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Abstract: This article presents a framework for bounding the spectral radius of classical graph matrices, specifically the adjacency and 

signless Laplacian matrices, using vertex eccentricity as a global structural parameter. By applying the Collatz–Wielandt characterization 

and Rayleigh quotient methods with the eccentricity vector as a test input, the study derives both upper and lower bounds that incorporate 

global distance distributions. The proposed bounds are shown to be sharp for regular and self-centered graph families and remain useful 

for irregular structures. Through these results, eccentricity emerges as a complementary control parameter to degree-based approaches, 

providing enhanced insight into how both local and global structures shape spectral behaviour. 

 

Keywords: Spectral radius; vertex eccentricity; adjacency matrix; signless Laplacian matrix; Collatz–Wielandt inequality 

 

1. Introduction 
 

The study of eigenvalues of graph associated matrices forms 

a central part of spectral graph theory. Among these 

eigenvalues, the spectral radius, defined as the largest 

eigenvalue of a real symmetric graph matrix, plays a decisive 

role in understanding structural, extremal, and dynamical 

properties of graphs. For the adjacency matrix and the 

signless Laplacian matrix, the spectral radius governs 

connectivity behaviour, growth of walks, and the stability of 

processes on networks, and has therefore been studied 

extensively. 

 

Classical bounds for the spectral radius are predominantly 

degree based. Inequalities involving the maximum degree, 

minimum degree, or average degree have been developed and 

refined over several decades and remain fundamental tools in 

spectral analysis. These bounds are often sharp for regular or 

dense graphs and effectively capture local connectivity 

patterns. However, degree-based parameters are inherently 

local in nature and do not reflect global distance properties of 

a graph. As a result, graphs with similar degree distributions 

but substantially different global structures may satisfy 

identical degree-based bounds while exhibiting distinct 

spectral behaviour. 

 

Global distance parameters provide complementary structural 

information. Vertex eccentricity, defined as the maximum 

distance from a vertex to all other vertices of the graph, 

quantifies how distant a vertex is from the graph’s periphery. 

Parameters derived from eccentricity, such as radius and 

diameter, measure global remoteness and the extent of graph 

expansion or stretch. These distance-based invariants have 

long been studied in structural graph theory and have played 

an important role in chemical graph theory through distance 

dependent indices. Despite this, their direct influence on the 

spectral radius of classical graph matrices has not been 

examined in a systematic manner. 

 

Recent spectral investigations involving eccentricity have 

primarily focused on matrices constructed explicitly from 

eccentricity values, such as eccentricity matrices and their 

associated energies. Although these approaches introduce 

new spectral objects with interesting properties, they do not 

directly address how eccentricity influences the spectral 

behaviour of the standard adjacency or signless Laplacian 

matrices. Consequently, the role of eccentricity as a 

controlling parameter, rather than as a matrix defining 

ingredient, has not been thoroughly examined. 

 

This study addresses this gap by retaining the classical 

adjacency and signless Laplacian matrices and incorporating 

vertex eccentricity into their spectral analysis through 

established variational principles. In particular, the Collatz–

Wielandt characterization for nonnegative irreducible 

matrices and Rayleigh quotient techniques are employed, 

with the eccentricity vector serving as a positive test vector. 

This strategy allows global distance information to enter 

spectral estimates naturally without modifying the underlying 

matrix structure. 

 

Within this framework, computable lower and upper bounds 

are obtained for the spectral radius of both the adjacency and 

signless Laplacian matrices in terms of eccentricity 

distributions and degree eccentricity interactions. Equality 

conditions are fully characterized, and the bounds are exact 

for broad families of regular and self-centered graphs. 

Structural limitations are also identified for graphs with 

highly nonuniform eccentricity distributions, clarifying the 

settings in which eccentricity-based bounds become 

inherently coarse. 

 

Overall, the results establish vertex eccentricity as a distance 

sensitive spectral control parameter that complements degree-

based bounds. By integrating global distance information into 

classical spectral frameworks, the analysis provides a clearer 

understanding of how local and global graph structure jointly 

influence spectral radii. 

 

2. Related Work 
 

The study of spectral radii of graph matrices has a long- and 

well-established history in spectral graph theory. 

Foundational treatments of graph spectra and their structural 

implications are presented in standard monographs by 

Cvetković, Doob, and Sachs [3], Chung [2], and Brouwer and 
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Haemers [1]. These works formalized the role of eigenvalues 

of adjacency and Laplacian type matrices in capturing 

fundamental graph properties and laid the groundwork for 

subsequent extremal investigations. 

