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Abstract: Speaking of speech recognitions within the English languages, it is the process of recognizing oral speeches and transcribings 

it into writing using exclusive algorithms. For the perishable skill of English language learning, use of innovative speech recognition 

technology using Advanced Speech Recognition Technologies MLP-LSTM is proposed in this paper to advance the existing online 

learning platforms. Previous research addresses the importance of NLP in English language learning but notes the challenges in 

effectively extracting and segmenting features from multimodal data. In order to overcome these problems, this paper incorporate the 

proposed MLP for feature extraction and LSTM for sequence learning. The utilization of MLP-LSTM provides not only a brilliant 

improvement of the capacity to transform spoken language and perceive it but also minimizes the Word Error Rate (WER) to 0.075. With 

this low WER, along with the total accuracy rate of 98.25 %, this paper focus on underlining how this system is more effective than 

traditional language learning tools. This paper has been implemented through Python Software. The given MLP-LSTM based speech 

recognition model lays the foundation for a highly complex yet accurate paced English language learning platform that will cater to the 

needs of the learners in the global scenario. 
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1. Introduction 
 

English language learning is the process of acquiring 

proficiency in English, which is the most widely spoken and 

studied language globally [1]. It includes strengthening 

speaking, listening, reading, and writing abilities, and in many 

areas, it is crucial for advancement in the class- room, the 

workplace, and personal life [2]. Learners come from a 

variety of language and cultural backgrounds and range in age 

from young children to adults [3]. Learning usually begins 

with fundamental abilities like syntax and vocabulary, then 

moves on to more intricate linguistic nuances and structures 

[4]. There are other approaches used, such as online courses, 

immersive learning, conventional classroom training, and 

language apps. Particularly successful are interactive and 

communicative methods that emphasise practical application 

and conversational practice [5]. The ability to learn English 

has been greatly improved by technological developments. 

Personalised and captivating experiences can be had using 

tools like speech recognition software, virtual classrooms, 

and language learning apps [6]. By offering opportunities for 

practice in real-world scenarios, adaptive learning pathways, 

and quick feedback, these technologies improve accessibility 

and efficiency of language acquisition [7]. Learning a 

language can be difficult due to factors including individual 

learning styles, motivation levels, and availability of high-

quality materials. But as more and more digital tools and 

resources become available, learning outcomes continue to 

improve, making English competence accessible to a wider 

audience [8]. Speech recognition technology is transforming 

English language instruction by giving students 

individualised and engaging experiences [9]. With the use of 

this technology, computers can now understand spoken 

language and react accordingly, providing practice and real-

time feedback- both of which are essential for language 

learning [10]. Tools for speech recognition provide many 

benefits for English language learners [11]. Without the 

assistance of a human teacher, they can improve their 

speaking abilities, practise pronouncing words correctly, and 

get instant feedback [12]. Speech recognition is used by pro- 

grammes like virtual assistants and language learning 

applications to generate dynamic and interesting lessons that 

are customised to the learner’s skill level [13]. The accuracy 

and efficacy of these systems are improved by integrating 

sophisticated frameworks like LSTM networks and MLP 

[14]. Feedback from MLP-LSTM frameworks is accurate and 

context-aware since they are better at identifying different 

accents, intonations, and speech rates [15]. For non-native 

speakers who need to learn the subtleties of English, this is 

quite helpful. Speech recognition technology is becoming 

more and more reliable despite certain obstacles, such as 

handling background noise and various speech patterns [16]. 

Even though the technology developments hit the market, the 

current speech recognition systems using machine learning 

face challenges in handling diverse accents, dialects, and 

speech patterns [17]. They often require extensive training 

data and computational resources, and still struggle with 

background noise and context variability, leading to lower 

accuracy and reliability in real-world, multilingual 

environments [18]. So, this paper aims to enhance speech 

recognition for English language learning using MLP-LSTM, 

addressing current challenges like accent variability, noise 

interference, and contextual understanding for improved 

accuracy and personalization. 

 

Motivated by the hybrid mechanisms in the recent 

technologies’ development, this paper aims to leverage the 

advantages of combined MLP-LSTM framework for the 

detection of speech recognition for English language learning. 

