

Augmented Euler Sombor Index of Certain Chemical Drugs

Kulli V R

Professor, Department of Mathematics, Gulbarga University, Kalaburagi, India
Email: [vrkulli\[at\]gmail.com](mailto:vrkulli[at]gmail.com)

Abstract: In this paper, we introduce the augmented Euler Sombor and the reciprocal augmented Euler Sombor indices of a graph. We compute these newly defined augmented Euler Sombor indices for certain chemical structures.

Keywords: augmented Euler Sombor index, reciprocal augmented Euler Sombor index, structure

1. Introduction

The simple graphs which are finite, undirected, connected graphs without loops and multiple edges are considered. Let G be such a graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u .

The Euler Sombor index [1] or Nirmala alpha Gourava index [2] of a graph is defined as

$$EU(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2 + d_G(u)d_G(v)}.$$

Recently, some Sombor indices were studied in [3-10].

We introduce the augmented Euler Sombor index of a graph G as

$$AEU(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u)^2 + d_G(v)^2 + d_G(u)d_G(v)}{d_G(u) + d_G(v) - 2}}.$$

We define the reciprocal augmented Euler Sombor index of a graph G as

$$RAEU(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u)^2 + d_G(v)^2 + d_G(u)d_G(v)}}.$$

In this research, we compute the augmented Euler Sombor and reciprocal augmented Euler Sombor indices for certain chemical structures.

Results and Discussion: Chloroquine

Let G be the molecular structure of chloroquine. Clearly G has 21 vertices and 23 edges, see Figure 1.

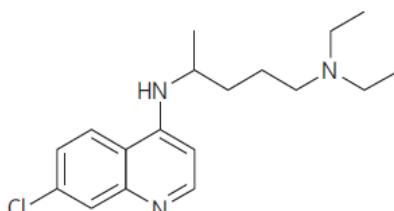


Figure 1

The edge set of G can be divided into five partitions based on the degree of end vertices of each edge as given in Table 1.

Table 1: Edge partition of G

$d_G(u), d_G(v) \setminus uv \in E(G)$	(1,2)	(1,3)	(2,2)	(2,3)	(3,3)
No. of edges	2	2	5	12	2

We calculate the augmented Euler Sombor and reciprocal augmented Euler Sombor indices of chloroquine as follows.

Theorem 1. Let G be the chemical structure of chloroquine. Then

$$AEU(G) = 2\sqrt{7} + 2\sqrt{\frac{13}{2}} + 5\sqrt{6} + 12\sqrt{\frac{19}{3}} + \sqrt{\frac{27}{4}}.$$

Proof: By using the definition and edge partition of G , we deduce

$$\begin{aligned} AEU(G) &= \sum_{uv \in E(G)} \sqrt{\frac{d_G(u)^2 + d_G(v)^2 + d_G(u)d_G(v)}{d_G(u) + d_G(v) - 2}} \\ &= 2\sqrt{\frac{1^2 + 2^2 + 1 \times 2}{1+2-2}} + 2\sqrt{\frac{1^2 + 3^2 + 1 \times 3}{1+3-2}} + 5\sqrt{\frac{2^2 + 2^2 + 2 \times 2}{2+2-2}} \\ &\quad + 12\sqrt{\frac{2^2 + 3^2 + 2 \times 3}{2+3-2}} + 2\sqrt{\frac{3^2 + 3^2 + 3 \times 3}{3+3-2}} \\ &= 2\sqrt{7} + 2\sqrt{\frac{13}{2}} + 5\sqrt{6} + 12\sqrt{\frac{19}{3}} + \sqrt{\frac{27}{4}}. \end{aligned}$$

Theorem 2. Let G be the chemical structure of chloroquine. Then

$$RAEU(G) = 2\sqrt{\frac{1}{7}} + 2\sqrt{\frac{2}{13}} + 5\sqrt{\frac{1}{6}} + 12\sqrt{\frac{3}{19}} + 2\sqrt{\frac{4}{27}}.$$