 

Early research on bounding the adjacency spectral radius 

focused primarily on degree-based parameters. Hong [4] 

derived bounds relating the largest adjacency eigenvalue to 

vertex degrees, initiating a systematic study of extremal 

degree-based inequalities. This line of research was further 

developed by Nikiforov [5], who established sharp bounds 

using degree sequences and extremal configurations. 

Additional refinements were introduced by Das and Kumar 

[6] and by Das and Bapat [7], extending degree-based 

techniques to weighted graphs and related spectral settings. 

These results remain central to spectral extremal theory and 

are particularly effective for regular or nearly regular graphs. 

 

Alongside degree-based approaches, distance-based graph 

invariants have been extensively studied in structural and 

chemical graph theory. Wiener’s pioneering work [8] 

introduced distance dependent indices to relate molecular 

structure to physical properties, initiating a broad research 

direction centered on global distance measures. Subsequent 

studies by Dobrynin, Entringer, and Gutman [9] 

systematically developed the theory of distance dependent 

invariants and highlighted the structural information captured 

by global distance parameters. Estrada [10] further 

emphasized the role of global structure in network analysis, 

reinforcing the importance of distance sensitive descriptors. 

 

Despite their structural relevance, distance parameters such as 

eccentricity, radius, and diameter have appeared only 

sporadically in classical spectral radius bounds. More recent 

spectral investigations involving eccentricity have largely 

focused on matrices constructed explicitly from eccentricity 

values. Mahato and collaborators [11] studied the spectral 

radius and energy of eccentricity matrices, while Qiu, Li, and 

Zhang [12] examined eccentricity energy and eccentricity 

spectral radius for graphs under diameter constraints. 

Extensions to directed graphs were considered by Yang and 

Wang [13]. These contributions demonstrate that 

eccentricity-based matrices possess rich spectral behaviour, 

but they do not directly address how eccentricity influences 

the spectral radius of the standard adjacency or signless 

Laplacian matrices. 

 

Research on the signless Laplacian spectral radius has also 

expanded in recent years. Chen, Cioabă, and Lin [14] 

investigated extremal properties of the signless Laplacian 

spectral radius under forbidden odd cycle conditions, while 

Chen [15] studied signless Laplacian bounds for book free 

graphs. More recently, Malathy and Desikan [16] derived 

bounds for the adjacency and signless Laplacian spectral radii 

of generalized core satellite graphs. These studies reflect 

ongoing interest in refining spectral bounds under 

increasingly specialized structural constraints. 

 

The approach adopted here differs fundamentally from the 

above directions. Rather than introducing new matrix 

constructions or relying solely on degree-based parameters, 

the classical adjacency and signless Laplacian matrices are 

retained, and vertex eccentricity is incorporated as a control 

parameter within established spectral frameworks. By 

applying the Collatz–Wielandt characterization and Rayleigh 

quotient techniques with eccentricity-based test vectors, 

distance sensitive bounds for the spectral radius are obtained 

while maintaining direct comparability with classical results. 

 

This perspective also complements recent work on vertex 

eccentricity labeled energy [17], where eccentricity is 

incorporated into energy based spectral descriptors. In 

contrast, the analysis presented here shows that eccentricity 

alone, without redefining matrix structure, can effectively 

influence the spectral radius of standard graph matrices, 

thereby linking distance based structural theory with classical 

spectral analysis. 

 

3. Preliminaries 
 

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a connected simple undirected 

graph with vertex set 

𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛} and edge set 𝐸(𝐺). Throughout this 

paper, graphs are assumed to be connected unless stated 

otherwise. 

 

3.1 Distance and Eccentricity 

 

The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) is the 

length of a shortest path connecting them in 𝐺. The 

eccentricity of a vertex 𝑣 ∈ 𝑉(𝐺) is defined as  

𝑒(𝑣) = max⁡
𝑢∈𝑉(𝐺)

𝑑(𝑢, 𝑣). 

 

The radius and diameter of 𝐺 are defined respectively by 

𝑟(𝐺) = min⁡
𝑣∈𝑉(𝐺)

𝑒(𝑣), 𝐷(𝐺) = max⁡
𝑣∈𝑉(𝐺)

𝑒(𝑣). 

 

A graph is said to be self-centered if all vertices have the same 

eccentricity. 

