

Quantile Based Analysis of Marshall-Olkin Family

Haritha N. Haridas¹, N. Unnikrishnan Nair²

¹Department of Statistics, Farook College (Autonomous), University of Calicut, Kerala, India
Corresponding Author Email: [haritasuhas\[at\]gmail.com](mailto:haritasuhas[at]gmail.com)

²Department of Statistics, Cochin University of Science and Technology, Cochin, India
Contributing Author Email: [unni Krishnannair4\[at\]gmail.com](mailto:unni Krishnannair4[at]gmail.com)

Abstract: In this article, we suggest a way to introduce a new parameter to an existing quantile function to produce a new quantile function. We got an identity connecting the two quantile functions which will be useful for studying the reliability properties of the new quantile function. The hazard functions of some distributions and their extended versions have been discussed. Furthermore, we have applied this to Tukey Lambda distribution and an extended version is obtained which is useful for modeling not only symmetric distributions but also skewed distributions. Some of the reliability properties of the extended Tukey Lambda distribution has also been studied. In addition, a simulation study is conducted to estimate the parameters of the extended Tukey lambda distribution. We have also shown that the extended Tukey Lambda distribution can be used to model Covid-19 data.

Keywords: Marshall Olkin family, Quantile functions, Tukey lambda distribution

1. Introduction

In most of the practical situations, one parameter families of distributions are not sufficient to model the real data. So existing literature is rich in developing new models and methods for adding parameters to the existing models. (Marshall & Olkin, 1997) introduced a general method for obtaining more flexible distributions by adding a new parameter to an existing family of distributions. By using the Marshall and Olkin method for adding a new parameter to an existing distribution, several authors contributed a large number of new distributions to the literature. Some of the recent works using Marshall-Olkin approach are (Mansoor et al., 2018), (Afify et al., 2015), (Ahsan et al., 2021), (Yousof & Afify, 2018), (Afify et al., 2021), (Afify et al., 2020), (Korkmaz et al., 2019), (Mansoor et al., 2019), (Benkhelifa, 2017), (Cakmakyan et al., 2018), (Castellares & Lemonte, 2016), (Kundu, 2015), (Mathew & Chesneau, 2020), (Saboor & Pogany, 2016), (Güney et al., 2017), (Cui et al., 2020), (Handique & Chakraborty, 2017), (Al-noor & Hadi, 2021), (Chipepa et al., 2020), (Makubate et al., 2021), (Nwezza & Ugwuowo, 2020) etc.

An alternative way of describing a continuous distribution is to use the quantile functions. Let X be a real valued continuous random variable with distribution function $F(x)$ which is continuous from the right. Then, the quantile function $Q(u)$ of X is defined as

$$Q(u) = F^{-1}(u) = \inf\{x : F(x) \geq u\}, \quad 0 \leq u \leq 1 \quad (1)$$

For every $-\infty < x < \infty$ and $0 < u < 1$, we have $F(x) \geq u$ if and only if $Q(u) \leq x$.

A detailed study of quantile functions is available in (*Statistical Modelling with Quantile Functions - Warren Gilchrist - Google Books*, n.d.). Quantile functions possess many advantages which are not shared with distribution functions. For various properties and applications of quantile functions one can refer to (Sankaran et al., 2016), (Nair & Paduthol, 2009), (Kumar Maladan & Sankaran, 2020),

(Sankaran et al., 2016), (Nair et al., 2012), (Nair et al., 2013). Even if several authors have discussed methods to obtain new quantile functions, Marshall Olkin approach in the context of quantile function has yet to be discussed. The method suggested by Marshall and Olkin can be used to extend existing quantile functions. In this article we discuss the way to add a tilt parameter to an existing quantile function.

The present study is organized into five sections. After this introduction, Section 2 gives the identity connecting two quantile functions and the corresponding hazard quantile functions. In Section 3, monotonicity of hazard functions of some distributions and their extended versions have been discussed. We have applied this to Tukey lambda distribution and introduced a new distribution which is useful for modeling symmetric as well as skewed distributions. It is discussed in Section 4. In the Section 5 a simulation study is conducted to demonstrate the estimation of parameters of extended Tukey lambda distribution. Finally the new extended Tukey lambda distribution has been used to model Covid 19 data in the last section.

