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Abstract: Speaking of speech recognitions within the English languages, it is the process of recognizing oval speeches and transcribings
it into writing using exclusive algorithms. For the perishable skill of English language learning, use of innovative speech recognition
technology using Advanced Speech Recognition Technologies MLP-LSTM is proposed in this paper to advance the existing online
learning platforms. Previous research addresses the importance of NLP in English language learning but notes the challenges in
effectively extracting and segmenting features from multimodal data. In order to overcome these problems, this paper incorporate the
proposed MLP for feature extraction and LSTM for sequence learning. The utilization of MLP-LSTM provides not only a brilliant
improvement of the capacity to transform spoken language and perceive it but also minimizes the Word Error Rate (WER) to 0.075. With
this low WER, along with the total accuracy rate of 98.25 %, this paper focus on underlining how this system is more effective than
traditional language learning tools. This paper has been implemented through Python Software. The given MLP-LSTM based speech
recognition model lays the foundation for a highly complex yet accurate paced English language learning platform that will cater to the

needs of the learners in the global scenario.
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1. Introduction

English language learning is the process of acquiring
proficiency in English, which is the most widely spoken and
studied language globally [1]. It includes strengthening
speaking, listening, reading, and writing abilities, and in many
areas, it is crucial for advancement in the class- room, the
workplace, and personal life [2]. Learners come from a
variety of language and cultural backgrounds and range in age
from young children to adults [3]. Learning usually begins
with fundamental abilities like syntax and vocabulary, then
moves on to more intricate linguistic nuances and structures
[4]. There are other approaches used, such as online courses,
immersive learning, conventional classroom training, and
language apps. Particularly successful are interactive and
communicative methods that emphasise practical application
and conversational practice [5]. The ability to learn English
has been greatly improved by technological developments.
Personalised and captivating experiences can be had using
tools like speech recognition software, virtual classrooms,
and language learning apps [6]. By offering opportunities for
practice in real-world scenarios, adaptive learning pathways,
and quick feedback, these technologies improve accessibility
and efficiency of language acquisition [7]. Learning a
language can be difficult due to factors including individual
learning styles, motivation levels, and availability of high-
quality materials. But as more and more digital tools and
resources become available, learning outcomes continue to
improve, making English competence accessible to a wider
audience [8]. Speech recognition technology is transforming
English language instruction by giving students
individualised and engaging experiences [9]. With the use of
this technology, computers can now understand spoken
language and react accordingly, providing practice and real-
time feedback- both of which are essential for language
learning [10]. Tools for speech recognition provide many

benefits for English language learners [11]. Without the
assistance of a human teacher, they can improve their
speaking abilities, practise pronouncing words correctly, and
get instant feedback [12]. Speech recognition is used by pro-
grammes like virtual assistants and language learning
applications to generate dynamic and interesting lessons that
are customised to the learner’s skill level [13]. The accuracy
and efficacy of these systems are improved by integrating
sophisticated frameworks like LSTM networks and MLP
[14]. Feedback from MLP-LSTM frameworks is accurate and
context-aware since they are better at identifying different
accents, intonations, and speech rates [15]. For non-native
speakers who need to learn the subtleties of English, this is
quite helpful. Speech recognition technology is becoming
more and more reliable despite certain obstacles, such as
handling background noise and various speech patterns [16].
Even though the technology developments hit the market, the
current speech recognition systems using machine learning
face challenges in handling diverse accents, dialects, and
speech patterns [17]. They often require extensive training
data and computational resources, and still struggle with
background noise and context variability, leading to lower
accuracy and reliability in real-world, multilingual
environments [18]. So, this paper aims to enhance speech
recognition for English language learning using MLP-LSTM,
addressing current challenges like accent variability, noise
interference, and contextual understanding for improved
accuracy and personalization.

