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Abstract: Clinical decision-making increasingly relies on predictive models, yet these tools often lack adequate explanation 

mechanisms and are thus ineligible for real-world adoption. Restrictions on model temporality, population coverage, and data privacy 

inhibit their use during training; only post-training use of fixed, less sensitive information remains feasible. To counsel such models, the 

adoption of Explainable AI (XAI) techniques emerges as the leading recourse and has already generated considerable interest. Here, a 

systematic overview of XAI techniques for the tabular datasets characteristic of healthcare predictive analytics is provided. Because these 

datasets differ significantly from other data modalities in structure, content, and intended use, XAI approaches developed for computer 

vision analyses, natural language processing, and other domains are not well suited to healthcare needs. The inclusion of past patient 

states, health trajectory histories, and other types of temporal data further differentiates healthcare from typical settings such as bank 

fraud detection. Formulating an appropriate, comprehensive classification of XAI methods for predictive analytics in general—and 

healthcare in particular-therefore constitutes a central challenge. 
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1. Introduction 
 

Beyond the establishment of a technique classification, the 

direct relevance of XAI to healthcare predictive analytics 

merits examination. These models function primarily as 

clinical decision-support tools—assisting, supplementing, 

and enhancing rather than supplanting the decision-making 

authority and responsibilities of physicians and other 

clinicians- yet the predicted outcomes retain considerable 

interpretative importance [1]. An exploration of further 

healthcare-specific driving factors is accordingly warranted. 

 

2. Background and Motivation 
 

Healthcare predictive analytics relies on machine learning 

(ML) to extract patient insights from clinical data. The 

introduction of ML-based models significantly improves the 

predictive power of risk stratification tools, addressing 

critical problems such as timely patient transfer to an 

intensive care unit (ICU) or the onset of acute kidney injury 

for chronic kidney disease patients. Such systems can inform 

high-stakes decisions across various clinical workflows, and 

explainability can help address black-box concerns 

associated with many ML-based models. Despite an 

increasing number of explainable AI (XAI) tools and models 

available for healthcare, a comprehensive overview of these 

methods has not yet been conducted. Although extensive 

work presents generic XAI model surveys, models with 

different availability scopes, implementation capabilities, 

and input data specifications are used in healthcare 

predictive analytics. It is essential to identify, categorize, and 

compare these methods based on the corresponding model 

design, physiological knowledge requirements, and 

availability for downstream decision support [2][3]. By 

addressing these components, a comprehensive overview of 

XAI technologies will significantly benefit the design and 

development of predictive analytics studies for healthcare 

machine learning problems. 

 

3. Methodological Framework 
 

Healthcare applications of Artificial Intelligence (AI), 

notably predictive analytics, usher in new possibilities for 

clinical decision support. Such AI-driven systems, 

however, often lack sufficient transparency. The 

consequences of this opacity can be serious—

misinterpretation of the underlying model’s operation or of 

critical input-output relationships, for example, and 

even lead to nonadopting or abandonment in clinical 

practice [4]. The opportunity remains for a comprehensive, 

objective, evidence-based comparative analysis of diverse 

Explainable AI (XAI) techniques for healthcare predictive 

analytics. The materials considered in this inquiry could 

contribute significantly to an analysis of this nature. 

Stakeholders require insight into health-care predictive-

analytic models and their operation; into the importance that 

the predictive model ascribes to individual patients’ 

features; into the temporal progression of the factors that 

shape the predictions; into the degree of trust warranted in the 

predictions; and into the science, value, and plausibility of 

the predictions that address complex disease-process 

modelling [5]. These goals not only motivate but also 

delineate the remit of a Comparative Study: the 

investigation accordingly concentrates on Explainable 

AI techniques that (1) enable stakeholders to monitor 

and influence the ongoing evolution of a patient profile; (2) 

disclose both the patient’s acute and chronic predictive 

features; (3) permit exploration of predictive feature 

patterns via cohort analysis directed at collective-

distribution or atypicality characterization; and (4) 

accommodate sequences of patient features, thereby 

informing the indicator of the prediction. 
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Figure 1: Healthcare Predictive Analytics with XAI Pipeline 

 

Illustrates the end-to-end workflow from healthcare data 

sources to predictive models and explainable AI outputs 

used for clinical decision support. 