Using the MLP and LSTM framework for speech recognition 

is a state-of-the-art method for processing and 

comprehending spoken language. This hybrid model 

incorporates the best aspects of both MLP for deep learning-
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based pattern identification and LSTM for sequential data 

processing and long-term context maintenance [19]. The 

accuracy and performance of voice recognition are greatly 

improved by the MLP-LSTM framework. While LSTM 

networks capture temporal dependencies and context both 

essential for comprehending natural language, MLP 

processes complicated, non-linear interactions between 

speech components. By combining these two factors, the sys- 

tem can more effectively handle differences in speech speeds, 

accents, and background noise, leading to more accurate 

recognition results. This technology delivers revolutionary 

benefits for learning English. Students receive accurate and 

timely feedback on their grammar and pronunciation, 

allowing them to make corrections and increase their fluency 

instantly. The MLP-LSTM framework’s adaptable feature 

enables customised learning experiences by adapting to the 

unique requirements and advancement of each student. The 

key contributions of this paper are as follows. 

1) This study introduces a novel hybrid framework that 

combines Multilayer Perceptron (MLP) and Long Short-

Term Memory (LSTM) networks. By leveraging the 

MLP’s ability to handle high- dimensional data and the 

LSTM’s capacity to manage long-term dependencies, the 

proposed framework aims to significantly enhance the 

accuracy and robustness of speech recognition systems. 

2) The dataset used in this study is meticulously curated from 

Kaggle, consisting of a variety of voiced digit audio files 

from the Google Speech Commands Dataset and the Free 

Spoken Digit Dataset. The thorough pre-processing 

techniques, including noise reduction using the median 

filter method and normalization, ensure high-quality and 

consistent audio data for model training and evaluation. 

3) The study employs Mel Frequency Cepstral Coefficients 

for feature extraction, a technique that effectively captures 

essential characteristics of audio signals. The detailed 

process of framing, windowing, Fourier Transform, power 

spectrum calculation, Mel-scale filter application, 

logarithm, and Discrete Cosine Transform (DCT) pro- 

vides a robust feature set for subsequent analysis. 

4) The proposed MLP-LSTM model is rigorously trained and 

evaluated using an 80:20 train-test split. The training 

process includes multiple layers of MLP with the Softmax 

activation function, dropout layers to prevent overfitting, 

and an LSTM layer to capture sequential dependencies. 

This structured approach ensures comprehensive learning 

and validation of the model. 

5) The study presents a detailed algorithm outlining the steps 

for implementing the MLP-LSTM framework, from data 

loading and pre- processing to feature extraction, model 

building, training, evaluation, and prediction. This 

provides a clear roadmap for replicating and applying the 

proposed method in practical speech recognition 

applications. 

 

The article’s remaining section is organised as follows. The 

associated works are described in Section 2. The problem 

statement of the suggested paper is explained in Section 3. In 

Section 4, the MLP-LSTM network’s construction was 

explained. Section 5 discusses the performance evaluation of 

the proposed MLP-LSTM network, and Section 6 wraps up 

the article proposed speech detection methods for studying 

English that use processing of natural languages research and 

extraction of characteristics. Word segmentation is a key 

function of NLP, a technique that aids computers in 

understanding human languages. This research introduces an 

advanced deep learning extraction of features technique for 

multipurpose characteristic retrieval using a multipurpose 

neural network for every phase. Features in distinct modes are 

converted to same-modal features by this method. The article 

presents a hybrid network method for segmenting keywords 

in English that takes into account the enduring connection 

among training time for forecasting approximation and 

textual interpretation. This technique solves long-distance 

dependency, reduces network training and prediction time, 

and annotates phrases in sequence using BI-GRU and the 

Conditional Random Field model. Investigations demonstrate 

that this approach delivers identical outcome results as BI-

LSTM-CRF, but with a median predicted rate of processing 

which is 1.94 times speedier. 

 

Weng, Qin, Tao, Pan, Liu, Li [23] proposed a speech 

recognition technique employed by deep learning enabled 

semantic communications. This study presents the creation of 

a deep learning-based conceptual interaction system for voice 

distribution, named Deep SC-ST. Voice generation and 

detection has been considered to be the interaction system’s 

corresponding distribution roles. Following the extraction of 

speech recognition-related semantic information for 

distribution by a combined conceptual-channel encoder, the 

uttered phrase is recovered at the final location based on the 

obtained semantic characteristics. This greatly minimises the 

necessary amount of information to be trans- mitted while 

preserving efficiency. Subsequently, speech synthesis is 

carried out at the recipient, which is responsible for 

regenerating the voice outputs by providing a neural network 

modules with the recognised text and the speaker 

characteristics. The simulation findings demonstrate that the 

proposed DeepSC-ST operates far more effectively than the 

two the current DL-enabled communication devices and 

traditional systems for communication, especially in the low 

signal-to-noise ratio regime. A programme presentation is 

additionally built as an example of design for the DeepSC-

ST. A limitation of the DeepSC-ST approach is its reliance on 

a high-quality conceptual-channel encoder, which may not 

perform optimally in highly variable or noisy environments. 