Motivated by the hybrid mechanisms in the recent
technologies’ development, this paper aims to leverage the
advantages of combined MLP-LSTM framework for the
detection of speech recognition for English language learning.
Using the MLP and LSTM framework for speech recognition
is a state-of-the-art method for processing and
comprehending spoken language. This hybrid model
incorporates the best aspects of both MLP for deep learning-
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based pattern identification and LSTM for sequential data
processing and long-term context maintenance [19]. The
accuracy and performance of voice recognition are greatly
improved by the MLP-LSTM framework. While LSTM
networks capture temporal dependencies and context both
essential for comprehending natural language, MLP
processes complicated, non-linear interactions between
speech components. By combining these two factors, the sys-
tem can more effectively handle differences in speech speeds,
accents, and background noise, leading to more accurate
recognition results. This technology delivers revolutionary
benefits for learning English. Students receive accurate and
timely feedback on their grammar and pronunciation,
allowing them to make corrections and increase their fluency
instantly. The MLP-LSTM framework’s adaptable feature
enables customised learning experiences by adapting to the
unique requirements and advancement of each student. The
key contributions of this paper are as follows.

1) This study introduces a novel hybrid framework that
combines Multilayer Perceptron (MLP) and Long Short-
Term Memory (LSTM) networks. By leveraging the
MLP’s ability to handle high- dimensional data and the
LSTM’s capacity to manage long-term dependencies, the
proposed framework aims to significantly enhance the
accuracy and robustness of speech recognition systems.

2) The dataset used in this study is meticulously curated from
Kaggle, consisting of a variety of voiced digit audio files
from the Google Speech Commands Dataset and the Free
Spoken Digit Dataset. The thorough pre-processing
techniques, including noise reduction using the median
filter method and normalization, ensure high-quality and
consistent audio data for model training and evaluation.

3) The study employs Mel Frequency Cepstral Coefficients
for feature extraction, a technique that effectively captures
essential characteristics of audio signals. The detailed
process of framing, windowing, Fourier Transform, power
spectrum calculation, Mel-scale filter application,
logarithm, and Discrete Cosine Transform (DCT) pro-
vides a robust feature set for subsequent analysis.

4) The proposed MLP-LSTM model is rigorously trained and
evaluated using an 80:20 train-test split. The training
process includes multiple layers of MLP with the Softmax
activation function, dropout layers to prevent overfitting,
and an LSTM layer to capture sequential dependencies.
This structured approach ensures comprehensive learning
and validation of the model.

5) The study presents a detailed algorithm outlining the steps
for implementing the MLP-LSTM framework, from data
loading and pre- processing to feature extraction, model
building, training, evaluation, and prediction. This
provides a clear roadmap for replicating and applying the
proposed method in practical speech recognition
applications.

The article’s remaining section is organised as follows. The
associated works are described in Section 2. The problem
statement of the suggested paper is explained in Section 3. In
Section 4, the MLP-LSTM network’s construction was
explained. Section 5 discusses the performance evaluation of
the proposed MLP-LSTM network, and Section 6 wraps up
the article proposed speech detection methods for studying
English that use processing of natural languages research and
extraction of characteristics. Word segmentation is a key

function of NLP, a technique that aids computers in
understanding human languages. This research introduces an
advanced deep learning extraction of features technique for
multipurpose characteristic retrieval using a multipurpose
neural network for every phase. Features in distinct modes are
converted to same-modal features by this method. The article
presents a hybrid network method for segmenting keywords
in English that takes into account the enduring connection
among training time for forecasting approximation and
textual interpretation. This technique solves long-distance
dependency, reduces network training and prediction time,
and annotates phrases in sequence using BI-GRU and the
Conditional Random Field model. Investigations demonstrate
that this approach delivers identical outcome results as BI-
LSTM-CREF, but with a median predicted rate of processing
which is 1.94 times speedier.

Weng, Qin, Tao, Pan, Liu, Li [23] proposed a speech
recognition technique employed by deep learning enabled
semantic communications. This study presents the creation of
a deep learning-based conceptual interaction system for voice
distribution, named Deep SC-ST. Voice generation and
detection has been considered to be the interaction system’s
corresponding distribution roles. Following the extraction of
speech recognition-related semantic information for
distribution by a combined conceptual-channel encoder, the
uttered phrase is recovered at the final location based on the
obtained semantic characteristics. This greatly minimises the
necessary amount of information to be trans- mitted while
preserving efficiency. Subsequently, speech synthesis is
carried out at the recipient, which is responsible for
regenerating the voice outputs by providing a neural network
modules with the recognised text and the speaker
characteristics. The simulation findings demonstrate that the
proposed DeepSC-ST operates far more effectively than the
two the current DL-enabled communication devices and
traditional systems for communication, especially in the low
signal-to-noise ratio regime. A programme presentation is
additionally built as an example of design for the DeepSC-
ST. A limitation of the DeepSC-ST approach is its reliance on
a high-quality conceptual-channel encoder, which may not
perform optimally in highly variable or noisy environments.

