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Abstract: Clinical decision-making increasingly relies on predictive models, yet these tools often lack adequate explanation
mechanisms and are thus ineligible for real-world adoption. Restrictions on model temporality, population coverage, and data privacy
inhibit their use during training; only post-training use of fixed, less sensitive information remains feasible. To counsel such models, the
adoption of Explainable Al (XAI) techniques emerges as the leading recourse and has already generated considerable interest. Here, a
systematic overview of XAl techniques for the tabular datasets characteristic of healthcare predictive analytics is provided. Because these
datasets differ significantly from other data modalities in structure, content, and intended use, XAl approaches developed for computer
vision analyses, natural language processing, and other domains are not well suited to healthcare needs. The inclusion of past patient
states, health trajectory histories, and other types of temporal data further differentiates healthcare from typical settings such as bank
fraud detection. Formulating an appropriate, comprehensive classification of XAI methods for predictive analytics in general—and

healthcare in particular-therefore constitutes a central challenge.
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1. Introduction

Beyond the establishment of a technique classification, the
direct relevance of XAI to healthcare predictive analytics
merits examination. These models function primarily as
clinical decision-support tools—assisting, supplementing,
and enhancing rather than supplanting the decision-making
authority and responsibilities of physicians and other
clinicians- yet the predicted outcomes retain considerable
interpretative importance [1]. An exploration of further
healthcare-specific driving factors is accordingly warranted.

2. Background and Motivation

Healthcare predictive analytics relies on machine learning
(ML) to extract patient insights from clinical data. The
introduction of ML-based models significantly improves the
predictive power of risk stratification tools, addressing
critical problems such as timely patient transfer to an
intensive care unit (ICU) or the onset of acute kidney injury
for chronic kidney disease patients. Such systems can inform
high-stakes decisions across various clinical workflows, and
explainability can help address black-box concerns
associated with many ML-based models. Despite an
increasing number of explainable Al (XAI) tools and models
available for healthcare, a comprehensive overview of these
methods has not yet been conducted. Although extensive
work presents generic XAl model surveys, models with

3. Methodological Framework

Healthcare applications of Artificial Intelligence (Al),
notably predictive analytics, usher in new possibilities for
clinical decision support. Such Al-driven systems,
however, often lack sufficient transparency. The
consequences of this opacity can be serious—
misinterpretation of the underlying model’s operation or of
critical input-output relationships, for example, and
even lead to nonadopting or abandonment in clinical
practice [4]. The opportunity remains for a comprehensive,
objective, evidence-based comparative analysis of diverse
Explainable Al (XAI) techniques for healthcare predictive
analytics. The materials considered in this inquiry could
contribute significantly to an analysis of this nature.
Stakeholders require insight into health-care predictive-
analytic models and their operation; into the importance that
the predictive model ascribes to individual patients’
features; into the temporal progression of the factors that
shape the predictions; into the degree of trust warranted in the
predictions; and into the science, value, and plausibility of
the predictions that address complex disease-process
modelling [5]. These goals not only motivate but also
delineate the remit of a Comparative Study: the
investigation accordingly concentrates on Explainable
Al techniques that (1) enable stakeholders to monitor
and influence the ongoing evolution of a patient profile; (2)
disclose both the patient’s acute and chronic predictive

different availability scopes, implementation capabilities, ~ features; (3) permit exploration of predictive feature
and input data specifications are used in healthcare  patterns via cohort analysis directed at collective-
predictive analytics. It is essential to identify, categorize, and ~ distribution —or atypicality ~characterization; and (4)
compare these methods based on the corresponding model ~ accommodate sequences of patient features, —thereby
design, physiological knowledge requirements, and  informing the indicator of the prediction.
availability for downstream decision support [2][3]. By
addressing these components, a comprehensive overview of
XAI technologies will significantly benefit the design and
development of predictive analytics studies for healthcare
machine learning problems.
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Figure 1: Healthcare Predictive Analytics with XAl Pipeline

[lustrates the end-to-end workflow from healthcare data
sources to predictive models and explainable Al outputs
used for clinical decision support.