 

3.2 Graph Matrices and Spectral Radius 

 

The adjacency matrix of 𝐺, denoted by 𝐴(𝐺) = (𝑎𝑖𝑗), is 

defined by 

𝑎𝑖𝑗 = {
1, if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺),

0, otherwise.
 

Let  

𝐷(𝐺) = diag(𝑑(𝑣1), 𝑑(𝑣2), … , 𝑑(𝑣𝑛)) 
 

denote the diagonal matrix of vertex degrees. The signless 

Laplacian matrix of 𝐺 is defined as  

𝑄(𝐺) = 𝐷(𝐺) + 𝐴(𝐺). 
 

Since both 𝐴(𝐺) and 𝑄(𝐺) are real symmetric matrices, all of 

their eigenvalues are real. The spectral radius of a matrix 𝑀, 

denoted by 𝜌(𝑀), is defined as the largest eigenvalue of 𝑀. 

For connected graphs, both 𝐴(𝐺) and 𝑄(𝐺) are irreducible 

nonnegative matrices, and therefore their spectral radii 

coincide with their Perron eigenvalues. 

 

3.3 Rayleigh Quotient 

 

Let 𝑀 be a real symmetric matrix. The Rayleigh quotient 

associated with 𝑀 and a nonzero vector 𝑥 ∈ ℝ𝑛 is given by 

𝑅𝑀(𝑥) =
𝑥⊤𝑀𝑥

𝑥⊤𝑥
. 
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The spectral radius of 𝑀 satisfies 

𝜌(𝑀) = max⁡
𝑥≠0

𝑅𝑀(𝑥). 

 

This characterization is used to derive lower bounds for the 

spectral radius by selecting appropriate test vectors. 

 

3.4 Collatz–Wielandt Characterization 

 

Let 𝑀 be a nonnegative irreducible matrix and let 𝑥 ∈ ℝ𝑛 be 

a positive vector. The spectral radius 𝜌(𝑀) satisfies 

min⁡
1≤𝑖≤𝑛

(𝑀𝑥)𝑖
𝑥𝑖

≤ 𝜌(𝑀) ≤ max⁡
1≤𝑖≤𝑛

(𝑀𝑥)𝑖
𝑥𝑖

. 

 

Equality holds if and only if 𝑥 is a Perron eigenvector of 𝑀. 

 

This result is used to establish both lower and upper bounds 

for the spectral radii of 𝐴(𝐺) and 𝑄(𝐺) by choosing the 

eccentricity vector as a test vector. 

 

3.5 Eccentricity Vector 

 

The eccentricity vector of 𝐺 is defined by 

𝑥 = (𝑒(𝑣1), 𝑒(𝑣2), … , 𝑒(𝑣𝑛))
⊤. 

 

Since 𝐺 is connected, 𝑒(𝑣) ≥ 1 for all 𝑣 ∈ 𝑉(𝐺), and hence 

𝑥 is a positive vector. This vector plays a central role in the 

spectral bounds derived in subsequent sections. 

 

4. Methodology and Approach 
 

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple connected graph of order 

𝑛. The methodology adopted here relies on classical 

variational principles for real symmetric matrices, combined 

with vertex eccentricity as a global structural parameter. 

 

The approach retains the standard graph matrices, namely the 

adjacency matrix 𝐴(𝐺) and the signless Laplacian matrix 

𝑄(𝐺), and incorporates eccentricity information through the 

choice of appropriate test vectors rather than by modifying the 

matrix structure itself. In this way, global distance 

characteristics influence spectral estimates while preserving 

full compatibility with classical spectral theory. 

 

4.1 Variational Framework 

 

Since 𝐴(𝐺) and 𝑄(𝐺) are real symmetric matrices, their 

spectral radii admit Rayleigh quotient characterizations. For 

any nonzero vector 𝑥 ∈ ℝ𝑛,  

𝜌(𝑀) ≥
𝑥⊤𝑀𝑥

𝑥⊤𝑥
, 

where 𝑀 ∈ {𝐴(𝐺), 𝑄(𝐺)}. Equality holds if and only if 𝑥 is 

an eigenvector corresponding to the spectral radius. 

 

Lower bounds are obtained by selecting test vectors derived 

from vertex eccentricities. Specifically, the eccentricity 

vector 

𝑥 = (𝑒(𝑣1), 𝑒(𝑣2), … , 𝑒(𝑣𝑛))
⊤ 

 

is used to introduce global distance information into the 

Rayleigh quotient. Since 𝐺 is connected, this vector is 

positive and therefore admissible for spectral estimation. 