Lin, Guo, Zhang [24], Chen suggested a single architecture
for recognition of speech in several languages. An audio
method, a phonological method, and a linguistic type are three
fundamental elements that this study employs to merge
linguistic speech recognition into a single structure. The
primary objective is on reliable speech identification in air
traffic control. The principal objective of this investigation is
for the PM to convey the phoneme-based phrases that the AM
transforms ATC voice into. Both phoneme- and word-based
inaccuracies in the decoding results are corrected by the LM.
It is suggested that a multiscale CNN architecture be used to
suit the various data variations and enhance efficiency in
order to handle radio trans- mission noise and speaker
variability. A suggested machine translation PM with an
encoder-decoder structure addresses phoneme-to-word
conversion. By creating dependencies with frequent terms,
RNN-based LMs are trained to take into account the code-
switching peculiarity of the ATC speech. The ability to
generalise the decoding performance is validated on multiple
public corpora, and it is comparable to the end-to-end
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model’s, which makes it appropriate for real-time methods for
assisting ATC tasks like security verification and ATC
predictions. A limitation of this multilingual speech
recognition architecture is its potential difficulty in handling
highly specialized or rare phoneme variations not well-
represented in the training data.

The papers present advancements in deep learning for speech
recognition and NLP, including enhanced voice recognition
algorithms, bilingual speech-to-text translation, efficient
word segmentation, robust techniques, the study aims to
achieve higher accuracy and robustness in converting spoken
language into text. This approach is pivotal in advancing the
capabilities of speech recognition technology, addressing
challenges such as variability in speech patterns and
environmental noise. The working methodology of this MLP-
LSTM framework has been described in Fig. 1.

2. Problem Statement

The literature reveals significant advancements and
challenges in integrating speech recognition technologies
with deep learning for enhancing English language learning
platforms. One study emphasizes the potential of deep
learning in improving the accuracy of speech recognition
systems by combining speech features and attributes.
However, there is a need for more efficient algorithms that
can seamlessly integrate these elements to enhance system
performance further. Another study showcases the use of
machine learning techniques to facilitate bilingual speech
recognition, yet it highlights the complexities involved in
achieving seamless language translation and voice
recognition [20]. Additionally, research addresses the
importance of NLP in English language learning but notes the
challenges in effectively extracting and segmenting features
from multimodal data. The issue of long-term dependency
and prediction time also remains unresolved. Furthermore, a
semantic communication system utilizing deep learning for
efficient speech transmission has been proposed, but there is
still a necessity for further optimization to handle varying
signal-to-noise ratios. Lastly, a unified framework for
multilingual speech recognition tailored for air traffic control
has been presented, indicating a gap in generalizing such
robust solutions for diverse and interactive language learning
environments. These studies collectively underscore the need
for innovative research to address these challenges and
develop comprehensive, integrated solutions. In response to
these gaps, the proposed study aims to revolutionize English
language learning plat- forms by seamlessly integrating
speech recognition technologies with deep learning,
specifically utilizing a combination of MLP and LSTM
networks. This approach seeks to leverage the strengths of
MLP in handling high-dimensional data and LSTM in
managing long-term dependencies and temporal patterns in
speech, thereby addressing the aforementioned challenges
and advancing the state-of-the-art in language learning
technologies.