 

Comparative study forms part of a broader body of work that 

examines the evolving body of knowledge surrounding 

Explainable AI techniques tailored for healthcare predictive-

analytics applications. 

 

4. Taxonomy of Explainable AI Techniques 
 

Explainable AI is significant in predictive analytics across 

various areas. In clinical prediction models, it is particularly 

relevant to explainability of the model outputs, enabling 

stakeholders to discern the rationale behind decisions made 

by predictive algorithms. In healthcare, predictive analytics 

models are becoming increasingly widespread, leading to a 

growing need to explain the predictions made by these 

models [6]. The emerging requirement for explainability in 

prediction models has motivated the provision of a 

comprehensive mapping of the explainable AI landscape 

within the healthcare predictive analytics domain. 

 

Tools and techniques for achieving explainability in a 

variety of predictive analytical models have proliferated in 

the last few years. A detailed overview of various explainable 

AI techniques applicable to the healthcare predictive 

analytics setting is presented, along with a comprehensive 

exposition of their practical applicability in real-world use 

cases. The overview encompasses intrinsic classification 

models, post-hoc methods, and approaches focused on 

interpretable feature engineering [7]. 

 

 
Figure 2: Taxonomy of Explainable AI Techniques in 

Healthcare 

 

Presents a hierarchical classification of XAI methods 

including intrinsic models, post-hoc explainability, and 

interpretable feature engineering. 

 

4.1. Intrinsic Explainability Models 

 

Intrinsic explanation models directly express reasoning 

through transparent architectures. Intelligent systems were 

originally designed, tested, and deployed in the era of 

“explainable AI,” where post hoc explanation methods were 

not available. Rationale systems, for instance, originally 

sought to emulate jurists by advising about consequences 

and consequences’ justification using expert-system-like 

rules. The Bodel-Resnik and WHO expert systems produced 

similar documents of reasoning in natural language. The 

transparent architectures of such systems, together with the 

inherent character of the rationales conveyed about the 

examples, made their reasoning readily interpretable through 

formalized argumentation. 

 

Conversely, such reasoning provides little help in accessible 

format and raises the challenge of conformity to continental 

health-system data auditing regulations [8]. The health-

sector implications of serious attention to the original 

imperative of transparency critically restrict the classes of 

machine-learning model accessible for consideration as 

candidates for transparent explainability in practical 

healthcare predictive-analytics applications [9]. 

 

 
Figure 3: Intrinsic vs Post-hoc Explainability Models 

 

Compare transparent models with black-box models 

augmented by post-hoc explanation techniques, highlighting 

trade-offs. 

 

4.2. Post-hoc Explainability Methods 

 

Post-hoc explainability methods provide insight into 

prediction mechanisms after model training, endorsing 

transparency and interpretability. They yield explanations 

without altering original models [10]. Subcategories include 

surrogate approaches, feature attribution techniques, 

example-based explanations, and rule-based formulations 

[11]. Surrogate explanations replicate predictions using 

interpretable models like linear regressions or decision trees, 

illuminating key features of the complex model. Feature-

attribution methods identify and score significant predictors 

for outcomes, revealing influential covariates retained by no 

established methods. Instance-level or global procedures 

target explanations for single predictions or aggregated 

insights across the feature spectrum. Perturbation methods 

modify input samples or outcomes to craft attributions. 

Exemplars showcase training data like the queried instance. 

Finally, rule-based models express explanations in 

conditional statement formats, parallel solicited human 

reasoning. 
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4.3. Interpretable Feature Engineering 

 

Many machine learning models exploit the growing 

availability of health data to assist healthcare professionals 

in making clinical decisions. A way to improve the 

transparency of decision-making is to use domain-oriented 

interpretable feature engineering, namely engineering the 

features characterizing the domain and the associated 

attributes. Feature engineering helps clarify the relevant 

parameters influencing the model decision and gives a 

rationale for the statistics used to describe them. Interpretable 

feature engineering has been applied to numerous problems, 

such as the identification of organ and other anomalies in 

medical images [12] or the prediction of adverse drug 

reactions from diverse data sources [13]. Model-agnostic 

saliency maps that leverage such features and indicate the 

region of interest involved in the decision have also been 

developed. When multiple parameters describing the same 

process are available, establishing a transformation pipeline 

that creates a single interpretable representation can improve 

model readability without jeopardizing model performance. 

Structured data transforms into an aggregated, domain-

oriented version that highlights the most salient patients. 