 

4.2 Collatz–Wielandt Bounds 

 

Upper bounds are derived using Perron–Frobenius theory for 

nonnegative irreducible matrices. The Collatz–Wielandt 

characterization states that 

min⁡
𝑖

(𝑀𝑥)𝑖
𝑥𝑖

≤ 𝜌(𝑀) ≤ max⁡
𝑖

(𝑀𝑥)𝑖
𝑥𝑖

, 

 

for any positive vector 𝑥. Substituting the eccentricity vector 

into this inequality yields bounds expressed in terms of 

extremal eccentricity contributions across adjacent vertices. 

 

This formulation connects the spectral radius to structural 

configurations in which adjacency and global remoteness 

interact, emphasizing vertex pairs that are both adjacent and 

distant from the remainder of the graph. 

 

4.3 Diameter-Based Arguments 

 

Lower bounds depending on the diameter are obtained using 

induced subgraphs and eigenvalue interlacing. In particular, 

any diametral path of 𝐺 induces a path subgraph whose 

spectral radius provides a theoretical lower bound for 

𝜌(𝐴(𝐺)). This argument shows that increased graph length 

directly influences the spectral radius. 

 

4.4 Extension to the Signless Laplacian 

 

The same framework extends naturally to the signless 

Laplacian matrix 𝑄(𝐺) = 𝐷(𝐺) + 𝐴(𝐺). Since 𝑄(𝐺) 
combines degree and adjacency information, eccentricity-

based test vectors lead to bounds involving both local 

connectivity and global distance parameters. 

 

This unified methodology produces parallel results for 𝐴(𝐺) 
and 𝑄(𝐺), allowing a consistent comparison between 

adjacency based and degree augmented spectral behavior. 

 

4.5 Validation via Standard Graph Families 

 

To assess the effectiveness and limitations of the derived 

bounds, the results are evaluated on classical graph families, 

including complete graphs, stars, paths, cycles, and complete 

bipartite graphs. These examples illustrate cases in which 

eccentricity-based bounds are sharp, asymptotically tight, or 

necessarily conservative, depending on the underlying 

distance structure. 

 

5. Results and Discussion 
 

This section presents eccentricity-based bounds for the 

spectral radius of the adjacency matrix and the signless 

Laplacian matrix of a connected graph. The results are 

derived using classical variational principles and show how 

vertex eccentricity functions as a global distance sensitive 

control parameter for spectral radii. Equality conditions and 

structural limitations are also identified. 

 

Throughout this section, 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) denotes a 

connected simple graph of order 𝑛. 
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5.1 Eccentricity Based Bounds for the Adjacency Matrix 

 

Theorem 5.1 (Collatz–Wielandt Eccentricity Bounds) 

Let 𝐺 be a connected graph. Then 

min⁡
𝑣∈𝑉(𝐺)

∑ 𝑒(𝑢)
𝑢∼𝑣

𝑒(𝑣)
≤ 𝜌(𝐴(𝐺)) ≤ max⁡

𝑣∈𝑉(𝐺)

∑ 𝑒(𝑢)
𝑢∼𝑣

𝑒(𝑣)
. 

 

Proof. 

Since 𝐺 is connected, the adjacency matrix 𝐴(𝐺) is 

nonnegative and irreducible. Let 𝑥 ∈ ℝ𝑛 be the eccentricity 

vector defined by 𝑥𝑣 = 𝑒(𝑣). By the Collatz–Wielandt 

characterization for nonnegative irreducible matrices, 

min⁡
𝑖

(𝐴𝑥)𝑖
𝑥𝑖

≤ 𝜌(𝐴(𝐺)) ≤ max⁡
𝑖

(𝐴𝑥)𝑖
𝑥𝑖

. 

 

For each vertex 𝑣, 

(𝐴𝑥)𝑣 = ∑𝑒(𝑢).

𝑢∼𝑣

 

 

Dividing by 𝑒(𝑣) yields the stated inequalities.  

 

Theorem 5.2 (Rayleigh Quotient Lower Bound) 

For any connected graph 𝐺, 

𝜌(𝐴(𝐺)) ≥
2∑ 𝑒(𝑢)𝑒(𝑣)

𝑢𝑣∈𝐸(𝐺)

∑ 𝑒(𝑣
𝑣∈𝑉(𝐺)

)2
. 