2.1 Data Collection
The dataset for this paper has been collected from Kaggle

[25]. The data sets contain a variety of voiced digit audio files,
which are crucial for building and evaluating voice

recognition techniques. Three segments make up the Google
Speech Commands Dataset: the audio folder has 10
recordings at 16 kHz for each digit (0-9), for a total of 100
re- cords; the validation folder has 100 recordings per digit,
for a total of 1000 recordings at 16 kHz; and the test folder
has 1000 recordings at 16 kHz for a thorough model
evaluation. In addition, there are 160 recordings in the Free-
Spoken Digit Dataset, which is housed in the free-spoken-
digit-dataset folder. Each of the four speakers has four
samples of each digit, all of which are recorded at 16 kHz.
This dataset is perfect for training, validating, and testing
speech recognition systems because of its diversity in
speakers and recording situations. It ensures thorough
performance assessment over a range of voices and digit
pronunciations. While the dataset is publicly available, it is
essential to respect the privacy and consent of individuals
whose voices were recorded, ensuring that the data is used
solely for research and development purposes. Additionally,
proper acknowledgment of the data source and adherence to
any licensing restrictions or terms of use pro- vided by Kaggle
are crucial for ethical compliance.

It is the procedure of organising and preparing raw data so
that it is ready for evaluation. Common steps in this technique
include data purification, integration, transformation,
reduction, discretization, handling missing values, copy
removal, standardisation or normalisation of characteristics,
and category-based variable encoding. The cleaning process
consists of identifying and correcting mistakes and
discrepancies in the data. By removing duplicates, each data
point is guaranteed to be distinct. Improving or establishing
characteristics ensures that each of the variables fall on an
identical scale, which can enhance the efficiency of machine
learning techniques. Effective data pre-processing ensures
that the data is accurate, complete, and ready for further
analysis, leading to stronger and more reliable model results.
Pre-processing data is generally necessary to ensure its
accuracy and consistency before evaluation. (Fig. 1)

2.2.1 Noise reduction by median filter method

The median filter significantly reduces noise in audio signals
by substituting the average values across a given range for all
samples of the audio. This technique removes impulsive noise
while maintaining crucial aspects of speech signals, such as
edges. Read the audio file, apply the median filter with a
certain kernel size usually an odd number, like 3 or 5, then
save the filtered output to put this into practice. By improving
the audio data’s quality, this pre-processing phase makes it
better suited for speech recognition model testing, validation,
and training. Unlike linear filters, the median filter preserves
the edges and sharp transitions in speech signals, ensuring
clarity in pronunciation and phonetic details essential for
accurate speech recognition, especially in language learning
applications. This makes it a suitable option over other filters,
which may blur or distort important features of the speech
signal. The better noise robustness and model performance
can be guaranteed by using this filter consistently across all
datasets training, validation, and test. The mathematical
expression of the median method can be stated as follows

y[n] =median {x[n —m],x [n—m+1],...,x[n+m—1],
x [n+m]} (1)

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper |D: SR241223124603

DOI: https://dx.doi.org/10.21275/SR241223124603

1387


http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Here, x[n] denotes the original signal
y[n] denotes the filtered signal

F—1
m= J—
2

k denotes the window size

2.2.2 Data normalization

In audio pre-processing, normalisation modifies the
amplitude of audio signals to attain a uniform loudness
throughout various recordings. With this method, distortion is
avoided while scaling the signal to a desired peak amplitude,
which for digital audio is usually between -1 and 1. The
procedure entails determining the signal’s maximum
amplitude, computing a scaling factor, and then applying this
factor to each and every sample in the signal. By supplying
consistent and com- parable input levels, normalisation
guarantees uniform volume levels, boosting audio quality and
the efficiency of future audio processing activities, such
speech recognition. The following is the mathematical
representation of the normalisation process:

x[#n]
Wil= —
Here, y[n] denotes the normalized signal

x[n] denotes the original signal
A denotes the absolute maximum value of the signal

@

pass and the results between 0 and 1 regulate the gates in
LSTM units. Tanh activation routines are also present to
control the values entering and leaving the memory cell,
which aids in maintaining the range of the variables. Below is
a summary of the components.

The forget gate’s primary job is to constantly determine
which elements of the cell’s state need to be retained and
which ones need to be eliminated. This allows the LSTM
system to focus on significant information and ignore
irrelevant data through lengthy patterns thereby making it
effective for issues needing the understanding of situations
through extended periods of time, such as speech recognition,
natural language processing, and time series forecasting. The
forget gate assigns a value, ranging from 0 to 1, to each
number in the cell state. A value close to 1 means "keep this
information," whereas a value close to 0 means "forget this
information."