 

Two feature engineering strategies might be pursued. First, 

transferring feature engineering knowledge from scientific 

literature to the dataset represents a significant shortcut, as a 

wealth of useful domain-knowledge-oriented feature 

descriptions already exists. Second, following the first idea, 

the extensive literature on model-agnostic feature 

importance techniques widely discussed in interpretable 

machine learning can help specify which parameters and 

patient-level statistics deserve assembling, thus providing an 

evaluative extension of the general reasoning. 

 

5. Explainability in Healthcare Predictive 

Analytics 
 

Effective healthcare predictive analytics can radically 

enhance clinical decision support and health system 

management. Underpinning this promise is the accelerated 

development of powerful machine learning models capable 

of modelling complex structured and unstructured data. 

However, as accuracy improves, opacity deepens, which in 

turn raises an urgent question: How can stakeholders 

understand model predictions and their motivating factors? 

 

Explainability has emerged as a key enabler of deployment, 

acceptance, and regulatory compliance for machine learning 

models in numerous sectors. Regulatory considerations 

stimulate interest from academia and industry alike, although 

the characteristics of the healthcare domain introduce fresh 

complexities. These complexities are further amplified by the 

burgeoning Internet-of-Medical-Things ecosystem, which 

continues to spawn sharp increases in both data volume and 

variety across all domains. The widening margins between 

what can be predicted and what can be explained have made 

suitable, effective explanatory techniques determine an 

urgent practical need for researchers, innovators, integrators, 

and deployers of healthcare predictive analytics systems. 

 

Six foundational observations guide the selection of suitable 

explanatory approaches. Addressing real-world clinical case 

studies across multiple domain diagnostic imaging, 

electronic health records, genomic and omics data, and 

population and public health—the studies highlight models, 

inputs, outputs, explanations, and remarks. Automated 

clinical risk prediction models are being embraced in diverse 

healthcare settings 

 

The growth of healthcare predictive analytics systems has 

been prodigious. Already, such systems are widely deployed, 

or are being actively piloted, in healthcare settings spanning 

multiple continents. Consequently, prospective deployers-

whether academic, corporate, government, or non-profit- 

require a comparative evaluation of how well various 

explanation techniques match the specific needs of 

healthcare analytics. [14] 

 

5.1. Clinical Trust and Usability 

 

With decision support systems gaining prevalence in 

complex healthcare settings, organizations are left grappling 

with how these systems fit into existing workflows, how 

consistent the outcomes are with current practices, and, 

additionally, how to adhere to regulatory requirements. 

Predictive models receive input from a variety of sources 

such as diagnoses, lab results, and many more. Therefore, an 

appropriate interface for a model is consistent with its input 

structure, allowing for summarization of the output with 

respect to how each input source contributes. IBM Watson 

Health has developed a platform called Watson Health 

Cloud designed to handle interactions between these systems 

and human operators across a variety of platforms. 

Explanations enable the use of predictive models in a wider 

array of clinical situations. Knowledge of why guidelines 

exist aids in refining the model without extensive retraining; 

for example, a model may determine the importance of 

blood pressure from historical data yet clinical guidelines 

indicate the need to aim to keep such measure stable in 

specific chronic conditions, pinpointing an area for 

improvement. In situations such as these, explicit knowledge 

incorporated in the model helps the development process by 

streamlining the initial understanding of what knowledge the 

model should sift through. As healthcare systems gain 

exposure to synthetic data generated from real-world data, 

there is an opportunity to model the knowledge and develop 

machine learning systems that can learn high-value input 

features or intervene at a significantly higher degree than 

previously achievable. 

 

5.2. Regulatory and Ethical Considerations 

 

Human decision-making processes are subject to dependence 

on accountability and compliance with standards and 

regulations. Such human dependencies are further 

complicated when trusting AI-driven tools. For example, 

healthcare practitioners need to comply with the Health 

Insurance Portability and Accountability Act (HIPAA). 

Compliance with such legislative, guidance, and regulatory 

frameworks is vital to adopting predictive intelligence [15]. 

Close inspections on accountability consider what happens 

when predictive healthcare models do not follow the 

intended course. Upon completing an analysis on predictive 

healthcare monitoring, it should be clear whether a model 

learns, with justification, why it is necessary to detect 
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hypoxia in ventilated patients, assisting compliance with the 

safety standard ONC-0509 (OSAC, 2022). Consideration on 

fairness entails whether a fair process and treatment are 

ensured. 