2. Extension of Quantile Function and Hazard Quantile Function

Let X be a continuous non-negative random variable with distribution function $F_X(x)$ and quantile function $Q_X(u)$. (Marshall & Olkin, 1997) devised a new method of introducing a more flexible family of distributions by adding a new parameter to $F(x)$ through defining the survival function

$$\bar{G}(x) = \frac{\theta \bar{F}_X(x)}{1 - (1 - \theta) \bar{F}_X(x)}, \quad \theta > 0 \quad (1)$$

They called θ a tilt parameter and studied the cases when X has exponential and Weibull distributions. Let Y be the random variable with survival function $\bar{G}(x)$. We can rewrite (1) as

$$G_Y(x) = \frac{1 - \bar{F}_X(x)}{1 - (1-\theta)\bar{F}_X(x)} \quad (2)$$

Setting $F(x) = u$ in (2), we have when F_X is strictly increasing, the quantile function of Y as,

$$\begin{aligned} G_Y(Q_X(u)) &= \frac{u}{1 - (1-\theta)(1-u)} \\ &= \frac{u}{\theta + u(1-\theta)} \end{aligned} \quad (3)$$

Or

$$Q_X(u) = Q_Y\left(\frac{u}{\theta + u(1-\theta)}\right) \quad (4)$$

Similarly by putting $G_Y(x) = u$ we get

$$Q_Y(u) = Q_X\left(\frac{u\theta}{1 - (1-\theta)u}\right) \quad (5)$$

So we get a new quantile function from the existing quantile function by introducing the tilt parameter θ .

The hazard quantile function is defined as

$$H(u) = h(Q(u)) = [(1-u)q(u)]^{-1} \quad (6)$$

where $q(u)$ is the quantile density function which is the derivative of the quantile function $Q(u)$. In this definition, $H(u)$ is interpreted as the conditional probability of the failure of a unit in the next small interval of time given the survival of the unit at $100(1-u)\%$ point of the distribution. (Nair & Paduthol, 2009)

Now differentiating (5) with respect to u

$$\begin{aligned} q_Y(u) &= \frac{\theta}{(1 - (1-\theta)u)^2} q_X\left(\frac{u\theta}{1 - (1-\theta)u}\right) \\ (1-u)q_Y(u) &= \left(\frac{\theta}{1 - (1-\theta)u}\right) \left(1 - \frac{u\theta}{1 - (1-\theta)u}\right) q_X\left(\frac{u\theta}{1 - (1-\theta)u}\right) \end{aligned}$$

Therefore

$$H_Y(u) = \left(\frac{1 - (1-\theta)u}{\theta}\right) H_X\left(\frac{u\theta}{1 - (1-\theta)u}\right) \quad (7)$$

The identity connecting the hazard quantile functions of X and Y in (7) can be used to obtain the reliability properties of Y in terms of X .

3. Monotonicity of hazard quantile functions

Monotonicity of hazard quantile functions can provide the identification of the model in a given data situation. The change in the monotonicity of hazard quantile functions of the extended versions by the introduction of tilt parameter provides better models in several situations. In this section we discuss the monotonicity of some common distributions and their extended versions.

3.1 Exponential and extended exponential

For exponential distribution, $H_X(u) = \lambda$, a constant. But for extended exponential, using (7),

$$H_Y(u) = \frac{(1 - (1-\theta)u)}{\theta} \lambda.$$

$$\begin{aligned} H_Y'(u) &= \frac{\lambda}{\theta}(1-\theta) > 0, & \text{if } \theta < 1 \\ &< 0, & \text{if } \theta > 1 \end{aligned}$$

Hence hazard function is monotonically increasing when $\theta < 1$ and monotonically decreasing if $\theta > 1$.

3.2 Weibull and Extended Weibull

For Weibull distribution, $H_X(u) = \frac{\lambda}{\sigma}(-\log(1-u))^{1/\lambda}$ and we get $H_X'(u) > 0$ if $\lambda > 1$ and < 0 if $\lambda < 1$ and hence Weibull is IFR if $\lambda > 1$ and DFR if $\lambda < 1$.

$$H_Y(u) = \frac{(1 - (1-\theta)u)}{\theta} \frac{\lambda}{\sigma} \left(-\log\left(\frac{1-u}{1 - (1-\theta)u}\right)\right)^{1/\lambda}.$$

3.3 Half Logistic and extended half logistic

For Half logistic distribution $H_X(u) = \frac{2}{\sigma}(1+u)$ and

$$H_X'(u) = \frac{2}{\sigma} > 0. \text{ Therefore Half logistic is IFR. But we}$$