=0 Weklh—1, x]+b) e 3)
Where, f; represents forget gate activation vector

o represents sigmoid activation function

W, represents weight matrix for the forget gate

h.— represents hidden state from the previous time step
x; represents input at the current time step

brrepresents bias vector for the forget gate

Together with the forget gate, the input gate determines which
extra information needs to be introduced to the cell state. The
candidate cell state and gate activation are its two primary
constituents. To enable the LSTM network to recognise and
apply novel structures, the input gate’s main function is to
regulate the entry of new data to the cell state. The input gate
assists the LSTM in striking the right balance among learning

fresh, appropriate data from the input series and preserving
essential long-term information by preferentially adjusting
the cell state. By retaining appropriate data over time and
continuously learning novel behaviours, this process enables
LSTMs to perform activities involving a long-term contextual
understanding, such as speech recognition, ma- chine
translation, and time series forecasting.

i[:U(VVj* [h[i

Where, i, represents input gate activation vector ; represents
weight matrix for the input gate b; represents bias vector for
the input gate

The candidate values to be added to the cell state are
computed as

C't=tanh (W [Re—1, %] + B2) 4

Where, C'¢ represents candidate cell state vector
W. represents weight matrix for the candidate cell state
b. represents bias vector for the candidate cell state

The cell state, which serves as the network’s memory and
retains data over extended sequences, is a crucial part of
LSTM networks. Because of its multi-time step design, it
avoids the vanishing gradient issue that plagues conventional
RNNSs. Three gates alter the cell state: the forget gate, which
chooses what data to remove; the input gate, which chooses
what new data to add; and the output gate, which manages the
cell state’s output. Using this method, LSTMs may efficiently
preserve and make use of long-term dependencies in
sequential data.

C=fixC—1+ixCt (5)

Where, C; represents updated cell state
C.— represents previous cell state

In an LSTM network, the information flow from the cell state
to the hidden state is controlled at each time step by the output
gate. Using the prior concealed state and the current input, it
decides which portions of the cell state should be output. A
sigmoid activation function, which generates values between
0 and 1, is in charge of the gate. The matching component of
the cell state should be transmitted to the output if the value
is close to 1, and it should be suppressed if it is close to 0.
LSTMs can selectively expose information that is important
for predictions or for layers further up in the network
according to this technique.

Or=0 (Wo[he—1, x:] + bo) (6)
Where, O; represents output gate activation vector
W, represents weight matrix for the output gate b, represents

bias vector for the output gate

The hidden state is then computed as
h:= Oy % tanh (Cy) (7)

Where, &, represents hidden state that is the output of the
LSTM cell

Algorithm 1. MLP-LSTM Framework
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Figure 1: Training and Testing Loss.

Table 1: Comparison Values of Average Training Time

with Existing Work
Model SQuAD | Wiki Text | Narrative QA
BI— LSTM — CRF 182 290 142
BI— GRU— CRF 104 169 101
Proposed MLP — LSTM 91 103 85

Table 2: Comparison Values of Average Prediction Time

with Existing Work.
Model SQuAD | Wiki Text | Narrative QA
BI— LSTM — CRF[22]| 189 289 141
BI — GRU — CRF[22] 96 148 92
Proposed MLP — LSTM 82 95 77

the workflow of an MLP-LSTM framework for speech
recognition. It starts with the initialization and importing of
necessary libraries. Audio files are then loaded and pre-
processed to extract features like MFCC. The data is checked
for validity and encoded into numerical labels. The model
uses MLP layers for feature extraction and LSTM layers for
sequence processing. After compiling, the model is trained,
evaluated on test data, and used for predictions on new audio
inputs. Error handling is incorporated throughout. (Figure 2)

Comparison Values of Average Training Time
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Figure 2: Comparison Values of Average Training Time

3. Results and Discussion

This section of the study on speech recognition using the
MLP-LSTM framework presents findings on model
performance and implications. This paper has been
implemented by using Python software. It highlights achieved
accuracy rates, training convergence, and generalization to
new data through testing. Discussion focuses on the
effectiveness of combining MLP for feature extraction and

LSTM for sequence modelling, addressing challenges like
noise robustness and variability in speech patterns. Insights
into the framework’s strengths and limitations are explored,
suggesting future research directions for further enhancing
speech recognition systems based on these findings. This
section critically evaluates the methodology’s success in
meeting its objectives and contributing to the field.