 

5.3. Data Privacy and Security Implications 

 

Given the risk of re-identification, healthcare data are 

protected by stringent regulations; exposures can result in 

heavy penalties and loss of public trust [16]. Most legislative 

and ethical frameworks advocate patient de-identification as 

the first precaution. To further safeguard data privacy, other 

methods are employed depending on context and sensitivity, 

especially when sharing or storing data beyond local and 

minimalistic usage [17]. Techniques include k-anonymity 

and suppression as well as differential privacy; each requires 

assess-of data applicability under specific risk-profile use 

cases. Availability of datasets for algorithmic transparency 

represents another challenge. De-identification often 

enforces intrinsic limitations. Control and accountability for 

data shared outside of the ecosystem is another challenge that 

can hinder sharing strategy [18][19]. 

 

6. Comparative Evaluation Criteria 
 

Researchers have applied various criteria to assess the 

explanatory power of artificial intelligence (AI) systems. 

This study employs a set of six standardized evaluation 

criteria—fidelity, plausibility, stability, robustness, 

efficiency, and generalizability—to quantitatively measure 

the explanatory capabilities of different explanatory 

techniques. Fidelity quantifies how faithfully an explanation 

reflects the underlying machine learning (ML) model’s 

decision-making process. Plausibility assesses whether an 

explanation aligns with domain knowledge and the user’s 

mental model. Stability evaluates the degree to which 

explanations remain consistent when the input data or the 

underlying model undergoes small perturbations. Robustness 

denotes the stability of an explanation in response to more 

significant changes to the input data, such as adversarial 

examples. Efficiency considers the computational resources 

required to generate the explanation, factoring in time, 

memory, and scalability. Finally, generalizability assesses 

the applicability of the explanation method across diverse 

datasets, settings, and populations, including longitudinal 

data [20]. Fidelity and plausibility offer direct and indirect, 

respectively, evaluations of the agreement between model 

behavior and explanation. Fidelity metrics compare 

explanations generated by each technique against a set of 

ground-truth explanations specific to the model—

determined, for instance, by analyzing the model’s 

parameters or directly interrogating it, if possible—while 

attributions provided by domain experts serve to assess 

plausibility. Fidelity and plausibility are measured in relation 

to clinicians’ mental models for the EHR and genomics 

domains, and in terms of alignment with expert knowledge 

regarding risk factors for critical care mortality [2]. 

 

Stability and robustness provide complementary assessments 

of the sensitivity of the explanation method to variations in 

model inputs and parameters. Stability is quantified by 

measuring how explanation outputs change in response to 

small perturbations of the input data or the model itself. 

Robustness examines the reliance of the explanation on more 

extensive or nonlinear alterations to the input. Both criteria 

are evaluated according to availability of expert-annotated 

ground-truth explanations, guidance from domain 

knowledge, and through clinician feedback on the plausibility 

of the explanations obtained with each technique. 

 

 
Figure 4: Explainability Evaluation Criteria Framework 

 

Visual framework showing evaluation metrics such as 

fidelity, plausibility, stability, robustness, efficiency, and 

generalizability. 

 

6.1. Fidelity and Plausibility 

 

The concept of explainability refers to understanding the 

rationale behind predictions made by a machine learning 

model. A model explanation is said to be of high fidelity if 

the explanation closely aligns with the actual decision-

making process that underlies the model predictions [21]. 

Evaluating fidelity, however, is challenging. Metrics have 

been proposed that assess the degree of agreement between 

model predictions and representational approximations of 

the explanation (as a surrogate model), as well as the 

correctness of the explanation with respect to explanations 

produced by a simpler but highly interpretable surrogate 

model. 

 

Explanations that are plausible should correspond to human 

beliefs about the relationship between input features and 

predictions. Sufficient background knowledge is needed to 

gauge the plausibility of an explanation. Evaluating 

plausibility is particularly relevant for methods that attribute 

individual feature importance to a wide range of data types. 

A suitable framework for explicating the relationship 

between explanations and plausibility is grounded within 

knowledge representation and reasoning [22]. 