Proof: By using the definition and edge partition of G , we deduce

$$\begin{aligned} RAEU(G) &= \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u)^2 + d_G(v)^2 + d_G(u)d_G(v)}} \\ &= 2\sqrt{\frac{1+2-2}{1^2+2^2+1\times 2}} + 2\sqrt{\frac{1+3-2}{1^2+3^2+1\times 3}} + 5\sqrt{\frac{2+2-2}{2^2+2^2+2\times 2}} \end{aligned}$$

$$+12\sqrt{\frac{2+3-2}{2^2+3^2+2\times 3}}+2\sqrt{\frac{3+3-2}{3^2+3^2+3\times 3}} \\ =2\sqrt{\frac{1}{7}}+2\sqrt{\frac{2}{13}}+5\sqrt{\frac{1}{6}}+12\sqrt{\frac{3}{19}}+2\sqrt{\frac{4}{27}}.$$

Results and Discussion: Hydroxychloroquine

Let H be the molecular structure of hydroxychloroquine. Clearly H has 22 vertices and 24 edges, see Figure 2.

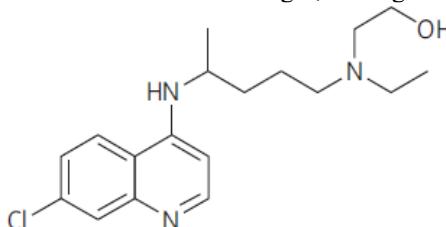


Figure 2

In H , the edge set of $E(H)$ can be divided into five partitions based on the degree of end vertices of each edge as given in Table 2:

Table 2: Edge partition of H

$d_H(u), d_H(v) \setminus uv \in E(H)$	(1,2)	(1,3)	(2,2)	(2,3)	(3,3)
No. of edges	2	2	6	12	2

We calculate the augmented Euler Sombor and reciprocal augmented Euler Sombor indices of hydroxychloroquine as follows.

Theorem 3. Let H be the chemical structure of hydroxychloroquine. Then

$$AEU(H) = 2\sqrt{7} + 2\sqrt{\frac{13}{2}} + 6\sqrt{6} + 12\sqrt{\frac{19}{3}} + \sqrt{\frac{27}{4}}.$$

Proof: By using the definition and edge partition of H , we deduce

$$AEU(H) = \sum_{uv \in E(H)} \sqrt{\frac{d_H(u)^2 + d_H(v)^2 + d_H(u)d_H(v)}{d_H(u) + d_H(v) - 2}} \\ = 2\sqrt{\frac{1^2 + 2^2 + 1 \times 2}{1 + 2 - 2}} + 2\sqrt{\frac{1^2 + 3^2 + 1 \times 3}{1 + 3 - 2}} + 6\sqrt{\frac{2^2 + 2^2 + 2 \times 2}{2 + 2 - 2}} \\ + 12\sqrt{\frac{2^2 + 3^2 + 2 \times 3}{2 + 3 - 2}} + 2\sqrt{\frac{3^2 + 3^2 + 3 \times 3}{3 + 3 - 2}} \\ = 2\sqrt{7} + 2\sqrt{\frac{13}{2}} + 6\sqrt{6} + 12\sqrt{\frac{19}{3}} + \sqrt{\frac{27}{4}}.$$

Theorem 4. Let H be the chemical structure of chloroquine. Then

$$RAEU(H) = 2\sqrt{\frac{1}{7}} + 2\sqrt{\frac{2}{13}} + 6\sqrt{\frac{1}{6}} + 12\sqrt{\frac{3}{19}} + 2\sqrt{\frac{4}{27}}.$$