3.1 Testing and training accuracy

Fig.3 visually represents the performance metrics of the
developed model. It plots the accuracy scores obtained during
the algorithm’s implementation’s training and testing phases.
The training accuracy curve illustrates how well the model
learns from the training data over successive epochs or
iterations. Meanwhile, the testing accuracy curve indicates
how effectively the model generalizes to unseen data,
providing insights into its robustness and performance in real-
world scenarios. Such charts are essential for evaluating and
optimizing the MLP-LSTM framework to achieve high
accuracy and reliability in speech recognition tasks.

Comparison Values of Average Prediction
Time
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;’.
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7150 4
‘= 100
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B BI-LSTM-CRF W BI-GRU-CRT 1 Proposed IALP-LSTM

Figure 3: Comparison Values of Average Prediction Time.
3.2 Training and testing loss

Fig. 4 visualizes the progression of loss values throughout the
model’s training process. Loss measures how well the model
predicts the target output compared to the actual output, with
lower values indicating better performance. The training loss
curve depicts how quickly the model converges during
training, ideally decreasing over epochs as the model learns.
Conversely, the testing loss curve evaluates the model’s
ability to generalize to new data, showing trends in
performance on unseen samples. Monitoring these charts aids
in optimizing the MLP-LSTM framework for accurate and
efficient speech recognition applications.

3.3 Calculation of average training time

The average training time for a single sentence in speech
recognition, model complexity, computational resources, and
implementation efficiency. Typically, the training time T can
be expressed as follows.

T=LxCxF 3

Where L represents the length of the sentence in seconds
C represents the computational complexity per second of
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audio.
F represents factor accounting for hardware performance and
parallelization efficiency

Table 1 compares the average training times (in seconds) for
single sentences across three datasets: SQuAD, Wiki Text,
and NarrativeQA, using three models. The BI-LSTM-CRF
model exhibits the longest training times, with 182 s for
SQuAD, 290 s for Wiki Text, and 142 s for NarrativeQA,
reflecting the computational demands of LSTMs and CRFs.
The BI-GRU-CRF model is more efficient, with reduced
times of 104, 169, and 101 s due to the faster GRU cells. The
proposed MLP-LSTM model achieves the shortest training
times, at 91, 103, and 85 s, show- casing its optimized
architecture and training efficiency across all datasets. Fig. 6
describes the comparison values of average training times for
single sentences with existing works.

Performance Efficiency
99.00% 1
98.00% |~
£ 97.00% |
]
2 96.00%
95.90% +
94.00% T T
hevuracy Precision Reeall F1 sy

Figure 4: Performance Metrics for the Speech Recognition
3.4 Calculation of average prediction time

The average prediction time for a speech-recognition
sentence in- volves processing the input audio through the
trained model. Typically, prediction time is faster than
training, often taking milliseconds to a few seconds per
sentence on modern hardware, depending on model
complexity and optimization. The average prediction time can
be calculated using the following formula.

Twe=L®xCI, %P

Where, L represents the length of the sentence in seconds
Cpre represents the computational complexity per second of
audio

P represents the processing power

Table 2 compares the average prediction times (in seconds)
for single sentences across three datasets: SQuAD, WikiText,
and NarrativeQA, using different models. The BI-LSTM-
CRF model is the slowest, with times of 189 s, 289 s, and 141
s for SQuAD, WikiText, and NarrativeQA, respectively, due
to the complexity of bidirectional LSTMs and CRF layers.
The BI-GRU-CRF model improves efficiency, reducing
times to 96 s, 148 s, and 92 s for the respective datasets,
leveraging the faster GRU cells. The proposed MLP-LSTM
model is the fastest, achieving times of 82 s, 95 s, and 77 s,
demonstrating superior optimization and performance for
rapid prediction. Fig. 7 describes the comparison values of
average prediction times for single sentences with existing
works.