 

6.2. Stability and Robustness 

 

An explanation of a prediction in a machine learning model 

describes the reasons for that prediction. Explanation 

consistency refers to the stability of explanations that are 

generated for inputs of a machine learning model when the 

model remains unchanged and when the input undergoes 

small perturbations. Robustness is related to the impact of 

small changes in inputs on model predictions. Explanations 

are considered robust if they remain consistent under small 
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noise perturbations of the inputs. The challenge is that 

explanations for different inputs of the same predictive 

model may vary significantly. Even small changes that do 

not alter the prediction can lead to different explanatory 

outputs. 

 

Stability and robustness of explanation techniques have been 

examined employing datasets from predictive models trained 

on health-care data. When a predictive model shows 

variation in its output for the same data point, the resulting 

explanation can vary significantly. Accordingly, to be 

consistent with the literature, stability tests of the 

explanations returned by prediction models, rather than 

stability tests of the output of the models themselves, have 

been applied. A sample of perturbations has been applied to 

input variables, and the count of different features among 

features identified as influential has been recorded. This 

procedure has been repeated for multiple randomly selected 

input patients. [23] 

 

6.3. Computational Efficiency 

 

Computational efficiency encompasses the time, memory, 

and scalability requirements of explainable artificial 

intelligence techniques. The first two dimensions are 

evaluated using a desktop machine equipped with 64 

gigabytes of memory and an Intel Xeon W-2123 CPU, 

running Ubuntu 20.04.4 LTS and Python 3.8.10. The third 

dimension considers a server with twenty-four cores and one 

terabyte of RAM, hosted in the Amazon Web Services 

cloud. 

 

6.4. Generalizability Across Datasets 

 

Various aspects of generalizability across datasets and 

settings are important when evaluating the properties of the 

explainable AI (XAI) techniques. First, understanding the 

requirements of the target domain, specific subdomains, 

relevant datasets, and applications facilitates an easier 

investigation of generalizability. The specific setting 

involving electronic health records (EHRs), for example, 

restricts the number of targeted datasets to those that are 

tabular, longitudinally annotated, sufficiently large, and 

publicly available; these constraints influence the choice of 

generalizability. Second, generalizability can be assessed in 

a longitudinal fashion, where XAI techniques perform 

consistently over the same cohort population as it evolves 

over time. Cardiovascular health is one of the largest 

contributors to mortality, and drug overdose is at the 

forefront of various preventable causes of death worldwide, 

making it an epidemiological top-predictor [24].  

 

Empirical Comparisons Across Healthcare 

Domains 
 

Predictive analytics can provide actionable information from 

large healthcare datasets. Founded in Machine Learning 

(ML), the techniques commonly implemented for predictive 

tasks lend themselves successfully to models able to 

automatically identify correlations and complex patterns 

connecting historic data to the future without a priori 

consideration of the underlying phenomena. Yet, although 

ML models such as neural networks occasionally achieve 

state-of-the-art results at the clinical task level, their intrinsic 

complexity prevents a precise understanding of how input 

observations influence the prediction decision [25]. For large 

healthcare systems seeking to operationalize predictive 

analytics in clinical workflows or for many research projects 

wherein the final goal is to achieve new insights into 

biological phenomena, model understanding and explanation 

are essential. In the absence of a profound understanding of 

the relationship between input observations and predictions, 

it is challenging to validate the model’s ability to provide 

clinically relevant results, raise awareness of clinically 

relevant observation patterns, and propose, test, or validate 

novel hypotheses. Mathematical and statistical models 

previously implemented within the field, typically with hard 

coded biologically inspired underlying mechanisms or 

simplified mathematical representations of biological 

phenomena, frequently do not scale to the complexity of the 

data available today. 

 

Healthcare institutions generate and store systematized data 

incorporating clinical, laboratory, imaging, biosensor, 

administrative, and genomic information available about a 

patient, supporting the ability to deliver predictive 

interventions on a broad range of clinical tasks that would 

significantly assist healthcare personnel. Formulating a 

multi-centric systematic review, the data-driven approach 

employed maps the implementation of AI-, ML-, and ML-

based techniques attempting to exploit the diverse data 

generated across the healthcare life cycle for predictive 

analytics tasks relevant to continually occurring operational 

challenges at many healthcare institutions. Electronic Health 

Records (EHRs) have become a major data-repository source 

for accurately recording a multitude of observations across 

the entire healthcare life cycle continuum. Such records 

contain at least some systematic information on the precise 

stages describing many chronic and/or communicable 

diseases, laboratory examinations, radiological 

examinations, major drug prescriptions, imaging-report 

narration, and the outcome of Continuous Positive Airway 

Pressure (CPAP) therapy. Data Capture Point of Care 

(DCPOC) consists of various systems capable of accurately 

recording further observations throughout the healthcare life 

cycle, such as biosensors monitoring blood oxygen 

saturation, heart rate, temperature, and blood pressure, daily 

body weight recordings and other anthropometric 

observation measures. 