 

Lin, Guo, Zhang [24], Chen suggested a single architecture 

for recognition of speech in several languages. An audio 

method, a phonological method, and a linguistic type are three 

fundamental elements that this study employs to merge 

linguistic speech recognition into a single structure. The 

primary objective is on reliable speech identification in air 

traffic control. The principal objective of this investigation is 

for the PM to convey the phoneme-based phrases that the AM 

transforms ATC voice into. Both phoneme- and word-based 

inaccuracies in the decoding results are corrected by the LM. 

It is suggested that a multiscale CNN architecture be used to 

suit the various data variations and enhance efficiency in 

order to handle radio trans- mission noise and speaker 

variability. A suggested machine translation PM with an 

encoder-decoder structure addresses phoneme-to-word 

conversion. By creating dependencies with frequent terms, 

RNN-based LMs are trained to take into account the code-

switching peculiarity of the ATC speech. The ability to 

generalise the decoding performance is validated on multiple 

public corpora, and it is comparable to the end-to-end 
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model’s, which makes it appropriate for real-time methods for 

assisting ATC tasks like security verification and ATC 

predictions. A limitation of this multilingual speech 

recognition architecture is its potential difficulty in handling 

highly specialized or rare phoneme variations not well-

represented in the training data. 

 

The papers present advancements in deep learning for speech 

recognition and NLP, including enhanced voice recognition 

algorithms, bilingual speech-to-text translation, efficient 

word segmentation, robust techniques, the study aims to 

achieve higher accuracy and robustness in converting spoken 

language into text. This approach is pivotal in advancing the 

capabilities of speech recognition technology, addressing 

challenges such as variability in speech patterns and 

environmental noise. The working methodology of this MLP-

LSTM framework has been described in Fig. 1. 

 

2. Problem Statement 
 

The literature reveals significant advancements and 

challenges in integrating speech recognition technologies 

with deep learning for enhancing English language learning 

platforms. One study emphasizes the potential of deep 

learning in improving the accuracy of speech recognition 

systems by combining speech features and attributes. 

However, there is a need for more efficient algorithms that 

can seamlessly integrate these elements to enhance system 

performance further. Another study showcases the use of 

machine learning techniques to facilitate bilingual speech 

recognition, yet it highlights the complexities involved in 

achieving seamless language translation and voice 

recognition [20]. Additionally, research addresses the 

importance of NLP in English language learning but notes the 

challenges in effectively extracting and segmenting features 

from multimodal data. The issue of long-term dependency 

and prediction time also remains unresolved. Furthermore, a 

semantic communication system utilizing deep learning for 

efficient speech transmission has been proposed, but there is 

still a necessity for further optimization to handle varying 

signal-to-noise ratios. Lastly, a unified framework for 

multilingual speech recognition tailored for air traffic control 

has been presented, indicating a gap in generalizing such 

robust solutions for diverse and interactive language learning 

environments. These studies collectively underscore the need 

for innovative research to address these challenges and 

develop comprehensive, integrated solutions. In response to 

these gaps, the proposed study aims to revolutionize English 

language learning plat- forms by seamlessly integrating 

speech recognition technologies with deep learning, 

specifically utilizing a combination of MLP and LSTM 

networks. This approach seeks to leverage the strengths of 

MLP in handling high-dimensional data and LSTM in 

managing long-term dependencies and temporal patterns in 

speech, thereby addressing the aforementioned challenges 

and advancing the state-of-the-art in language learning 

technologies. 