1.4
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Figure 5: ROC Curve
3.5 Performance Metrics of Proposed Method

Performance measures measure how well algorithms translate
spoken language into text. These metrics assess the system’s
accuracy in understanding and transcribing speech while
accounting for variables such as speaker unpredictability,
accents, and background noise. Metrics measuring memory
utilization and processing speed are also used to evaluate the
system’s viability. Speech recognition technologies, virtual
assistant programs, transcription services, and accessibility
tools can all be improved with better performance and
dependability by carefully analyzing these parameters. Fig. 8
depicts the performance efficiency of this research.

3.5.1 Word Recognition Accuracy

Word recognition accuracy quantifies the performance of a
speech recognition system by measuring the percentage of
correctly transcribed words. It is calculated by comparing the
system’s output to a reference transcript, accounting for errors
such as substitutions, deletions, and insertions. WRA reflects
the system’s performance, with higher per- centages
indicating better accuracy. The formula is:

WRA=1-(S+D+T)x 100%  (9)
N

Where, S represents the number of substitutions
D represents the number of deletions

I represents the number of insertions

N represents the total number of words

3.5.2 Word error rate

Word Error Rate is a common metric used to evaluate the
accuracy of speech recognition systems. It measures the
proportion of words incorrectly predicted by the system. A
lower WER indicates better performance. For instance, a
WER of 10 % means that 10 % of the words were incorrectly
recognized, reflecting the system’s error rate in transcription.
The formula for WER is:

S+D+1
N

IWER = % 100%  (10)

Where, S represents the number of substitutions
D represents the number of deletions

I represents the number of insertions

N represents the total number of words

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWWw.ijsr.net

Paper |D: SR241223124603

DOI: https://dx.doi.org/10.21275/SR241223124603

1390


http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

3.5.3 Word correct rate

Word Correct Rate is a metric used to evaluate the accuracy
of a speech recognition system by measuring the proportion
of correctly recognized words out of the total words in the
reference transcript. WCR indicates the percentage of words
correctly recognized without considering insertions. A higher
WCR signifies better performance. The for

WCR= N—5—Dx 100% (11)
Where, S represents the number of substitutions

D represents the number of deletions
N represents the total number of words
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Figure 6: Comparison of Performance Metrics Chart

3.5.4 Accuracy

The system’s capacity to accurately and error-free translate
spoken words into text is called accuracy. Metrics like Word
Error Rate (WER) and Character Error Rate (CER), which
quantify differences between the spoken words and the
recognized text, are commonly used to measure it. High
accuracy denotes fewer transcription errors, indicating a
better comprehension of various dialects, speech patterns, and
contextual factors. This study refines algorithms utilizing
linguistic models and training data to maximize accuracy.
This improves the use of the algorithms in voice-controlled
systems, transcription services, and language translation.
Accuracy measures are essential to assess developments and
guarantee consistent performance in voice recognition
technology.

TP+ TN
Accuracy = ¢ g (12)

(TP+ TN+ FP+FN]

The percentage of words that are accurately transcribed
relative to all words that the system has determined to be
correct is known as precision. Its main goal is to reduce false
positives- recognizing erroneous words as correct. Because
precision minimizes errors and pre- serves fidelity to the
spoken input, it is essential to ensure the transcribed text’s
accuracy. Advanced algorithms, linguistic models, and
context-aware processing methods can all lead to higher
precision. To improve usability and user satisfaction with
more dependable outputs, this statistic is crucial for
optimizing voice recognition systems in various applications,

including virtual assistants, dictation software, and
accessibility aids.
TP
Precision = (13)
(TP + FP)

3.5.5 Recall

Recall is the percentage of accurately transcribed words
relative to all words that ought to have been recognized as
correct. It strongly emphasizes reducing false negatives-
words that are mispronounced or overlooked. High recall
guarantees thorough coverage of spoken input, precisely
catching all pertinent terms. Optimizing recall requires fine-
tuning algorithms, combining various linguistic models, and
improving context awareness. This measure is essential for
enhancing the accuracy and completeness of transcriptions in
voice-activated systems, automated transcription services,
and language learning applications, among other uses. The
reliability and usability of voice recognition systems can be
improved in various real-world circumstances by optimizing
recall.