 

6.5. Diagnostic Imaging 

 

Interpretable machine learning models and explainable 

artificial intelligence (XAI) methods are of considerable 

importance when applying predictive models to health care 

data for understanding, acceptance, and reliable use of the 

predictions. In the domain of diagnostic imaging, several 

explanations based on images have been proposed for 

convolutional neural networks and related deep learning 

models but have not been evaluated in detail in terms of how 

they are used, whether they are considered useful, and how 

explainable AI can be integrated into these workflows [26]. 

The graphical nature of the predictions lends itself to two 

broad types of explanations: image- and region-based 

explanations. Image-based explanations describe what the 

model “sees” in the image—for example, specific patterns, 

Paper ID: SR251231110039 DOI: https://dx.doi.org/10.21275/SR251231110039 42 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 15 Issue 1, January 2026 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

structures, or textures—while region-based explanations 

describe which regions of the image contribute to the 

model’s prediction. Evaluating image-based explanation 

methods is complex because the intended content of images 

is not explicitly defined and human perception is variable; 

another factor is that image-based explanations do not 

support straightforward integration into existing 

workflows. Region-based explanations have therefore 

received more attention in the literature; in addition, explicit 

previous studies have analyzed clinician feedback on region-

based explanations, providing an opportunity to assess 

overall utility. 

 

6.6. Electronic Health Records 

 

The Electronic Health Record (EHR) is one of the most 

promising sources of data for Artificial Intelligence (AI) 

models to assist in health-care predictive analytics. EHRs are 

used to store different types of clinical data over time, and 

records collected at different time intervals describe the 

same patient. Feature-specific tabular attributions capture the 

importance of each feature to the model output and can be 

applied to temporal-dependency models to create a clearer 

understanding of how different events impact patient health 

over time. In addition to tabular data, EHRs may include 

free-text notes that describe patient medical history, 

examination, and treatment. Despite the usefulness of these 

records for health-care prediction, many models based on 

them remain in black boxes. EHR data consists of 

information collected over time from homogeneous patient 

encounters processed at variable time intervals, including the 

timing of each event relative to the target loss. Many EHR 

prediction problems require a multidisciplinary approach. 

The variables underlying these EHR records are not 

universal, and although certain norms apply to different 

jurisdictions, identifiable human health information must 

remain confidential, leading to residual uncertainty when 

sharing information [26] [27]. 

 

 
Figure 5: Temporal Explainability in EHR-Based 

Predictions 

 

6.7. Genomic and Omics Data 

 

Healthcare systems increasingly generate high-

dimensional, heterogeneous data. Genomic data requires 

particular attention given their intricate biological 

processes and overwhelming dimensionality. While many 

techniques focus on single-omic data, genome, 

transcriptome, proteome, and metabolome data are 

increasingly modeled jointly. Integration enables 

biomarker identification and omics-level biological pathway 

discovery [28]. Genomic data augment electronic health 

records (EHR) with detailed individual longitudinal health 

information, provide major comorbidity tracking for chronic 

diseases, and support diagnostics and treatment [29]. 

Predictive models utilize genomic data in healthcare 

applications, yet end-users struggle to interpret feature 

significance. Popular genomic sequencing technologies 

deliver data at fast-growing rates; individuals can possess 

millions of genomic variation positions that modify human 

genes. 

 

6.8. Population Health and Public Health Surveillance 

 

Access to health services and their quality are key social 

determinants of the health of the population and their 

monitoring is crucial to ensure equity and therefore improve 

population health. Different measures exist to monitor access 

to health services. Health services access forecasts based on 

these measures enable population health characterization and 

the identification of health services access determinants. 

Factors on access to health services are not equally important 

in different demographic groups. Therefore, the 

characterization of population health and health services 

access level is done on cohorts of the population according to 

geographical, socio-demographic, or behavioral attributes. 