Proof: By using the definition and edge partition of H , we deduce

$$RAEU(H) = \sum_{uv \in E(H)} \sqrt{\frac{d_H(u) + d_H(v) - 2}{d_H(u)^2 + d_H(v)^2 + d_H(u)d_H(v)}} \\ = 2\sqrt{\frac{1 + 2 - 2}{1^2 + 2^2 + 1 \times 2}} + 2\sqrt{\frac{1 + 3 - 2}{1^2 + 3^2 + 1 \times 3}} + 6\sqrt{\frac{2 + 2 - 2}{2^2 + 2^2 + 2 \times 2}} \\ + 12\sqrt{\frac{2 + 3 - 2}{2^2 + 3^2 + 2 \times 3}} + 2\sqrt{\frac{3 + 3 - 2}{3^2 + 3^2 + 3 \times 3}} \\ = 2\sqrt{\frac{1}{7}} + 2\sqrt{\frac{2}{13}} + 6\sqrt{\frac{1}{6}} + 12\sqrt{\frac{3}{19}} + 2\sqrt{\frac{4}{27}}.$$

Results and Discussion: Remdesivir

Let R be the molecular structure of remdesivir. Clearly R has 41 vertices and 44 edges, see Figure 3.

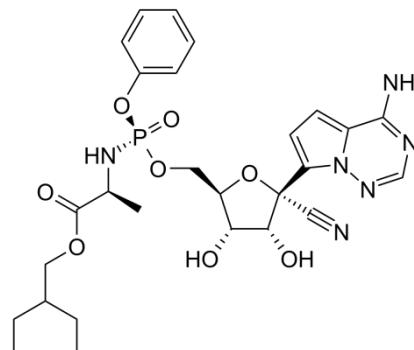


Figure 3

In R , the edge set $E(R)$ can be divided into eight partitions based on the degree of end vertices of each edge as given in Table 3:

Table 3: Edge partition of R

$d_G(u), d_G(v) \setminus uv \in E(R)$	(1, 2)	(1, 3)	(1, 4)	(2, 2)	(2, 3)	(2, 4)	(3, 3)	(3, 4)
No. of edges	2	5	2	9	14	4	6	2

We calculate the augmented Euler Sombor and reciprocal augmented Euler Sombor indices of remdesivir as follows.

Theorem 5. Let R be the chemical structure of remdesivir. Then

$$AEU(R) = 8\sqrt{7} + 5\sqrt{\frac{13}{2}} + 9\sqrt{6} + 14\sqrt{\frac{19}{3}} + 6\sqrt{\frac{27}{4}} + 2\sqrt{\frac{37}{5}}.$$

Proof: By using the definitions and edge partition of R , we deduce

$$AEU(R) = \sum_{uv \in E(R)} \sqrt{\frac{d_R(u)^2 + d_R(v)^2 + d_R(u)d_R(v)}{d_R(u) + d_R(v) - 2}} \\ = 2\sqrt{\frac{1^2 + 2^2 + 1 \times 2}{1 + 2 - 2}} + 5\sqrt{\frac{1^2 + 3^2 + 1 \times 3}{1 + 3 - 2}} + 2\sqrt{\frac{1^2 + 4^2 + 1 \times 4}{1 + 4 - 2}} \\ + 9\sqrt{\frac{2^2 + 2^2 + 2 \times 2}{2 + 2 - 2}} + 14\sqrt{\frac{2^2 + 3^2 + 2 \times 3}{2 + 3 - 2}} + 4\sqrt{\frac{2^2 + 4^2 + 2 \times 4}{2 + 4 - 2}} \\ + 6\sqrt{\frac{3^2 + 3^2 + 3 \times 3}{3 + 3 - 2}} + 2\sqrt{\frac{3^2 + 4^2 + 3 \times 4}{3 + 4 - 2}}$$

$$= 8\sqrt{7} + 5\sqrt{\frac{13}{2}} + 9\sqrt{6} + 14\sqrt{\frac{19}{3}} + 6\sqrt{\frac{27}{4}} + 2\sqrt{\frac{37}{5}}.$$