 

2.1 Data Collection 

 

The dataset for this paper has been collected from Kaggle 

[25]. The data sets contain a variety of voiced digit audio files, 

which are crucial for building and evaluating voice 

recognition techniques. Three segments make up the Google 

Speech Commands Dataset: the audio folder has 10 

recordings at 16 kHz for each digit (0–9), for a total of 100 

re- cords; the validation folder has 100 recordings per digit, 

for a total of 1000 recordings at 16 kHz; and the test folder 

has 1000 recordings at 16 kHz for a thorough model 

evaluation. In addition, there are 160 recordings in the Free-

Spoken Digit Dataset, which is housed in the free-spoken-

digit-dataset folder. Each of the four speakers has four 

samples of each digit, all of which are recorded at 16 kHz. 

This dataset is perfect for training, validating, and testing 

speech recognition systems because of its diversity in 

speakers and recording situations. It ensures thorough 

performance assessment over a range of voices and digit 

pronunciations. While the dataset is publicly available, it is 

essential to respect the privacy and consent of individuals 

whose voices were recorded, ensuring that the data is used 

solely for research and development purposes. Additionally, 

proper acknowledgment of the data source and adherence to 

any licensing restrictions or terms of use pro- vided by Kaggle 

are crucial for ethical compliance. 

 

It is the procedure of organising and preparing raw data so 

that it is ready for evaluation. Common steps in this technique 

include data purification, integration, transformation, 

reduction, discretization, handling missing values, copy 

removal, standardisation or normalisation of characteristics, 

and category-based variable encoding. The cleaning process 

consists of identifying and correcting mistakes and 

discrepancies in the data. By removing duplicates, each data 

point is guaranteed to be distinct. Improving or establishing 

characteristics ensures that each of the variables fall on an 

identical scale, which can enhance the efficiency of machine 

learning techniques. Effective data pre-processing ensures 

that the data is accurate, complete, and ready for further 

analysis, leading to stronger and more reliable model results. 

Pre-processing data is generally necessary to ensure its 

accuracy and consistency before evaluation. (Fig. 1) 

 

2.2.1 Noise reduction by median filter method 

The median filter significantly reduces noise in audio signals 

by substituting the average values across a given range for all 

samples of the audio. This technique removes impulsive noise 

while maintaining crucial aspects of speech signals, such as 

edges. Read the audio file, apply the median filter with a 

certain kernel size usually an odd number, like 3 or 5, then 

save the filtered output to put this into practice. By improving 

the audio data’s quality, this pre-processing phase makes it 

better suited for speech recognition model testing, validation, 

and training. Unlike linear filters, the median filter preserves 

the edges and sharp transitions in speech signals, ensuring 

clarity in pronunciation and phonetic details essential for 

accurate speech recognition, especially in language learning 

applications. This makes it a suitable option over other filters, 

which may blur or distort important features of the speech 

signal. The better noise robustness and model performance 

can be guaranteed by using this filter consistently across all 

datasets training, validation, and test. The mathematical 

expression of the median method can be stated as follows 

 

y[n] = median {x [n — m], x [n — m + 1], …, x [n + m — 1], 

x [n + m]} (1) 
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Here, x[n] denotes the original signal 

y[n] denotes the filtered signal 

 

 
k denotes the window size 

 

2.2.2 Data normalization 

In audio pre-processing, normalisation modifies the 

amplitude of audio signals to attain a uniform loudness 

throughout various recordings. With this method, distortion is 

avoided while scaling the signal to a desired peak amplitude, 

which for digital audio is usually between -1 and 1. The 

procedure entails determining the signal’s maximum 

amplitude, computing a scaling factor, and then applying this 

factor to each and every sample in the signal. By supplying 

consistent and com- parable input levels, normalisation 

guarantees uniform volume levels, boosting audio quality and 

the efficiency of future audio processing activities, such 

speech recognition. The following is the mathematical 

representation of the normalisation process: 

 

 
Here, y[n] denotes the normalized signal 

x[n] denotes the original signal 

A denotes the absolute maximum value of the signal 

 

pass and the results between 0 and 1 regulate the gates in 

LSTM units. Tanh activation routines are also present to 

control the values entering and leaving the memory cell, 

which aids in maintaining the range of the variables. Below is 

a summary of the components. 

 

The forget gate’s primary job is to constantly determine 

which elements of the cell’s state need to be retained and 

which ones need to be eliminated. This allows the LSTM 

system to focus on significant information and ignore 

irrelevant data through lengthy patterns thereby making it 

effective for issues needing the understanding of situations 

through extended periods of time, such as speech recognition, 

natural language processing, and time series forecasting. The 

forget gate assigns a value, ranging from 0 to 1, to each 

number in the cell state. A value close to 1 means "keep this 

information," whereas a value close to 0 means "forget this 

information." 