Explainability is a main issue when the models providing 

forecasts account only for a limited number of demographic 

attributes. Explainability is also a major challenge when 

health services’ access predictions are required for new 

geographies that were not seen during the training phase. 

Public health frequently investigates geographic health 

events or population health in specific health or socio-

demographic cohorts. Explanations generated by models 

used to forecast access to health services inform the 

population health concern whether population health 

experience is also shared or not by distinct cohorts of the 

population and whether the situation is homogeneous or 

heterogeneous even within specific health, behavior, and 

socio-demographic cohorts. The explanations given near 

votes predicting access to health services for new geography 

complement the understanding of population health 

characterization and help to determine whether preventive 

measures or health policies taken in a provided geographical 

area are likely to benefit other areas. The ability to 

characterize population health and population disease 

evolution during epidemic phases from mobility and 

historical summaries precludes the requirement to aggregate 

population census information and hence precludes the need-

to-know precise geography coordinates [30][31]. In many 

locations, only limited information extractable from mobility 

or environmental data is available therefore characterizing 

population health evolution during early phase of the 

epidemics and consequently detecting population disease 

propagation without partial knowledge of the physical 

population resources still possible. The forecast models also 

deliver clear information about where public organizations 

should focus their efforts for population disease 

interventions monitoring. Public health frequently 

investigates geographic health events or population health in 

specific health or socio-demographic cohorts. Explanations 

generated by models used to access health services also 

enable us to identify whether the activity pattern of cohorts 
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defined by specific attributes is impacted by the same factors 

or not thereby providing insight into the factors that motivate 

each population subset. Predictive frameworks creating 

population health and access to health services maps based 

on location-history-track records are built with geolocative 

analytic data since public health frequently concentrates on 

address-based mobility flow within the urban territory. 

Monitoring health is essential to maintain socio-economic 

activity. Predictive models creating maps illustrating health 

state and access to health services between each past and 

following period corresponding to the acknowledgement of 

the first and second confirmed cases matching urban 

monitoring needs. [30] 

 

7. Case Studies 
 

The complexity and high societal impacts of healthcare 

problems have prompted the use of machine learning (ML) 

to develop predictive models. Federal entities like the U.S. 

Food and Drug Administration and the European Medicines 

Agency are amenable to ML-based predictive systems as 

decision-support tools, but demand information for the 

model’s recommended action [32]. 

 

The two case studies reported explore interrelated topics. 

The first describes mortality prediction for critically ill 

patients using public data from the Medical Information 

Mart for Intensive Care. Scenarios are analyzed in which a 

machine-learning model outputs real-time predictions during 

clinical rounds. A prediction of impending death arises 

during a clinical examination and prompts the physician to 

seek clarification. The second case study illustrates the 

importance of model explainability for readmission risk with 

chronic disease patients in a German region. Various static 

and dynamic features are considered, and the model reflects 

the influence of care-planning activities on the risk [33]. 

 

The third study highlights explainability within an ML-aided 

development-support pipeline to identify adverse drug 

events. A clinically derived data set is used to detect drug–

drug interactions at a molecular scale. A relevant subset of 

chemical features is chosen to characterize such interactions, 

and the model (called a predictive system) subsequently 

serves as a screening element prior to further investigation. 

 

7.1. Case Study A: Mortality Prediction in Critical Care 

 

Effective predictive analytics deploy models to generate risk 

probabilities that can form the basis of meaningful decision-

support interventions in healthcare. Proactive, reliable 

prediction of patient mortality in intensive care units (ICUs) 

holds major potential for guiding resources, investigations, 

and therapies in settings where advanced care is delivered. 

Such predictions use routinely measured physiological data at 

multiple time points to model evolution leading to a critical 

clinical event, with origins stretching back to frameworks for 

early deterioration detection from continuous monitoring 

[34]. Practices like the Sepsis-3 and Prognostic-3 scores 

underscore both the importance of timely detection and the 

persistent challenges posed by interpretability [35][36]. In 

care settings where every admission conveys life-threatening 

risk, health providers also remain eager for proactive 

monitoring of readmission risk following urgent 

hospitalization. By indicating probable future steps in a 

patient’s clinical evolution well ahead of observed 

indicators, reliable projections allow clinicians to tailor 

interventions influencing later care events [37][38]. 

 

 
Figure 6: Case Study Explainability Workflow (SHAP + 

XGBoost) 

 

7.2 Case Study C: Adverse Drug Event Prediction 

 

Adverse drug events (ADEs) continue to be a substantial 

cause of morbidity and mortality in hospitalized patients. 