 

Proof. 

The adjacency matrix is real and symmetric. By the Rayleigh 

quotient, 

𝜌(𝐴) = max⁡
𝑦≠0

𝑦⊤𝐴𝑦

𝑦⊤𝑦
. 

 

Choosing 𝑦 = 𝑥, where 𝑥𝑣 = 𝑒(𝑣), gives 

𝜌(𝐴(𝐺)) ≥
𝑥⊤𝐴𝑥

𝑥⊤𝑥
. 

Since 

𝑥⊤𝐴𝑥 = 2 ∑ 𝑒(𝑢)𝑒(𝑣),

𝑢𝑣∈𝐸(𝐺)

 

the result follows.  

 

Theorem 5.3 (Degree Eccentricity Envelope) 

Let   

𝑒min = min⁡
𝑣∈𝑉(𝐺)

𝑒(𝑣), 𝑒max = max⁡
𝑣∈𝑉(𝐺)

𝑒(𝑣). 

Then 

𝑒min min⁡
𝑣∈𝑉(𝐺)

𝑑(𝑣)

𝑒(𝑣)
≤ 𝜌(𝐴(𝐺)) ≤ 𝑒maxmax⁡

𝑣∈𝑉(𝐺)

𝑑(𝑣)

𝑒(𝑣)
. 

Proof. 

For each vertex 𝑣, 

𝑑(𝑣)𝑒min ≤∑𝑒(𝑢) ≤ 𝑑(𝑣)

𝑢∼𝑣

𝑒max. 

Substituting these bounds into Theorem 5.1 yields the result.  

 

Theorem 5.4 (Equality Characterization) 

Equality holds in both bounds of Theorem 5.1 if and only if 

𝐴(𝐺)𝑥 = 𝜌(𝐴(𝐺))𝑥, 
where 𝑥𝑣 = 𝑒(𝑣). 
 

Proof. 

By the equality condition of the Collatz–Wielandt theorem, 

equality occurs if and only if the chosen positive vector 𝑥is a 

Perron eigenvector of 𝐴(𝐺).  
 

Theorem 5.5 (Self-centered Regular Graphs) 

If 𝐺 is 𝑘-regular and self-centered, then 

𝜌(𝐴(𝐺)) = 𝑘, 
and Theorem 5.1 yields exact bounds in this case. 

 

Proof. 

In a self-centered graph, all vertices have the same 

eccentricity, so 𝑥 is a scalar multiple of the all-ones vector. 

Since 𝐺 is 𝑘-regular, 

𝐴(𝐺)𝟏 = 𝑘𝟏. 
Hence 𝜌(𝐴(𝐺)) = 𝑘.  
 

5.2 Eccentricity Based Bounds for the Signless Laplacian 

Matrix 

 

Theorem 5.6 (Collatz–Wielandt Bounds for 𝑸(𝑮)) 
 

Let 𝐺 be connected. Then 

min⁡
𝑣∈𝑉(𝐺)

𝑑(𝑣)𝑒(𝑣) +∑ 𝑒(𝑢)
𝑢∼𝑣

𝑒(𝑣)
≤ 𝜌(𝑄(𝐺))

≤ max⁡
𝑣∈𝑉(𝐺)

𝑑(𝑣)𝑒(𝑣) +∑ 𝑒(𝑢)
𝑢∼𝑣

𝑒(𝑣)
. 

 

Proof. 

The signless Laplacian matrix 𝑄(𝐺) is nonnegative and 

irreducible. Applying the Collatz–Wielandt inequalities with 

the eccentricity vector 𝑥 yields the stated bounds.  

 

Theorem 5.7 (Rayleigh Lower Bound for 𝑸(𝑮)) 
For any connected graph 𝐺, 

𝜌(𝑄(𝐺)) ≥
∑ 𝑑(𝑣)𝑒(𝑣

𝑣∈𝑉(𝐺)
)2 + 2∑ 𝑒(𝑢)𝑒(𝑣)

𝑢𝑣∈𝐸(𝐺)

∑ 𝑒(𝑣
𝑣∈𝑉(𝐺)

)2
. 

Proof. 

By the Rayleigh quotient, 

𝜌(𝑄) = max⁡
𝑦≠0

𝑦⊤𝑄𝑦

𝑦⊤𝑦
. 

Substituting 𝑦 = 𝑥 and expanding 𝑄 = 𝐷 + 𝐴 gives the 

result.  
 