Comparative study forms part of a broader body of work that
examines the evolving body of knowledge surrounding
Explainable Al techniques tailored for healthcare predictive-
analytics applications.

4. Taxonomy of Explainable Al Techniques

Explainable Al is significant in predictive analytics across
various areas. In clinical prediction models, it is particularly
relevant to explainability of the model outputs, enabling
stakeholders to discern the rationale behind decisions made
by predictive algorithms. In healthcare, predictive analytics
models are becoming increasingly widespread, leading to a
growing need to explain the predictions made by these
models [6]. The emerging requirement for explainability in
prediction models has motivated the provision of a
comprehensive mapping of the explainable Al landscape
within the healthcare predictive analytics domain.

Tools and techniques for achieving explainability in a
variety of predictive analytical models have proliferated in
the last few years. A detailed overview of various explainable
Al techniques applicable to the healthcare predictive
analytics setting is presented, along with a comprehensive
exposition of their practical applicability in real-world use
cases. The overview encompasses intrinsic classification
models, post-hoc methods, and approaches focused on
interpretable feature engineering [7].

Interpretable Train

Interpretable  ——=3'  Explain
architecture = model 4
Bk b Train Black-box Bosthoc /' p oy
architecture =~ model Methods
Figure 2: Taxonomy of Explainable Al Techniques in
Healthcare

Presents a hierarchical classification of XAI methods
including intrinsic models, post-hoc explainability, and

interpretable feature engineering.
4.1. Intrinsic Explainability Models

Intrinsic explanation models directly express reasoning
through transparent architectures. Intelligent systems were
originally designed, tested, and deployed in the era of
“explainable Al,” where post hoc explanation methods were
not available. Rationale systems, for instance, originally
sought to emulate jurists by advising about consequences
and consequences’ justification using expert-system-like
rules. The Bodel-Resnik and WHO expert systems produced
similar documents of reasoning in natural language. The
transparent architectures of such systems, together with the
inherent character of the rationales conveyed about the
examples, made their reasoning readily interpretable through
formalized argumentation.

Conversely, such reasoning provides little help in accessible
format and raises the challenge of conformity to continental
health-system data auditing regulations [8]. The health-
sector implications of serious attention to the original
imperative of transparency critically restrict the classes of
machine-learning model accessible for consideration as
candidates for transparent explainability in practical
healthcare predictive-analytics applications [9].

Black Tox Al

Explainable Al
Figure 3: Intrinsic vs Post-hoc Explainability Models

Compare transparent models with black-box models
augmented by post-hoc explanation techniques, highlighting
trade-offs.

4.2. Post-hoc Explainability Methods

Post-hoc explainability methods provide insight into
prediction mechanisms after model training, endorsing
transparency and interpretability. They yield explanations
without altering original models [10]. Subcategories include
surrogate approaches, feature attribution techniques,
example-based explanations, and rule-based formulations
[11]. Surrogate explanations replicate predictions using
interpretable models like linear regressions or decision trees,
illuminating key features of the complex model. Feature-
attribution methods identify and score significant predictors
for outcomes, revealing influential covariates retained by no
established methods. Instance-level or global procedures
target explanations for single predictions or aggregated
insights across the feature spectrum. Perturbation methods
modify input samples or outcomes to craft attributions.
Exemplars showcase training data like the queried instance.
Finally, rule-based models express explanations in
conditional statement formats, parallel solicited human
reasoning.
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4.3. Interpretable Feature Engineering

Many machine learning models exploit the growing
availability of health data to assist healthcare professionals
in making clinical decisions. A way to improve the
transparency of decision-making is to use domain-oriented
interpretable feature engineering, namely engineering the
features characterizing the domain and the associated
attributes. Feature engineering helps clarify the relevant
parameters influencing the model decision and gives a
rationale for the statistics used to describe them. Interpretable
feature engineering has been applied to numerous problems,
such as the identification of organ and other anomalies in
medical images [12] or the prediction of adverse drug
reactions from diverse data sources [13]. Model-agnostic
saliency maps that leverage such features and indicate the
region of interest involved in the decision have also been
developed. When multiple parameters describing the same
process are available, establishing a transformation pipeline
that creates a single interpretable representation can improve
model readability without jeopardizing model performance.
Structured data transforms into an aggregated, domain-
oriented version that highlights the most salient patients.