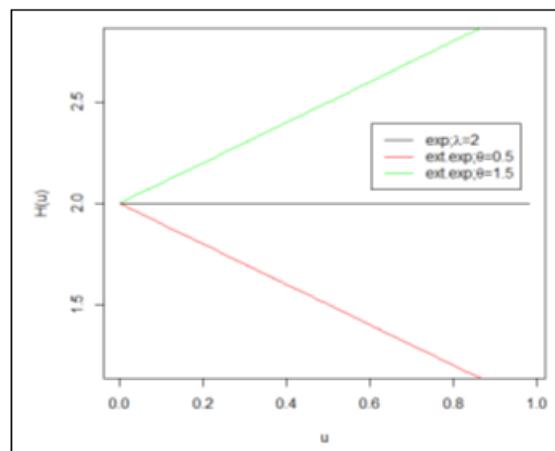
get extended half logistic as IFR for $\theta > \frac{1}{2}$ and DFR for

$$\theta < \frac{1}{2} \text{ For,}$$

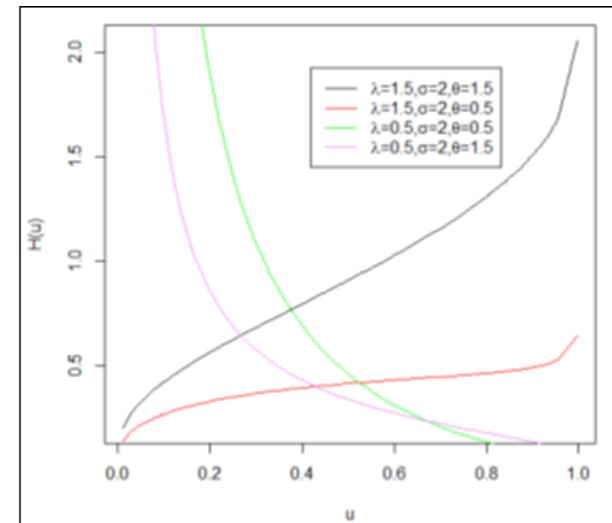
$$H_Y(u) = \frac{2(1-u+2\theta u)}{\theta\sigma} \quad \text{and}$$

$$\begin{aligned} H_Y'(u) &= \frac{2}{\theta\sigma}(2\theta-1) > 0 \text{ if } \theta > \frac{1}{2} \\ &< 0 \text{ if } \theta < \frac{1}{2} \end{aligned}$$

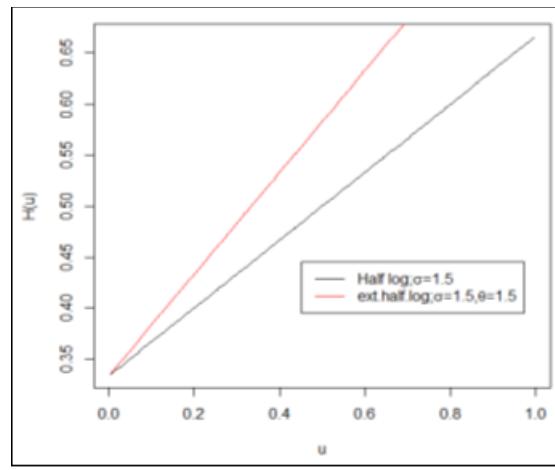
The change in the monotonic behaviour of hazard quantile functions of the above mentioned distributions and some more distributions are depicted in figure 1.