Theorem 5.8 (Exactness for Regular Self-Centered 

Graphs) 

If 𝐺 is 𝑘-regular and self-centered, then 

𝜌(𝑄(𝐺)) = 2𝑘, 
and the bounds in Theorem 5.6 are exact. 

 

Proof. 

For a 𝑘-regular graph, 

𝑄(𝐺)𝟏 = 2𝑘𝟏. 
Since 𝑥 is proportional to 𝟏, equality follows from Theorem 

5.6.  
 

5.3 Corollaries and Structural Consequences 

 

Corollary 5.1. 

For any connected graph,  𝑒min = 𝑟(𝐺), 𝑒max = 𝐷(𝐺). 
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Corollary 5.2. 

The quantity min⁡
𝑣∈𝑉(𝐺)

∑ 𝑒(𝑢)𝑢∼𝑣

𝑒(𝑣)
  provides a computable lower 

bound for 𝜌(𝐴(𝐺)). 
 

Corollary 5.3. 

The quantity  min⁡
𝑣∈𝑉(𝐺)

𝑑(𝑣)𝑒(𝑣)+∑ 𝑒(𝑢)𝑢∼𝑣

𝑒(𝑣)
  provides a computable 

lower bound for 𝜌(𝑄(𝐺)). 
 

Proposition 5.4 (Cycles). For the cycle graph 𝐶𝑛, 

𝜌(𝐴(𝐶𝑛)) = 2, 𝜌(𝑄(𝐶𝑛)) = 4, 
and the eccentricity-based bounds are exact. 

 

Proposition 5.5 (Complete Graphs). 

For the complete graph 𝐾𝑛, 

𝜌(𝐴(𝐾𝑛)) = 𝑛 − 1, 𝜌(𝑄(𝐾𝑛)) = 2(𝑛 − 1), 
and the eccentricity-based bounds are exact. 

 

Proposition 5.6 (Complete Bipartite Graphs). 

For 𝐾𝑡,𝑡, 

𝜌(𝐴(𝐾𝑡,𝑡)) = 𝑡, 𝜌(𝑄(𝐾𝑡,𝑡)) = 2𝑡, 
and the eccentricity-based bounds are exact. 

 

Remark 5.7 (Structural Limitation). 

For graphs with highly nonuniform eccentricity distributions, 

such as star graphs, ratio-based bounds may be relatively 

loose. In such cases, Rayleigh type bounds provide sharper 

estimates, reflecting an inherent limitation of ratio-based 

eccentricity bounds. 

 

5.3 Discussion 

 

The results presented above establish vertex eccentricity as a 

rigorous and effective distance-sensitive parameter for 

bounding the spectral radius of classical graph matrices. The 

bounds are exact for broad families of graphs and offer useful 

insights for graphs with extended structures, while their 

limitations are explicitly identified. 

 

6. Conclusion and Future Scope 
 

This study examined the influence of vertex eccentricity on 

the spectral radius of classical graph matrices. By using 

eccentricity as a distance sensitive test vector within 

established variational frameworks, bounds were obtained for 

the spectral radii of the adjacency and signless Laplacian 

matrices of connected graphs. The approach preserves the 

standard matrix structures while incorporating global distance 

information, thereby linking distance-based graph parameters 

with classical spectral theory. 

 

The derived bounds are sharp for several well-known graph 

families, including complete graphs, cycles, and regular self-

centered graphs. For graphs with nonuniform eccentricity 

distributions, the results illustrate how global remoteness 

interacts with local connectivity to constrain spectral growth. 

The analysis also identifies the structural settings in which 

eccentricity-based bounds are exact and those in which 

Rayleigh type estimates provide more effective control. 

The methodology complements existing degree based 

spectral bounds and recent studies on eccentricity related 

matrix spectra. Unlike approaches that modify the underlying 

matrix structure, the framework presented here shows that 

eccentricity can be incorporated directly into classical 

spectral analysis through standard tools such as the Rayleigh 

quotient and Collatz–Wielandt inequalities. 

 

Several directions remain open for further investigation. The 

results may be extended to other matrix families, including 

the normalized Laplacian and Seidel type matrices. 

Eccentricity based spectral bounds for directed graphs, 

weighted graphs, and graphs with additional structural 

constraints such as forbidden subgraphs also warrant deeper 

investigation. In addition, combining eccentricity with other 

global invariants may lead to refined hybrid bounds capable 

of capturing more subtle structural features of large-scale 

networks. 
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