Two feature engineering strategies might be pursued. First,
transferring feature engineering knowledge from scientific
literature to the dataset represents a significant shortcut, as a
wealth of wuseful domain-knowledge-oriented feature
descriptions already exists. Second, following the first idea,
the extensive literature on model-agnostic feature
importance techniques widely discussed in interpretable
machine learning can help specify which parameters and
patient-level statistics deserve assembling, thus providing an
evaluative extension of the general reasoning.

Predictive

5. Explainability in Healthcare

Analytics

Effective healthcare predictive analytics can radically
enhance clinical decision support and health system
management. Underpinning this promise is the accelerated
development of powerful machine learning models capable
of modelling complex structured and unstructured data.
However, as accuracy improves, opacity deepens, which in
turn raises an urgent question: How can stakeholders
understand model predictions and their motivating factors?

Explainability has emerged as a key enabler of deployment,
acceptance, and regulatory compliance for machine learning
models in numerous sectors. Regulatory considerations
stimulate interest from academia and industry alike, although
the characteristics of the healthcare domain introduce fresh
complexities. These complexities are further amplified by the
burgeoning Internet-of-Medical-Things ecosystem, which
continues to spawn sharp increases in both data volume and
variety across all domains. The widening margins between
what can be predicted and what can be explained have made
suitable, effective explanatory techniques determine an
urgent practical need for researchers, innovators, integrators,
and deployers of healthcare predictive analytics systems.

Six foundational observations guide the selection of suitable
explanatory approaches. Addressing real-world clinical case

studies across multiple domain diagnostic imaging,
electronic health records, genomic and omics data, and
population and public health—the studies highlight models,
inputs, outputs, explanations, and remarks. Automated
clinical risk prediction models are being embraced in diverse
healthcare settings

The growth of healthcare predictive analytics systems has
been prodigious. Already, such systems are widely deployed,
or are being actively piloted, in healthcare settings spanning
multiple continents. Consequently, prospective deployers-
whether academic, corporate, government, or non-profit-
require a comparative evaluation of how well various
explanation techniques match the specific needs of
healthcare analytics. [14]

5.1. Clinical Trust and Usability

With decision support systems gaining prevalence in
complex healthcare settings, organizations are left grappling
with how these systems fit into existing workflows, how
consistent the outcomes are with current practices, and,
additionally, how to adhere to regulatory requirements.
Predictive models receive input from a variety of sources
such as diagnoses, lab results, and many more. Therefore, an
appropriate interface for a model is consistent with its input
structure, allowing for summarization of the output with
respect to how each input source contributes. IBM Watson
Health has developed a platform called Watson Health
Cloud designed to handle interactions between these systems
and human operators across a variety of platforms.
Explanations enable the use of predictive models in a wider
array of clinical situations. Knowledge of why guidelines
exist aids in refining the model without extensive retraining;
for example, a model may determine the importance of
blood pressure from historical data yet clinical guidelines
indicate the need to aim to keep such measure stable in
specific chronic conditions, pinpointing an area for
improvement. In situations such as these, explicit knowledge
incorporated in the model helps the development process by
streamlining the initial understanding of what knowledge the
model should sift through. As healthcare systems gain
exposure to synthetic data generated from real-world data,
there is an opportunity to model the knowledge and develop
machine learning systems that can learn high-value input
features or intervene at a significantly higher degree than
previously achievable.

5.2. Regulatory and Ethical Considerations

Human decision-making processes are subject to dependence
on accountability and compliance with standards and
regulations. Such human dependencies are further
complicated when trusting Al-driven tools. For example,
healthcare practitioners need to comply with the Health
Insurance Portability and Accountability Act (HIPAA).
Compliance with such legislative, guidance, and regulatory
frameworks is vital to adopting predictive intelligence [15].
Close inspections on accountability consider what happens
when predictive healthcare models do not follow the
intended course. Upon completing an analysis on predictive
healthcare monitoring, it should be clear whether a model
learns, with justification, why it is necessary to detect
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hypoxia in ventilated patients, assisting compliance with the
safety standard ONC-0509 (OSAC, 2022). Consideration on
fairness entails whether a fair process and treatment are
ensured.