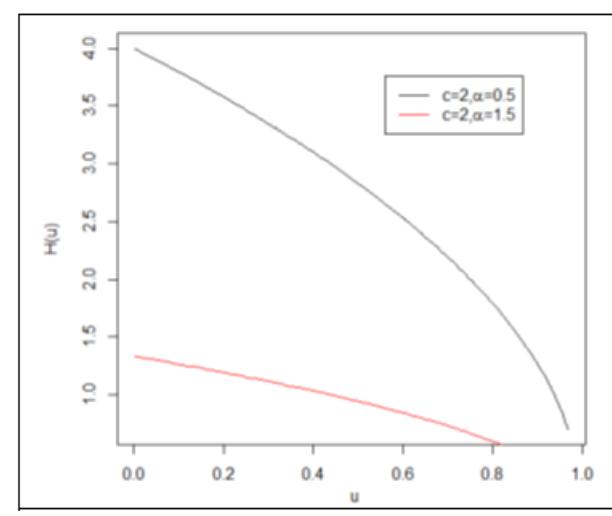
Exponential and Extended Exponential



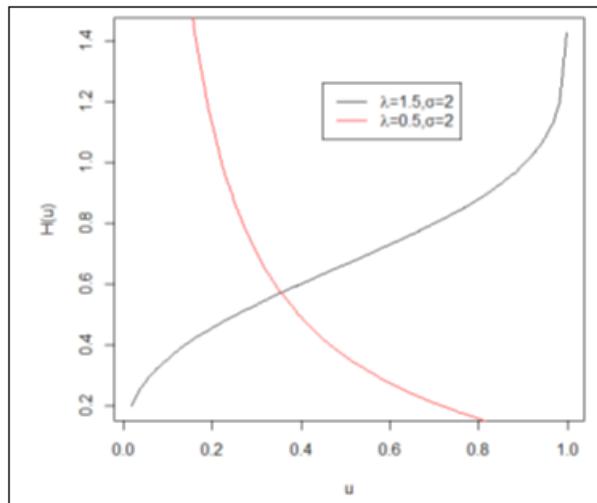
Extended Weibull



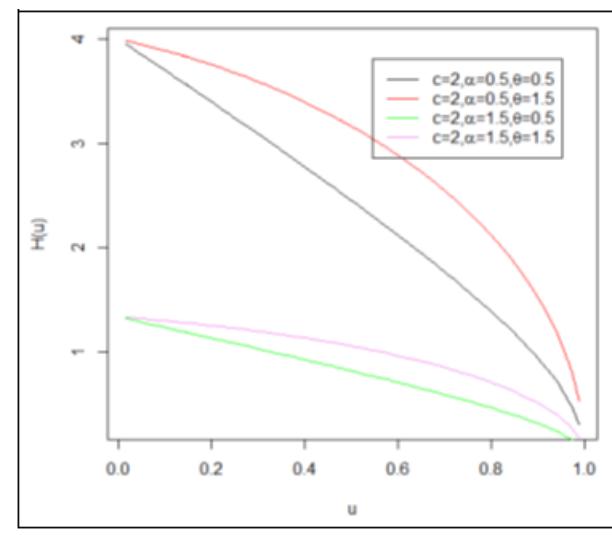
Half Logistic and Extended Half Logistic



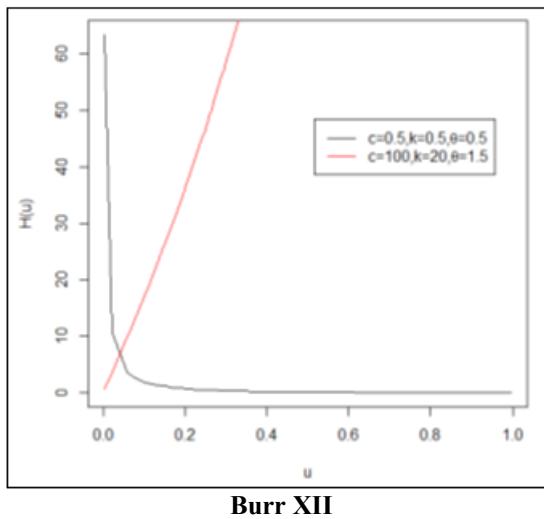
Pareto



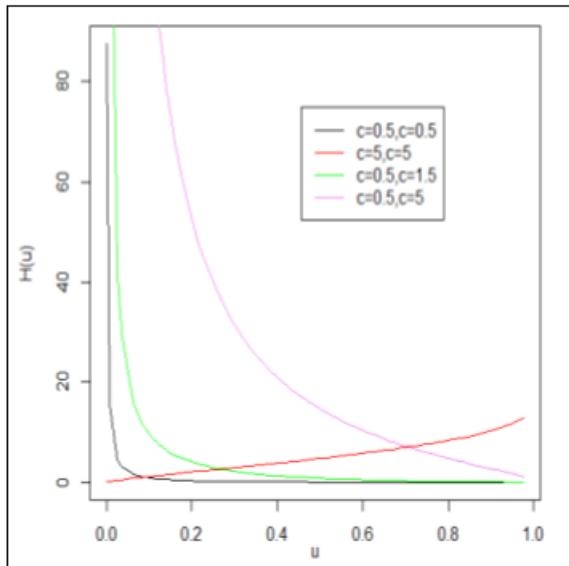
Weibull



Extended Pareto



Burr XII



Extended Burr XII

Figure 1: Hazard functions of some distributions and their extended versions

4. Extended Tukey Lambda Distribution

Tukey Lambda distribution was first introduced in the paper (Hastings et al., 1947). Since then, many of the generalisations, properties, estimation procedures and applications of Lambda distribution have been discussed by several authors. Some of the references are (Tarsitano, 2004), (Freimer et al., 1988), (Haritha, 2017) etc.

