish vertex eccentricity as a
rigorous and effective distance-sensitive parameter for
bounding the spectral radius of classical graph matrices. The
bounds are exact for broad families of graphs and offer useful
insights for graphs with extended structures, while their
limitations are explicitly identified.

6. Conclusion and Future Scope

This study examined the influence of vertex eccentricity on
the spectral radius of classical graph matrices. By using
eccentricity as a distance sensitive test vector within
established variational frameworks, bounds were obtained for
the spectral radii of the adjacency and signless Laplacian
matrices of connected graphs. The approach preserves the
standard matrix structures while incorporating global distance
information, thereby linking distance-based graph parameters
with classical spectral theory.

The derived bounds are sharp for several well-known graph
families, including complete graphs, cycles, and regular self-
centered graphs. For graphs with nonuniform eccentricity
distributions, the results illustrate how global remoteness
interacts with local connectivity to constrain spectral growth.
The analysis also identifies the structural settings in which
eccentricity-based bounds are exact and those in which
Rayleigh type estimates provide more effective control.

The methodology complements existing degree based
spectral bounds and recent studies on eccentricity related
matrix spectra. Unlike approaches that modify the underlying

matrix structure, the framework presented here shows that
eccentricity can be incorporated directly into classical
spectral analysis through standard tools such as the Rayleigh
quotient and Collatz—Wielandt inequalities.

Several directions remain open for further investigation. The
results may be extended to other matrix families, including
the normalized Laplacian and Seidel type matrices.
Eccentricity based spectral bounds for directed graphs,
weighted graphs, and graphs with additional structural
constraints such as forbidden subgraphs also warrant deeper
investigation. In addition, combining eccentricity with other
global invariants may lead to refined hybrid bounds capable
of capturing more subtle structural features of large-scale
networks.
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