5.3. Data Privacy and Security Implications

Given the risk of re-identification, healthcare data are
protected by stringent regulations; exposures can result in
heavy penalties and loss of public trust [16]. Most legislative
and ethical frameworks advocate patient de-identification as
the first precaution. To further safeguard data privacy, other
methods are employed depending on context and sensitivity,
especially when sharing or storing data beyond local and
minimalistic usage [17]. Techniques include k-anonymity
and suppression as well as differential privacy; each requires
assess-of data applicability under specific risk-profile use
cases. Availability of datasets for algorithmic transparency
represents another challenge. De-identification often
enforces intrinsic limitations. Control and accountability for
data shared outside of the ecosystem is another challenge that
can hinder sharing strategy [18][19].

6. Comparative Evaluation Criteria

Researchers have applied various criteria to assess the
explanatory power of artificial intelligence (AI) systems.
This study employs a set of six standardized evaluation
criteria—fidelity,  plausibility,  stability,  robustness,
efficiency, and generalizability—to quantitatively measure
the explanatory capabilities of different explanatory
techniques. Fidelity quantifies how faithfully an explanation
reflects the underlying machine learning (ML) model’s
decision-making process. Plausibility assesses whether an
explanation aligns with domain knowledge and the user’s
mental model. Stability evaluates the degree to which
explanations remain consistent when the input data or the
underlying model undergoes small perturbations. Robustness
denotes the stability of an explanation in response to more
significant changes to the input data, such as adversarial
examples. Efficiency considers the computational resources
required to generate the explanation, factoring in time,
memory, and scalability. Finally, generalizability assesses
the applicability of the explanation method across diverse
datasets, settings, and populations, including longitudinal
data [20]. Fidelity and plausibility offer direct and indirect,
respectively, evaluations of the agreement between model
behavior and explanation. Fidelity metrics compare
explanations generated by each technique against a set of
ground-truth  explanations specific to the model—
determined, for instance, by analyzing the model’s
parameters or directly interrogating it, if possible—while
attributions provided by domain experts serve to assess
plausibility. Fidelity and plausibility are measured in relation
to clinicians’ mental models for the EHR and genomics
domains, and in terms of alignment with expert knowledge
regarding risk factors for critical care mortality [2].

Stability and robustness provide complementary assessments
of the sensitivity of the explanation method to variations in
model inputs and parameters. Stability is quantified by
measuring how explanation outputs change in response to
small perturbations of the input data or the model itself.

Robustness examines the reliance of the explanation on more
extensive or nonlinear alterations to the input. Both criteria
are evaluated according to availability of expert-annotated
ground-truth  explanations, guidance from domain
knowledge, and through clinician feedback on the plausibility
of the explanations obtained with each technique.
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Figure 4: Explainability Evaluation Criteria Framework

Visual framework showing evaluation metrics such as
fidelity, plausibility, stability, robustness, efficiency, and
generalizability.

6.1. Fidelity and Plausibility

The concept of explainability refers to understanding the
rationale behind predictions made by a machine learning
model. A model explanation is said to be of high fidelity if
the explanation closely aligns with the actual decision-
making process that underlies the model predictions [21].
Evaluating fidelity, however, is challenging. Metrics have
been proposed that assess the degree of agreement between
model predictions and representational approximations of
the explanation (as a surrogate model), as well as the
correctness of the explanation with respect to explanations
produced by a simpler but highly interpretable surrogate
model.

Explanations that are plausible should correspond to human
beliefs about the relationship between input features and
predictions. Sufficient background knowledge is needed to
gauge the plausibility of an explanation. Evaluating
plausibility is particularly relevant for methods that attribute
individual feature importance to a wide range of data types.
A suitable framework for explicating the relationship
between explanations and plausibility is grounded within
knowledge representation and reasoning [22].