The quantile function of Tukey Lambda distribution is given by

$$Q_x(u) = \frac{u^\lambda - (1-u)^\lambda}{\lambda} \quad (8)$$

Using (5) the quantile function of extended Tukey Lambda distribution is obtained as

$$Q_y(u) = \frac{(u\theta)^\lambda - (1-u)^\lambda}{\lambda(1-(1-\theta)u)^\lambda} \quad (9)$$

When $\theta = 1$ this will reduce to Tukey Lambda distribution. The Tukey Lambda distribution is useful for modeling

symmetric distributions only but this extended version also include skewed distributions.

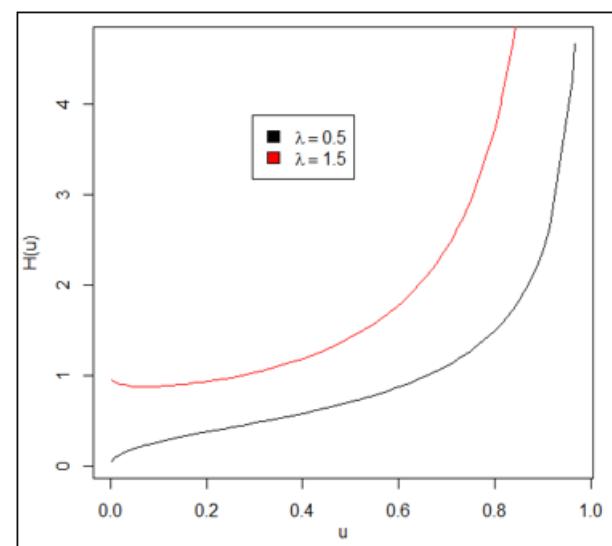
The hazard quantile function of Tukey Lambda distribution is given by

$$H_x(u) = \{(1-u)(u^{\lambda-1} + (1-u)^{\lambda-1})\}^{-1} \quad (10)$$

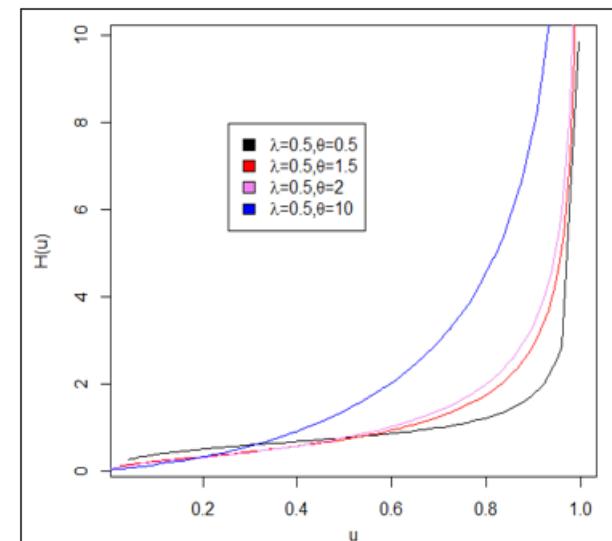
Now using (7) the hazard quantile function of extended Tukey lambda distribution is obtained as

$$H_y(u) = \frac{(1-(1-\theta)u)^{\lambda+1}}{\theta^\lambda u^{\lambda-1}(1-u) + \theta(1-u)^\lambda} \quad (11)$$

The monotonicity of hazard functions of Tukey lambda and its extended version is given in figure 2.



Monotonicity of hazard function of Tukey Lambda distribution



Monotonicity of hazard function of Extended Tukey Lambda distribution

Figure 2: Hazard function of Tukey Lambda and its extended version

5. Estimation of parameters of Extended Tukey Lambda Distribution

The methods of estimation like matching 25th and 75th percentiles, matching quantile measures of location and dispersion and the conventional percentile method can be used to estimate parameters of Extended Tukey Lambda distribution. We have compared these three methods using a simulation study.

Thousands samples of sizes $n = 25, 50$ and 100 for two sets of parameter values $\theta = 0.5, \lambda = 1.5$ and $\theta = 0.8, \lambda = 0.05$ are generated using the result that if U has uniform distribution over $(0,1)$ then $Q(u)$ and X have the same distribution. The estimates using matching 25th and 75th percentiles (percentile method 1) are obtained by solving the equations

$$\frac{(0.25\theta)^{\lambda} - (0.75)^{\lambda}}{\lambda(1 - (1 - \theta)0.25)^{\lambda}} = P_{25} \quad \text{and} \quad \frac{(0.75\theta)^{\lambda} - 0.25^{\lambda}}{\lambda(1 - (1 - \theta)0.75)^{\lambda}} = P_{75}$$

where P_{25} and P_{75} are the 25th and 75th percentiles of the sample. In matching quantile measures of location and dispersion the estimates are obtained by solving the equations