 

 
 

Where, ft represents forget gate activation vector 

σ represents sigmoid activation function 

Wf represents weight matrix for the forget gate 

ht—1 represents hidden state from the previous time step 

xt represents input at the current time step 

bf represents bias vector for the forget gate 

 

Together with the forget gate, the input gate determines which 

extra information needs to be introduced to the cell state. The 

candidate cell state and gate activation are its two primary 

constituents. To enable the LSTM network to recognise and 

apply novel structures, the input gate’s main function is to 

regulate the entry of new data to the cell state. The input gate 

assists the LSTM in striking the right balance among learning 

fresh, appropriate data from the input series and preserving 

essential long-term information by preferentially adjusting 

the cell state. By retaining appropriate data over time and 

continuously learning novel behaviours, this process enables 

LSTMs to perform activities involving a long-term contextual 

understanding, such as speech recognition, ma- chine 

translation, and time series forecasting. 

 

it = σ (Wi ∗ [ht —  

Where, it represents input gate activation vector Wi represents 

weight matrix for the input gate bi represents bias vector for 

the input gate 

 

The candidate values to be added to the cell state are 

computed as 

 

Where, Cˆt represents candidate cell state vector 

Wc represents weight matrix for the candidate cell state 

bc represents bias vector for the candidate cell state 

 

The cell state, which serves as the network’s memory and 

retains data over extended sequences, is a crucial part of 

LSTM networks. Because of its multi-time step design, it 

avoids the vanishing gradient issue that plagues conventional 

RNNs. Three gates alter the cell state: the forget gate, which 

chooses what data to remove; the input gate, which chooses 

what new data to add; and the output gate, which manages the 

cell state’s output. Using this method, LSTMs may efficiently 

preserve and make use of long-term dependencies in 

sequential data. 

 

Ct = ft ∗ Ct — 1 + it ∗ Cˆt (5)   

 

Where, Ct represents updated cell state 

Ct—1 represents previous cell state 

 

In an LSTM network, the information flow from the cell state 

to the hidden state is controlled at each time step by the output 

gate. Using the prior concealed state and the current input, it 

decides which portions of the cell state should be output. A 

sigmoid activation function, which generates values between 

0 and 1, is in charge of the gate. The matching component of 

the cell state should be transmitted to the output if the value 

is close to 1, and it should be suppressed if it is close to 0. 

LSTMs can selectively expose information that is important 

for predictions or for layers further up in the network 

according to this technique. 

 

Ot = σ (Wo [ht—1, xt] + bo) (6) 

 

Where, Ot represents output gate activation vector  

Wo represents weight matrix for the output gate bo represents 

bias vector for the output gate  

 

The hidden state is then computed as 

ht = Ot × tanh (Ct) (7) 

 

Where, ht represents hidden state that is the output of the 

LSTM cell 

 

Algorithm 1. MLP-LSTM Framework 
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Figure 1: Training and Testing Loss. 

 

Table 1: Comparison Values of Average Training Time 

with Existing Work 
Model SQuAD Wiki Text Narrative QA 

BI — LSTM — CRF 182 290 142 

BI — GRU — CRF 104 169 101 

Proposed MLP — LSTM 91 103 85 

 

Table 2: Comparison Values of Average Prediction Time 

with Existing Work. 
Model SQuAD Wiki Text Narrative QA 

BI — LSTM — CRF[22] 189 289 141 

BI — GRU — CRF[22] 96 148 92 

Proposed MLP — LSTM 82 95 77 

 

the workflow of an MLP-LSTM framework for speech 

recognition. It starts with the initialization and importing of 

necessary libraries. Audio files are then loaded and pre-

processed to extract features like MFCC. The data is checked 

for validity and encoded into numerical labels. The model 

uses MLP layers for feature extraction and LSTM layers for 

sequence processing. After compiling, the model is trained, 

evaluated on test data, and used for predictions on new audio 

inputs. Error handling is incorporated throughout. (Figure 2) 

 

 
Figure 2: Comparison Values of Average Training Time 

 

3. Results and Discussion 
 

This section of the study on speech recognition using the 

MLP-LSTM framework presents findings on model 

performance and implications. This paper has been 

implemented by using Python software. It highlights achieved 

accuracy rates, training convergence, and generalization to 

new data through testing. Discussion focuses on the 

effectiveness of combining MLP for feature extraction and 

LSTM for sequence modelling, addressing challenges like 

noise robustness and variability in speech patterns. Insights 

into the framework’s strengths and limitations are explored, 

suggesting future research directions for further enhancing 

speech recognition systems based on these findings. This 

section critically evaluates the methodology’s success in 

meeting its objectives and contributing to the field. 