6.2. Stability and Robustness

An explanation of a prediction in a machine learning model
describes the reasons for that prediction. Explanation
consistency refers to the stability of explanations that are
generated for inputs of a machine learning model when the
model remains unchanged and when the input undergoes
small perturbations. Robustness is related to the impact of
small changes in inputs on model predictions. Explanations
are considered robust if they remain consistent under small
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noise perturbations of the inputs. The challenge is that
explanations for different inputs of the same predictive
model may vary significantly. Even small changes that do
not alter the prediction can lead to different explanatory
outputs.

Stability and robustness of explanation techniques have been
examined employing datasets from predictive models trained
on health-care data. When a predictive model shows
variation in its output for the same data point, the resulting
explanation can vary significantly. Accordingly, to be
consistent with the literature, stability tests of the
explanations returned by prediction models, rather than
stability tests of the output of the models themselves, have
been applied. A sample of perturbations has been applied to
input variables, and the count of different features among
features identified as influential has been recorded. This
procedure has been repeated for multiple randomly selected
input patients. [23]

6.3. Computational Efficiency

Computational efficiency encompasses the time, memory,
and scalability requirements of explainable artificial
intelligence techniques. The first two dimensions are
evaluated using a desktop machine equipped with 64
gigabytes of memory and an Intel Xeon W-2123 CPU,
running Ubuntu 20.04.4 LTS and Python 3.8.10. The third
dimension considers a server with twenty-four cores and one
terabyte of RAM, hosted in the Amazon Web Services
cloud.

6.4. Generalizability Across Datasets

Various aspects of generalizability across datasets and
settings are important when evaluating the properties of the
explainable Al (XAI) techniques. First, understanding the
requirements of the target domain, specific subdomains,
relevant datasets, and applications facilitates an easier
investigation of generalizability. The specific setting
involving electronic health records (EHRs), for example,
restricts the number of targeted datasets to those that are
tabular, longitudinally annotated, sufficiently large, and
publicly available; these constraints influence the choice of
generalizability. Second, generalizability can be assessed in
a longitudinal fashion, where XAI techniques perform
consistently over the same cohort population as it evolves
over time. Cardiovascular health is one of the largest
contributors to mortality, and drug overdose is at the
forefront of various preventable causes of death worldwide,
making it an epidemiological top-predictor [24].

Healthcare

Empirical Across

Domains

Comparisons

Predictive analytics can provide actionable information from
large healthcare datasets. Founded in Machine Learning
(ML), the techniques commonly implemented for predictive
tasks lend themselves successfully to models able to
automatically identify correlations and complex patterns
connecting historic data to the future without a priori
consideration of the underlying phenomena. Yet, although
ML models such as neural networks occasionally achieve

state-of-the-art results at the clinical task level, their intrinsic
complexity prevents a precise understanding of how input
observations influence the prediction decision [25]. For large
healthcare systems seeking to operationalize predictive
analytics in clinical workflows or for many research projects
wherein the final goal is to achieve new insights into
biological phenomena, model understanding and explanation
are essential. In the absence of a profound understanding of
the relationship between input observations and predictions,
it is challenging to validate the model’s ability to provide
clinically relevant results, raise awareness of clinically
relevant observation patterns, and propose, test, or validate
novel hypotheses. Mathematical and statistical models
previously implemented within the field, typically with hard
coded biologically inspired underlying mechanisms or
simplified mathematical representations of biological
phenomena, frequently do not scale to the complexity of the
data available today.

Healthcare institutions generate and store systematized data
incorporating clinical, laboratory, imaging, biosensor,
administrative, and genomic information available about a
patient, supporting the ability to deliver predictive
interventions on a broad range of clinical tasks that would
significantly assist healthcare personnel. Formulating a
multi-centric systematic review, the data-driven approach
employed maps the implementation of Al-, ML-, and ML-
based techniques attempting to exploit the diverse data
generated across the healthcare life cycle for predictive
analytics tasks relevant to continually occurring operational
challenges at many healthcare institutions. Electronic Health
Records (EHRs) have become a major data-repository source
for accurately recording a multitude of observations across
the entire healthcare life cycle continuum. Such records
contain at least some systematic information on the precise
stages describing many chronic and/or communicable
diseases, laboratory examinations, radiological
examinations, major drug prescriptions, imaging-report
narration, and the outcome of Continuous Positive Airway
Pressure (CPAP) therapy. Data Capture Point of Care
(DCPOC) consists of various systems capable of accurately
recording further observations throughout the healthcare life
cycle, such as biosensors monitoring blood oxygen
saturation, heart rate, temperature, and blood pressure, daily
body weight recordings and other anthropometric
observation measures.