$$\frac{\theta^{\lambda} - 1}{\lambda(1 + \theta)^{\lambda}} = Me \quad \text{and}$$

$$\frac{1}{\lambda} \left\{ \frac{(0.75\theta)^{\lambda} - 0.25^{\lambda}}{(1 - (1 - \theta)0.75)^{\lambda}} - \frac{(0.25\theta)^{\lambda} - 0.75^{\lambda}}{(1 - (1 - \theta)0.25)^{\lambda}} \right\} = IQR$$

where Me and IQR are the sample median and sample interquartile range respectively. In the conventional method of percentiles (percentile method 2) the estimates are

obtained by solving the equations $\frac{\theta^{\lambda} - 1}{\lambda(1 + \theta)^{\lambda}} = Me$ and

$$\frac{1}{\lambda} \left\{ \frac{(0.9\theta)^{\lambda} - 0.1^{\lambda}}{(1 - (1 - \theta)0.9)^{\lambda}} - \frac{(0.1\theta)^{\lambda} - 0.9^{\lambda}}{(1 - (1 - \theta)0.1)^{\lambda}} \right\} = \hat{Q}(0.9) - \hat{Q}(0.1)$$

where $\hat{Q}(0.9)$ and $\hat{Q}(0.1)$ are 0.9th and 0.1th sample quantiles respectively. The MSEs calculated are summarized in Table 1.

Table 1: MSE of estimates

Method of estimation	Percentile 1	Percentile 2	Quantile measures
MSE of estimates when			
n=25	$\theta = 0.5$	0.0534	0.0517
	$\lambda = 1.5$	0.0631	0.0439
	$\theta = 0.8$	0.1514	0.1328
	$\lambda = 0.05$	0.0874	0.031
n=50	$\theta = 0.5$	0.0224	0.0237
	$\lambda = 1.5$	0.0292	0.0173
	$\theta = 0.8$	0.0544	0.0599
	$\lambda = 0.05$	0.0441	0.0152
n=100	$\theta = 0.5$	0.0116	0.0109
	$\lambda = 1.5$	0.012	0.0075
	$\theta = 0.8$	0.026	0.0286
	$\lambda = 0.05$	0.0188	0.0073

We can conclude that all the three methods are suitable for estimating the parameters of extended Tukey Lambda distribution.

6. Application of Extended Tukey Lambda Distribution

To illustrate the application of Extended Tukey Lambda Distribution we have considered a data reported in <https://covid19.who.int/>. This data represents daily deaths due to COVID 19 in Europe from 1st March to 30th March 2020. 6, 18, 29, 28, 47, 55, 40, 150, 129, 184, 236, 237, 336, 219, 612, 434, 648, 706, 838, 1129, 1421, 118, 116, 1393, 1540, 1941, 2175, 2278, 2824, 2803, 2667.

The sample median and interquartile range of this data is obtained as Median = 336 and IQR = 1290. Equating these values to the median and inter quartile range of Extended Tukey Lambda Distribution we get the following equations.

$$\frac{(0.5\theta)^{\lambda} - 0.5^{\lambda}}{\lambda(1 - 0.5(1 - \theta))^{\lambda}} = 336$$

$$\frac{(0.75\theta)^{\lambda} - 0.25^{\lambda}}{\lambda(1 - 0.75(1 - \theta))^{\lambda}} - \frac{(0.25\theta)^{\lambda} - 0.75^{\lambda}}{\lambda(1 - 0.25(1 - \theta))^{\lambda}} = 1290$$

Solving these equations using Newton Raphson method in the R software we have obtained the estimates of the parameters as $\hat{\theta} = 111.027212$ and $\hat{\lambda} = -1.286681$.

To examine the adequacy of the model two goodness of fit techniques such as Kolmogorov Smirnov test and Chi-square test have been applied. The value of KS statistic is 0.16129 and the p value is 0.8235. Instead of conventional chi-square procedure a more easier method suggested by (Voinov, V. et. al., 2013) has been adopted here. The calculated value of chi-square is obtained as 2.854 and $\chi^2_{0.05,30} = 43.77297$. So both the goodness of fit procedures suggest that the Extended Tukey Lambda Distribution is a reasonable model for the given data set.

7. Conclusion

In this paper we have introduced the Marshall Olkin approach to the quantile functions for adding new parameters. We have obtained a new quantile function from an existing quantile function by introducing a tilt parameter θ . The change in the monotonicity of hazard functions of extended versions of several distributions have been discussed. A detailed study of an extended version of Tukey Lambda Distribution has also been carried out in this paper. We have also claimed that this Extended Tukey Lambda Distribution has potential to model COVID 19 data.