 

3.1 Testing and training accuracy 

 

Fig.3 visually represents the performance metrics of the 

developed model. It plots the accuracy scores obtained during 

the algorithm’s implementation’s training and testing phases. 

The training accuracy curve illustrates how well the model 

learns from the training data over successive epochs or 

iterations. Meanwhile, the testing accuracy curve indicates 

how effectively the model generalizes to unseen data, 

providing insights into its robustness and performance in real-

world scenarios. Such charts are essential for evaluating and 

optimizing the MLP-LSTM framework to achieve high 

accuracy and reliability in speech recognition tasks. 

 

 
Figure 3: Comparison Values of Average Prediction Time. 

 

3.2 Training and testing loss 

 

Fig. 4 visualizes the progression of loss values throughout the 

model’s training process. Loss measures how well the model 

predicts the target output compared to the actual output, with 

lower values indicating better performance. The training loss 

curve depicts how quickly the model converges during 

training, ideally decreasing over epochs as the model learns. 

Conversely, the testing loss curve evaluates the model’s 

ability to generalize to new data, showing trends in 

performance on unseen samples. Monitoring these charts aids 

in optimizing the MLP-LSTM framework for accurate and 

efficient speech recognition applications. 

 

3.3 Calculation of average training time 

 

The average training time for a single sentence in speech 

recognition, model complexity, computational resources, and 

implementation efficiency. Typically, the training time T can 

be expressed as follows. 

 

T = L × C × F (8) 

 

Where L represents the length of the sentence in seconds 

C represents the computational complexity per second of 
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audio. 

F represents factor accounting for hardware performance and 

parallelization efficiency 

 

Table 1 compares the average training times (in seconds) for 

single sentences across three datasets: SQuAD, Wiki Text, 

and NarrativeQA, using three models. The BI-LSTM-CRF 

model exhibits the longest training times, with 182 s for 

SQuAD, 290 s for Wiki Text, and 142 s for NarrativeQA, 

reflecting the computational demands of LSTMs and CRFs. 

The BI-GRU-CRF model is more efficient, with reduced 

times of 104, 169, and 101 s due to the faster GRU cells. The 

proposed MLP-LSTM model achieves the shortest training 

times, at 91, 103, and 85 s, show- casing its optimized 

architecture and training efficiency across all datasets. Fig. 6 

describes the comparison values of average training times for 

single sentences with existing works. 

 

 
Figure 4: Performance Metrics for the Speech Recognition 

 

3.4 Calculation of average prediction time 

 

The average prediction time for a speech-recognition 

sentence in- volves processing the input audio through the 

trained model. Typically, prediction time is faster than 

training, often taking milliseconds to a few seconds per 

sentence on modern hardware, depending on model 

complexity and optimization. The average prediction time can 

be calculated using the following formula. 

 

 
Where, L represents the length of the sentence in seconds 

Cpre represents the computational complexity per second of 

audio 

P represents the processing power 

 

Table 2 compares the average prediction times (in seconds) 

for single sentences across three datasets: SQuAD, WikiText, 

and NarrativeQA, using different models. The BI-LSTM-

CRF model is the slowest, with times of 189 s, 289 s, and 141 

s for SQuAD, WikiText, and NarrativeQA, respectively, due 

to the complexity of bidirectional LSTMs and CRF layers. 

The BI-GRU-CRF model improves efficiency, reducing 

times to 96 s, 148 s, and 92 s for the respective datasets, 

leveraging the faster GRU cells. The proposed MLP-LSTM 

model is the fastest, achieving times of 82 s, 95 s, and 77 s, 

demonstrating superior optimization and performance for 

rapid prediction. Fig. 7 describes the comparison values of 

average prediction times for single sentences with existing 

works. 