Theorem 6. Let R be the chemical structure of remdesivir. Then

$$RAEU(R) = 8\sqrt{\frac{1}{7}} + 5\sqrt{\frac{2}{13}} + 9\sqrt{\frac{1}{6}} + 14\sqrt{\frac{3}{19}} + 6\sqrt{\frac{4}{27}} + 2\sqrt{\frac{5}{37}}.$$

Proof: By using the definitions and edge partition of R , we deduce

$$\begin{aligned} RAEU(R) &= \sum_{uv \in E(G)} \sqrt{\frac{d_R(u) + d_R(v) - 2}{d_R(u)^2 + d_R(v)^2 + d_R(u)d_R(v)}} \\ &= 2\sqrt{\frac{1+2-2}{1^2+2^2+1\times 2}} + 5\sqrt{\frac{1+3-2}{1^2+3^2+1\times 3}} + 2\sqrt{\frac{1+4-2}{1^2+4^2+1\times 4}} \\ &+ 9\sqrt{\frac{2+2-2}{2^2+2^2+2\times 2}} + 14\sqrt{\frac{2+3-2}{2^2+3^2+2\times 3}} + 4\sqrt{\frac{2+4-2}{2^2+4^2+2\times 4}} \\ &+ 6\sqrt{\frac{3+3-2}{3^2+3^2+3\times 3}} + 2\sqrt{\frac{3+4-2}{3^2+4^2+3\times 4}} \\ &= 8\sqrt{\frac{1}{7}} + 5\sqrt{\frac{2}{13}} + 9\sqrt{\frac{1}{6}} + 14\sqrt{\frac{3}{19}} + 6\sqrt{\frac{4}{27}} + 2\sqrt{\frac{5}{37}}. \end{aligned}$$

2. Conclusion

In this research, the augmented Euler Sombor and reciprocal augmented Euler Sombor indices of a graph are defined. Furthermore, the augmented Euler Sombor and reciprocal augmented Euler Sombor indices for certain chemical structures are determined.

References

- [1] I. Gutman, Relating Sombor and Euler indices, *Vojnotehnickiglasn*, 72(1) (2024).
- [2] V. R. Kulli, Nirmala alpha Gourava and modified Nirmala alpha Gourava indices of certain dendrimers, *International Journal of Mathematics and Computer Research*, 12(5) (2024) 4256-4263.
- [3] I. Gutman, B. Furtula and M. S. Oz, Geometric approach to vertex degree based topological indices-Elliptic Sombor index theory and application, *International Journal of Quantum Chemistry*, 124(2) (2024) e27151.
- [4] V. R. Kulli, Temperature elliptic Sombor and modified temperature elliptic Sombor indices, *International Journal of Mathematics and Computer Research*, 13(3) (2025) 4906-4910.
- [5] V. R. Kulli, Neighborhood elliptic Sombor and modified neighborhood elliptic Sombor indices of certain nanostructures, *International Journal of Mathematics and its Applications*, 13(1) (2025) 27-36.
- [6] V. R. Kulli, G. O. Kizilirmak and Z. B. Pendik, (2025). Leap elliptic Sombor indices of some chemical drugs, *International Journal of Mathematical Archive*, 16(4) (2025) 1-8.
- [7] V. R. Kulli, Downhill Sombor modified downhill Sombor indices of graphs, *Annals of Pure and Applied Mathematics*, 31(2) (2025) 107-112.

- [8] V. R. Kulli, Sombor uphill index of graphs, *International Journal of Mathematics and Statistics Invention*, 13(3) (2025) 42-51.
- [9] D. T. Rajathagiri, (2021) Enhanced mathematical models for the Sombor index: Reduced and co-Sombor index perspectives, *Data Anal. Artif. Intell.* 1(2) (2021) 215-228.
- [10] V. R. Kulli, Computation of modified Banhatti Sombor and modified diminished Sombor indices of certain chemical drugs, *International Journal of Science and Research*, 15(1) (2026) 191-194.