6.5. Diagnostic Imaging

Interpretable machine learning models and explainable
artificial intelligence (XAI) methods are of considerable
importance when applying predictive models to health care
data for understanding, acceptance, and reliable use of the
predictions. In the domain of diagnostic imaging, several
explanations based on images have been proposed for
convolutional neural networks and related deep learning
models but have not been evaluated in detail in terms of how
they are used, whether they are considered useful, and how
explainable Al can be integrated into these workflows [26].
The graphical nature of the predictions lends itself to two
broad types of explanations: image- and region-based
explanations. Image-based explanations describe what the
model “sees” in the image—for example, specific patterns,
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structures, or textures—while region-based explanations
describe which regions of the image contribute to the
model’s prediction. Evaluating image-based explanation
methods is complex because the intended content of images
is not explicitly defined and human perception is variable;
another factor is that image-based explanations do not
support  straightforward integration  into  existing
workflows. Region-based explanations have therefore
received more attention in the literature; in addition, explicit
previous studies have analyzed clinician feedback on region-
based explanations, providing an opportunity to assess
overall utility.

6.6. Electronic Health Records

The Electronic Health Record (EHR) is one of the most
promising sources of data for Artificial Intelligence (AI)
models to assist in health-care predictive analytics. EHRs are
used to store different types of clinical data over time, and
records collected at different time intervals describe the
same patient. Feature-specific tabular attributions capture the
importance of each feature to the model output and can be
applied to temporal-dependency models to create a clearer
understanding of how different events impact patient health
over time. In addition to tabular data, EHRs may include
free-text notes that describe patient medical history,
examination, and treatment. Despite the usefulness of these
records for health-care prediction, many models based on
them remain in black boxes. EHR data consists of
information collected over time from homogeneous patient
encounters processed at variable time intervals, including the
timing of each event relative to the target loss. Many EHR
prediction problems require a multidisciplinary approach.
The variables underlying these EHR records are not
universal, and although certain norms apply to different
jurisdictions, identifiable human health information must
remain confidential, leading to residual uncertainty when
sharing information [26] [27].
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Figure 5: Temporal Explainability in EHR-Based
Predictions

6.7. Genomic and Omics Data

Healthcare  systems  increasingly = generate  high-
dimensional, heterogeneous data. Genomic data requires
particular  attention given their intricate biological
processes and overwhelming dimensionality. While many

techniques focus on single-omic data, genome,
transcriptome, proteome, and metabolome data are
increasingly modeled jointly. Integration enables

biomarker identification and omics-level biological pathway
discovery [28]. Genomic data augment electronic health
records (EHR) with detailed individual longitudinal health
information, provide major comorbidity tracking for chronic
diseases, and support diagnostics and treatment [29].
Predictive models utilize genomic data in healthcare
applications, yet end-users struggle to interpret feature
significance. Popular genomic sequencing technologies
deliver data at fast-growing rates; individuals can possess
millions of genomic variation positions that modify human
genes.