 

 
Figure 5: ROC Curve 

 

3.5 Performance Metrics of Proposed Method 

 

Performance measures measure how well algorithms translate 

spoken language into text. These metrics assess the system’s 

accuracy in understanding and transcribing speech while 

accounting for variables such as speaker unpredictability, 

accents, and background noise. Metrics measuring memory 

utilization and processing speed are also used to evaluate the 

system’s viability. Speech recognition technologies, virtual 

assistant programs, transcription services, and accessibility 

tools can all be improved with better performance and 

dependability by carefully analyzing these parameters. Fig. 8 

depicts the performance efficiency of this research. 

 

3.5.1 Word Recognition Accuracy 

Word recognition accuracy quantifies the performance of a 

speech recognition system by measuring the percentage of 

correctly transcribed words. It is calculated by comparing the 

system’s output to a reference transcript, accounting for errors 

such as substitutions, deletions, and insertions. WRA reflects 

the system’s performance, with higher per- centages 

indicating better accuracy. The formula is: 

 

 
 

Where, S represents the number of substitutions 

D represents the number of deletions 

I represents the number of insertions 

N represents the total number of words 

 

3.5.2 Word error rate 

Word Error Rate is a common metric used to evaluate the 

accuracy of speech recognition systems. It measures the 

proportion of words incorrectly predicted by the system. A 

lower WER indicates better performance. For instance, a 

WER of 10 % means that 10 % of the words were incorrectly 

recognized, reflecting the system’s error rate in transcription. 

The formula for WER is: 

 

 
 

Where, S represents the number of substitutions 

D represents the number of deletions 

I represents the number of insertions 

N represents the total number of words 
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3.5.3 Word correct rate 

Word Correct Rate is a metric used to evaluate the accuracy 

of a speech recognition system by measuring the proportion 

of correctly recognized words out of the total words in the 

reference transcript. WCR indicates the percentage of words 

correctly recognized without considering insertions. A higher 

WCR signifies better performance. The for 

 

 
 

Where, S represents the number of substitutions 

D represents the number of deletions 

N represents the total number of words 

 

 
Figure 6: Comparison of Performance Metrics Chart 

 

3.5.4 Accuracy 

The system’s capacity to accurately and error-free translate 

spoken words into text is called accuracy. Metrics like Word 

Error Rate (WER) and Character Error Rate (CER), which 

quantify differences between the spoken words and the 

recognized text, are commonly used to measure it. High 

accuracy denotes fewer transcription errors, indicating a 

better comprehension of various dialects, speech patterns, and 

contextual factors. This study refines algorithms utilizing 

linguistic models and training data to maximize accuracy. 

This improves the use of the algorithms in voice-controlled 

systems, transcription services, and language translation. 

Accuracy measures are essential to assess developments and 

guarantee consistent performance in voice recognition 

technology. 

 
 

The percentage of words that are accurately transcribed 

relative to all words that the system has determined to be 

correct is known as precision. Its main goal is to reduce false 

positives- recognizing erroneous words as correct. Because 

precision minimizes errors and pre- serves fidelity to the 

spoken input, it is essential to ensure the transcribed text’s 

accuracy. Advanced algorithms, linguistic models, and 

context-aware processing methods can all lead to higher 

precision. To improve usability and user satisfaction with 

more dependable outputs, this statistic is crucial for 

optimizing voice recognition systems in various applications, 

including virtual assistants, dictation software, and 

accessibility aids.  

 
 

3.5.5 Recall  

Recall is the percentage of accurately transcribed words 

relative to all words that ought to have been recognized as 

correct. It strongly emphasizes reducing false negatives- 

words that are mispronounced or overlooked. High recall 

guarantees thorough coverage of spoken input, precisely 

catching all pertinent terms. Optimizing recall requires fine- 

tuning algorithms, combining various linguistic models, and 

improving context awareness. This measure is essential for 

enhancing the accuracy and completeness of transcriptions in 

voice-activated systems, automated transcription services, 

and language learning applications, among other uses. The 

reliability and usability of voice recognition systems can be 

improved in various real-world circumstances by optimizing 

recall. 