Acknowledgements

The corresponding author acknowledges DST-FIST, Government of India, RUSA, Government of India and DBT STAR College Scheme for providing facilities in the institution.

Availability of Data and Materials

To illustrate the application of Extended Tukey Lambda Distribution we have considered a data reported in <https://covid19.who.int/>. This data represents daily deaths due to COVID 19 in Europe from 1st March to 30th March 2020.

Competing Interest Declaration

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author Contribution Declaration

Both the authors equally contributed to the manuscript.

References

[1] Afify, A. Z., Cordeiro, G. M., Ibrahim, N. A., Jamal, F., Elgarhy, M., & Nasir, M. A. (2021). *The Marshall-Olkin Odd Burr III-G Family: Theory, Estimation, and Engineering Applications*. 9(3). <https://doi.org/10.1109/ACCESS.2020.3044156>

[2] Afify, A. Z., Hamedani, G. G., Ghosh, I., Mead, M. E., & Hamedani, G. G. (2015). The Transmuted Marshall-Olkin Fréchet Distribution: Properties and Applications. *International Journal of Statistics and Probability*, 4(4), 132–148. <https://doi.org/10.5539/ijsp.v4n4p132>

[3] Afify, A. Z., Nassar, M., Cordeiro, G. M., & Kumar, D. (2020). *The Weibull Marshall – Olkin Lindley distribution: properties and estimation* *The Weibull Marshall – Olkin Lindley distribution: properties and estimation*. <https://doi.org/10.1080/16583655.2020.1715017>

[4] Ahsan, M., Afify, A. Z., Al-mofleh, H., Usman, M., Alqawba, M., & Sarg, A. M. (2021). *Pakistan Journal of Statistics and Operation Research The Extended Marshall-Olkin Burr III Distribution: Properties and Applications*. 17(1), 1–14.

[5] Al-noor, N. H., & Hadi, H. H. (2021). *Properties and Applications of Truncated Exponential Marshall Olkin Weibull Distribution Properties and Applications of Truncated Exponential Marshall Olkin Weibull Distribution*. <https://doi.org/10.1088/1742-6596/1879/3/032024>

[6] Benkhelifa, L. (2017). *Computation The Marshall – Olkin extended generalized Lindley distribution: Properties and applications* *The Marshall – Olkin extended generalized Lindley distribution*: 0918. <https://doi.org/10.1080/03610918.2016.1277747>

[7] Cakmakyan, S., Mousa, Y., & El, H. (2018). *The Kumaraswamy Marshall-Olkin Log-Logistic Distribution with Application*. 17(1), 59–76.

[8] Castellares, F., & Lemonte, A. J. (2016). Communications in Statistics - Theory and Methods On the Marshall – Olkin extended distributions On the Marshall – Olkin extended distributions. *Communications in Statistics---Theory and Methods*, 45(15), 4537–4555. <https://doi.org/10.1080/03610926.2014.922986>

[9] Chipepa, F., Oluyede, B., & Makubate, B. (2020). *The Topp-Leone Marshall-Olkin-G Family of Distributions With Applications*. 9(4).

[10] Cui, W., Yan, Z., & Peng, X. (2020). *A New Marshall Olkin Weibull Distribution*. 28(1).

[11] Freimer, M., Lin, C. T., & Mudholkar, G. S. (1988). A Study Of The Generalized Tukey Lambda Family. *Communications in Statistics - Theory and Methods*, 17(10), 3547–3567. <https://doi.org/10.1080/0361092880829820>

[12] Güney, Y., Tuac, Y., & Arslan, O. (2017). *Marshall – Olkin distribution: parameter estimation and application to cancer data* *Marshall – Olkin distribution: parameter estimation and*. 4763. <https://doi.org/10.1080/02664763.2016.1252730>

[13] Handique, L., & Chakraborty, S. (2017). *The beta generalized marshall-olkin kumaraswamy-G family of distributions with applications*. December.