The broader adoption of electronic health records has made 

available rich clinical data that can help to improve 

prediction of ADEs. XAI methods promote the 

understanding of the features that contribute to the prediction 

of the event, thereby assuring clinicians and regulators an 

increased transparency in the use of black-box machine 

learning techniques for safety monitoring. 

 

Predictions are based on medication, clinical, and healthcare 

utilization variables associated with ADE hospitalizations. 

The explanation method identifies the medication and 

laboratory values that most increase or decrease the risk of 

hospital admission. Such identification is important since 

clinicians often prefer to control advisable treatment instead 

of prescribing that could increase the risk of ADEs, which a 

XAI model like this could expose. The interpretable machine 

learning model provides a straightforward representation of 

the prediction function as a linear expression of the feature 

values. This is advantageous since clinicians can 

retrospectively evaluate the chosen medications on each 

patient and see how they affect the risk of ADE 

hospitalizations. Explanations are consistent over time and 

offer guidance on the precise variables that must be managed 

to lower the risk of ADEs. 

 

8. Gaps, Challenges, and Limitations 
 

Explainable AI (XAI) methods have been widely used to 

improve understandability of predictions from machine 

learning models. The increasing complexity of these methods 

demands interpretability at multiple levels to ensure clarity at 

both the systems and XAI stages. While researchers have 

extensively addressed healthcare AI (HAI) model 

development and application, limited investigation exists into 

XAI techniques specific to HAI models, potentially 

hindering widespread adoption and deployment [35][36]. 
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XAI for HAI models remains immature and scattered, 

complicating the analysis of dominant methods, prevalent 

issues, and active research themes. Addressing these open 

questions promotes deeper comprehension of HAI model 

interpretability, highlights common difficulties faced by HAI 

practitioners, and guides future exploration of HAI-specific 

XAI. 

 

9. Future Directions and Research Agenda 
 

Advancements in explainable artificial intelligence (XAI) 

have opened valuable avenues for enhancing the 

trustworthiness of healthcare predictive models. Several 

areas offer particularly rich potential for further exploration. 

XAI verification remains a key challenge across domains. 

Measuring and systematically assessing explanatory 

qualities such as fidelity, plausibility, stability, robustness, 

and generalizability has proven exceptionally complex; yet 

the development of satisfying quantitative benchmarks 

remains elusive. Significant opportunities exist for research 

focused on quantifying explanation quality and auditing 

compliance against established desiderata [38]. 

 

A concerted push toward the definition and sharing of broad, 

extensible, open-access healthcare datasets is required. 

Owing to the high dimensionality and complexity of clinical 

data, modelling efforts are frequently confined to heavily 

preprocessed, simplified representations. The scope of real-

world utilization remains limited, and systematic 

investigations of generalization capabilities across diverse 

ontologies, environments, and public health systems are 

scarce. 

 

Considerable effort is needed to actualize XAI in healthcare 

practice. Many existing systems strive to replicate or mirror 

opaque methods such as deep learning. By contrast, grafting 

explanatory methods onto deployed solutions from the outset 

would help encode critical domain knowledge, operational 

concepts, and other factors relevant to the specific use case. 

 

10. Conclusion 
 

The accelerating diffusion of AI technologies in healthcare 

promises considerable benefits in patient outcomes and 

healthcare productivity. Yet, considerable struggles remain 

in clinical adoption, particularly with machine learning 

systems that lack transparency and interpretability. Limiting 

such AI systems to high-stakes domains, where both human 

and machine effort is required, provides a possible way 

forward. The gap between AI and healthcare further widens 

without appropriate explanations of AI predictions and, 

indeed, AI systems will not be adopted without rigorous 

post-hoc explainability analysis. 

 

A systematic evaluation framework characterizes the 

explainability of various model-agnostic and model-specific 

techniques for healthcare predictive analytics. 

Complementary to existing knowledge, empirical 

performance and concrete comparisons address universal 

usability requirements for explainability in clinical predictive 

analytics. The analysis reveals that current explainability 

techniques deliver few benefits for a range of high-value 

healthcare applications. Notwithstanding advanced research 

and widespread promotion, considerable opportunities reside 

for developing appropriate and sustainable framework-based 

explainability methods. 
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