Recall TP= (TP + FN) 

 

3.5.6 F1 score 

The F1 score in voice recognition papers is a composite score 

that measures total accuracy by combining recall and 

precision parameters. It balances these measures to offer a 

thorough assessment of transcribing performance. The F1 

score provides a reliable evaluation of the system’s accuracy 

in transcribing spoken language while reducing false 

positives and negatives. It is computed as the harmonic mean 

of precision and recall. By improving algorithms, modifying 

thresholds, and adding language models, F1-Score was 

maximized. This statistic is essential for evaluating speech 

recognition systems across various languages, dialects, and 

ambient circumstances to ensure dependable performance in 

real-world applications. 
 

 
3.5.7 ROC curve 

Fig. 9 shows the ROC curve, in which the area under the curve 

quantifies the overall ability of the model to discriminate 

between positive and negative classes. A model with an AUC 

of 1.0 indicates perfect classification, while an AUC of 0.5 

suggests performance no better than random chance. ROC 

curves are useful for comparing different models and 

selecting the optimal threshold for classification decisions. 

 

Table 3 contains the comparison values of the Word Error 

Rate of existing works and the proposed method. The table 

compares the WER of different speech recognition models. 

The CNN-HMM model has a WER of 0.185, while the DNN-

HMM improves to 0.105 using deep neural networks. The 

CNN-RBM model, combining CNNs and restricted 

Boltzmann machines, achieves a WER of 0.095. Adding an 

adaptive sequence attention technique in CNN-RBM-ASAT 

further reduces WER to 0.082. The proposed MLP-LSTM 

model, utilizing multi-layer perceptrons and long short-term 

memory networks, performs the best with a WER of 0.075, 

indicating the highest accuracy in recognizing speech. 

 

3.6 Discussion 

 

During this paper’s training and testing phase, several 

important discoveries were discovered. A broad dataset has 

been used to improve model robustness, including a range of 

speech styles, accents, and environmental conditions during 

training. Effective learning of temporal relationships in 
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speech sequences, a critical skill for accurate transcription, 

was demonstrated using the MLP-LSTM architecture [27,28]. 

The model’s promising Word Error Rate (WER) of 0.075 % 

during testing suggests that it can accurately transcribe 

speech. Evaluations of precision and recall scores also 

demonstrated the system’s capacity to reduce false positives 

and false negatives in transcription tasks [20,22, 26] 

Computational efficiency was also prioritized, and the MLP-

LSTM framework showed respectable processing speeds 

appropriate for real-time applications. It could be better to 

innovate and improve these technologies to support language 

learners and educators in achieving proficiency and fluency 

in spoken English, even though this study rep- resents a 

significant advancement in using MLP-LSTM for speech 

recognition in English language learning. 

 

4. Conclusion  
 

In summary, this work on MLP-LSTM framework voice 

recognition has shown encouraging outcomes and possible 

directions for further research. With a competitive Word 

Error Rate (WER) and strong performance across a range of 

accents and speaking styles, the MLP-LSTM architecture 

demonstrated its efficacy in capturing temporal relation- ships 

and nuances in spoken English. This technology, which offers 

precise and customized feedback on pronunciation and 

spoken fluency, has significant implications for improving 

language learning experiences. Future research in this field 

may concentrate on several important areas. Initially, adding 

more accents and linguistic variances to the dataset would 

improve the generalization and flexibility of the model. 

Furthermore, adding real-time feedback systems to 

instructional mate- rials might provide students with prompt 

remediation recommendations, speeding up their language 

learning. Investigating cutting-edge methods like transformer 

structures or attention processes could help further optimize 

the MLP-LSTM framework and increase computing 

efficiency and transcription accuracy. Furthermore, adding 

multimodal inputs like speaking mixed with gestures or facial 

expressions could enhance the educational process and offer 

more thorough feedback on communication abilities. 

Resolving the model outputs’ interpretability and 

guaranteeing error analysis openness are also essential for 

building user confidence and improving instructional 

applications. Lastly, longitudinal research could evaluate how 

speech recognition technology affects language competency 

and student involvement over the long run. In short, future 

research projects will continue to innovate and improve these 

technologies to better support language learners and 

educators in achieving proficiency and fluency in spoken 

English, even though this study represents a significant 

advancement in using MLP-LSTM for speech recognition in 

English language learning. Future research could benefit from 

interdisciplinary collaborations with cognitive science to 

enhance understanding of language acquisition processes and 

with human-computer interaction experts to refine user 

interfaces and engagement strategies. Integrating these fields 

could lead to more effective and intuitive speech recognition 

systems for language learners. 
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