[14] Haridas, H. N. (2017). Modeling censored data using modified lambda family. *Communications in Statistics - Theory and Methods*, 46(8), 3838–3847. <https://doi.org/10.1080/03610926.2015.1073316>

[15] Hastings, C., Mosteller, F., Tukey, J. W., & Winsor, C. P. (1947). Low Moments for Small Samples: A Comparative Study of Order Statistics. *The Annals of Mathematical Statistics*, 18(3), 413–426. <https://doi.org/10.1214/aoms/117730388>

[16] Korkmaz, M. Ç., Cordeiro, G. M., Yousof, H. M., Rodrigo, R., Afify, A. Z., Nadarajah, S., Korkmaz, M. Ç., Cordeiro, G. M., & Yousof, H. M. (2019). Communications in Statistics - Theory and Methods The Weibull Marshall – Olkin family: Regression model and application to censored data The Weibull Marshall – Olkin family: Regression model. *Communications in Statistics - Theory and Methods*, 48(16), 4171–4194. <https://doi.org/10.1080/03610926.2018.1490430>

[17] Kumar Maladan, D., & Sankaran, P. G. (2020). A new family of quantile functions and its applications. *Communications in Statistics - Theory and Methods*. <https://doi.org/10.1080/03610926.2020.1713368>

[18] Kundu, D. (2015). *Marshall-Olkin Generalized Exponential Distribution*. November.

[19] Makubate, B., Chipepa, F., Oluyede, B., & Peter, P. O. (2021). *The Marshall-Olkin Half Logistic-G Family of Distributions With Applications* *The Marshall-Olkin Half Logistic-G Family of Distributions With Applications*. February. <https://doi.org/10.5539/ijsp.v10n2p119>

[20] Mansoor, M., Tahir, M. H., Cordeiro, G. M., Provost, S. B., & Alzaatreh, A. (2018). The Marshall-Olkin logistic-exponential distribution The Marshall-Olkin logistic-exponential distribution. *Communications in Statistics---Theory and Methods*, 0(0), 1–15. <https://doi.org/10.1080/03610926.2017.1414254>

[21] Mansoor, M., Tahir, M. H., Cordeiro, G. M., Provost, S. B., & Alzaatreh, A. (2019). The Marshall-Olkin logistic-exponential distribution. *Communications in Statistics - Theory and Methods*, 48(2), 220–234. <https://doi.org/10.1080/03610926.2017.1414254>

[22] Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. *Biometrika*, 84(3), 641–652. <https://doi.org/10.1093/biomet/84.3.641>

[23] Mathew, J., & Chesneau, C. (2020). *Some New Contributions on the Marshall – Olkin Length Biased*

Lomax Distribution: Theory, Modelling and Data Analysis. 0(1), 1–21.
<https://doi.org/10.3390/mca25040079>

[24] Nair, N. U., & Paduthol, S. (2009). *Quantile-Based Reliability Analysis Quantile-Based Reliability Analysis*. January.
<https://doi.org/10.1080/03610920802187430>

[25] Nair, N. U., Sankaran, P. G., & Balakrishnan, N. (2013). Quantile-based reliability analysis. In *Quantile-Based Reliability Analysis*. Springer New York.
<https://doi.org/10.1007/978-0-8176-8361-0>

[26] Nair, N. U., Sankaran, P. G., & Kumar, B. V. (2012). Modelling lifetimes by quantile functions using Parzen's score function. *Statistics*, 46(6), 799–811.
<https://doi.org/10.1080/02331888.2011.555551>

[27] Nwezza, E. E., & Ugwuowo, F. I. (2020). The Marshall-Olkin Gumbel-Lomax distribution: properties and applications. *Heliyon*, 6(3).
<https://doi.org/10.1016/j.heliyon.2020.e03569>

[28] Saboor, A., & Pogany, T. K. (2016). Marshall-Olkin gamma-Weibull distribution with applications. *Communications in Statistics - Theory and Methods*, 45(5), 1550–1563.
<https://doi.org/10.1080/03610926.2014.953694>

[29] Sankaran, P. G., Nair, N. U., & Midhu, N. N. (2016). A New Quantile Function with Applications to Reliability Analysis. *Communications in Statistics: Simulation and Computation*, 45(2), 566–582.
<https://doi.org/10.1080/03610918.2013.867992>

[30] *Statistical Modelling with Quantile Functions - Warren Gilchrist - Google Books*. (n.d.). Retrieved June 14, 2021, from https://books.google.co.in/books?hl=en&lr=&id=7c1Limp_e-AC&oi=fnd&pg=PP1&dq=statistical+modelling+using+quantile+functions&ots=nchrEoyLHh&sig=7BBoCTp6dTLWB6gS3fG9_awIrMg#v=onepage&q=statistical+modelling+using+quantile+functions&f=false

[31] Tarsitano, A. (2004). Fitting the Generalized Lambda. *Compstat*, 0(1).

[32] Voinov, V., Balakrishnan, N., Nikulin, M. S. (2013). *Chi-Squared Goodness of Fit Tests with Applications*, Academic, Boston.

[33] Yousof, H. M., & Afify, A. Z. (2018). *The Marshall-Olkin Generalized-G Family Of Distributions With Applications*.