6.8. Population Health and Public Health Surveillance

Access to health services and their quality are key social
determinants of the health of the population and their
monitoring is crucial to ensure equity and therefore improve
population health. Different measures exist to monitor access
to health services. Health services access forecasts based on
these measures enable population health characterization and
the identification of health services access determinants.
Factors on access to health services are not equally important
in different demographic groups. Therefore, the
characterization of population health and health services
access level is done on cohorts of the population according to
geographical, socio-demographic, or behavioral attributes.
Explainability is a main issue when the models providing
forecasts account only for a limited number of demographic
attributes. Explainability is also a major challenge when
health services’ access predictions are required for new
geographies that were not seen during the training phase.
Public health frequently investigates geographic health
events or population health in specific health or socio-
demographic cohorts. Explanations generated by models
used to forecast access to health services inform the
population health concern whether population health
experience is also shared or not by distinct cohorts of the
population and whether the situation is homogeneous or
heterogeneous even within specific health, behavior, and
socio-demographic cohorts. The explanations given near
votes predicting access to health services for new geography
complement the understanding of population health
characterization and help to determine whether preventive
measures or health policies taken in a provided geographical
area are likely to benefit other areas. The ability to
characterize population health and population disease
evolution during epidemic phases from mobility and
historical summaries precludes the requirement to aggregate
population census information and hence precludes the need-
to-know precise geography coordinates [30][31]. In many
locations, only limited information extractable from mobility
or environmental data is available therefore characterizing
population health evolution during early phase of the
epidemics and consequently detecting population disease
propagation without partial knowledge of the physical
population resources still possible. The forecast models also
deliver clear information about where public organizations
should focus their efforts for population disease
interventions  monitoring.  Public  health  frequently
investigates geographic health events or population health in
specific health or socio-demographic cohorts. Explanations
generated by models used to access health services also
enable us to identify whether the activity pattern of cohorts
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defined by specific attributes is impacted by the same factors
or not thereby providing insight into the factors that motivate
each population subset. Predictive frameworks creating
population health and access to health services maps based
on location-history-track records are built with geolocative
analytic data since public health frequently concentrates on
address-based mobility flow within the urban territory.
Monitoring health is essential to maintain socio-economic
activity. Predictive models creating maps illustrating health
state and access to health services between each past and
following period corresponding to the acknowledgement of
the first and second confirmed cases matching urban
monitoring needs. [30]

7. Case Studies

The complexity and high societal impacts of healthcare
problems have prompted the use of machine learning (ML)
to develop predictive models. Federal entities like the U.S.
Food and Drug Administration and the European Medicines
Agency are amenable to ML-based predictive systems as
decision-support tools, but demand information for the
model’s recommended action [32].

The two case studies reported explore interrelated topics.
The first describes mortality prediction for critically ill
patients using public data from the Medical Information
Mart for Intensive Care. Scenarios are analyzed in which a
machine-learning model outputs real-time predictions during
clinical rounds. A prediction of impending death arises
during a clinical examination and prompts the physician to
seek clarification. The second case study illustrates the
importance of model explainability for readmission risk with
chronic disease patients in a German region. Various static
and dynamic features are considered, and the model reflects
the influence of care-planning activities on the risk [33].

The third study highlights explainability within an ML-aided
development-support pipeline to identify adverse drug
events. A clinically derived data set is used to detect drug—
drug interactions at a molecular scale. A relevant subset of
chemical features is chosen to characterize such interactions,
and the model (called a predictive system) subsequently
serves as a screening element prior to further investigation.

7.1. Case Study A: Mortality Prediction in Critical Care

Effective predictive analytics deploy models to generate risk
probabilities that can form the basis of meaningful decision-
support interventions in healthcare. Proactive, reliable
prediction of patient mortality in intensive care units (ICUs)
holds major potential for guiding resources, investigations,
and therapies in settings where advanced care is delivered.
Such predictions use routinely measured physiological data at
multiple time points to model evolution leading to a critical
clinical event, with origins stretching back to frameworks for
early deterioration detection from continuous monitoring
[34]. Practices like the Sepsis-3 and Prognostic-3 scores
underscore both the importance of timely detection and the
persistent challenges posed by interpretability [35][36]. In
care settings where every admission conveys life-threatening
risk, health providers also remain eager for proactive
monitoring of readmission risk following urgent

hospitalization. By indicating probable future steps in a
patient’s clinical evolution well ahead of observed
indicators, reliable projections allow clinicians to tailor
interventions influencing later care events [37][38].
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Figure 6: Case Study Explainability Workflow (SHAP +
XGBoost)

7.2 Case Study C: Adverse Drug Event Prediction

Adverse drug events (ADEs) continue to be a substantial
cause of morbidity and mortality in hospitalized patients.
The broader adoption of electronic health records has made
available rich clinical data that can help to improve
prediction of ADEs. XAl methods promote the
understanding of the features that contribute to the prediction
of the event, thereby assuring clinicians and regulators an
increased transparency in the use of black-box machine
learning techniques for safety monitoring.