Recall TP= (TP + FN)

3.5.6 F1 score

The F1 score in voice recognition papers is a composite score
that measures total accuracy by combining recall and
precision parameters. It balances these measures to offer a
thorough assessment of transcribing performance. The F1
score provides a reliable evaluation of the system’s accuracy
in transcribing spoken language while reducing false
positives and negatives. It is computed as the harmonic mean
of precision and recall. By improving algorithms, modifying
thresholds, and adding language models, F1-Score was
maximized. This statistic is essential for evaluating speech
recognition systems across various languages, dialects, and
ambient circumstances to ensure dependable performance in
real-world applications.

Flscore = 2 % (Pracision % Recall) (14)

{Precision + Recall)

3.5.7 ROC curve

Fig. 9 shows the ROC curve, in which the area under the curve
quantifies the overall ability of the model to discriminate
between positive and negative classes. A model with an AUC
of 1.0 indicates perfect classification, while an AUC of 0.5
suggests performance no better than random chance. ROC
curves are useful for comparing different models and
selecting the optimal threshold for classification decisions.

Table 3 contains the comparison values of the Word Error
Rate of existing works and the proposed method. The table
compares the WER of different speech recognition models.
The CNN-HMM model has a WER of 0.185, while the DNN-
HMM improves to 0.105 using deep neural networks. The
CNN-RBM model, combining CNNs and restricted
Boltzmann machines, achieves a WER of 0.095. Adding an
adaptive sequence attention technique in CNN-RBM-ASAT
further reduces WER to 0.082. The proposed MLP-LSTM
model, utilizing multi-layer perceptrons and long short-term
memory networks, performs the best with a WER of 0.075,
indicating the highest accuracy in recognizing speech.

3.6 Discussion

During this paper’s training and testing phase, several
important discoveries were discovered. A broad dataset has
been used to improve model robustness, including a range of
speech styles, accents, and environmental conditions during
training. Effective learning of temporal relationships in
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speech sequences, a critical skill for accurate transcription,
was demonstrated using the MLP-LSTM architecture [27,28].
The model’s promising Word Error Rate (WER) of 0.075 %
during testing suggests that it can accurately transcribe
speech. Evaluations of precision and recall scores also
demonstrated the system’s capacity to reduce false positives
and false negatives in transcription tasks [20,22, 26]
Computational efficiency was also prioritized, and the MLP-
LSTM framework showed respectable processing speeds
appropriate for real-time applications. It could be better to
innovate and improve these technologies to support language
learners and educators in achieving proficiency and fluency
in spoken English, even though this study rep- resents a
significant advancement in using MLP-LSTM for speech
recognition in English language learning.

4. Conclusion

In summary, this work on MLP-LSTM framework voice
recognition has shown encouraging outcomes and possible
directions for further research. With a competitive Word
Error Rate (WER) and strong performance across a range of
accents and speaking styles, the MLP-LSTM architecture
demonstrated its efficacy in capturing temporal relation- ships
and nuances in spoken English. This technology, which offers
precise and customized feedback on pronunciation and
spoken fluency, has significant implications for improving
language learning experiences. Future research in this field
may concentrate on several important areas. Initially, adding
more accents and linguistic variances to the dataset would
improve the generalization and flexibility of the model.
Furthermore, adding real-time feedback systems to
instructional mate- rials might provide students with prompt
remediation recommendations, speeding up their language
learning. Investigating cutting-edge methods like transformer
structures or attention processes could help further optimize
the MLP-LSTM framework and increase computing
efficiency and transcription accuracy. Furthermore, adding
multimodal inputs like speaking mixed with gestures or facial
expressions could enhance the educational process and offer
more thorough feedback on communication abilities.
Resolving the model outputs’ interpretability and
guaranteeing error analysis openness are also essential for
building user confidence and improving instructional
applications. Lastly, longitudinal research could evaluate how
speech recognition technology affects language competency
and student involvement over the long run. In short, future
research projects will continue to innovate and improve these
technologies to better support language learners and
educators in achieving proficiency and fluency in spoken
English, even though this study represents a significant
advancement in using MLP-LSTM for speech recognition in
English language learning. Future research could benefit from
interdisciplinary collaborations with cognitive science to
enhance understanding of language acquisition processes and
with human-computer interaction experts to refine user
interfaces and engagement strategies. Integrating these fields
could lead to more effective and intuitive speech recognition
systems for language learners.
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