Predictions are based on medication, clinical, and healthcare
utilization variables associated with ADE hospitalizations.
The explanation method identifies the medication and
laboratory values that most increase or decrease the risk of
hospital admission. Such identification is important since
clinicians often prefer to control advisable treatment instead
of prescribing that could increase the risk of ADEs, which a
XAI model like this could expose. The interpretable machine
learning model provides a straightforward representation of
the prediction function as a linear expression of the feature
values. This is advantageous since clinicians can
retrospectively evaluate the chosen medications on each
patient and see how they affect the risk of ADE
hospitalizations. Explanations are consistent over time and
offer guidance on the precise variables that must be managed
to lower the risk of ADEs.

8. Gaps, Challenges, and Limitations

Explainable Al (XAI) methods have been widely used to
improve understandability of predictions from machine
learning models. The increasing complexity of these methods
demands interpretability at multiple levels to ensure clarity at
both the systems and XAI stages. While researchers have
extensively addressed healthcare Al (HAI) model
development and application, limited investigation exists into
XAI techniques specific to HAI models, potentially
hindering widespread adoption and deployment [35][36].
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XAI for HAI models remains immature and scattered,
complicating the analysis of dominant methods, prevalent
issues, and active research themes. Addressing these open
questions promotes deeper comprehension of HAI model
interpretability, highlights common difficulties faced by HAI
practitioners, and guides future exploration of HAI-specific
XAL

9. Future Directions and Research Agenda

Advancements in explainable artificial intelligence (XAI)
have opened valuable avenues for enhancing the
trustworthiness of healthcare predictive models. Several
areas offer particularly rich potential for further exploration.
XALI verification remains a key challenge across domains.
Measuring and systematically assessing explanatory
qualities such as fidelity, plausibility, stability, robustness,
and generalizability has proven exceptionally complex; yet
the development of satisfying quantitative benchmarks
remains elusive. Significant opportunities exist for research
focused on quantifying explanation quality and auditing
compliance against established desiderata [38].

A concerted push toward the definition and sharing of broad,
extensible, open-access healthcare datasets is required.
Owing to the high dimensionality and complexity of clinical
data, modelling efforts are frequently confined to heavily
preprocessed, simplified representations. The scope of real-
world utilization remains limited, and systematic
investigations of generalization capabilities across diverse
ontologies, environments, and public health systems are
scarce.

Considerable effort is needed to actualize XAl in healthcare
practice. Many existing systems strive to replicate or mirror
opaque methods such as deep learning. By contrast, grafting
explanatory methods onto deployed solutions from the outset
would help encode critical domain knowledge, operational
concepts, and other factors relevant to the specific use case.

10. Conclusion

The accelerating diffusion of Al technologies in healthcare
promises considerable benefits in patient outcomes and
healthcare productivity. Yet, considerable struggles remain
in clinical adoption, particularly with machine learning
systems that lack transparency and interpretability. Limiting
such Al systems to high-stakes domains, where both human
and machine effort is required, provides a possible way
forward. The gap between Al and healthcare further widens
without appropriate explanations of Al predictions and,
indeed, Al systems will not be adopted without rigorous
post-hoc explainability analysis.

A systematic evaluation framework characterizes the
explainability of various model-agnostic and model-specific
techniques for healthcare predictive analytics.
Complementary to  existing knowledge, empirical
performance and concrete comparisons address universal
usability requirements for explainability in clinical predictive
analytics. The analysis reveals that current explainability
techniques deliver few benefits for a range of high-value
healthcare applications. Notwithstanding advanced research

and widespread promotion, considerable opportunities reside
for developing appropriate and sustainable framework-based
explainability methods.
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