

Clinical Study and Visual Outcomes Following Toric Intraocular Lens Implantation in Phacoemulsification Cataract Surgery

Dr. Sujit Murade¹, Dr. Aryamol VS², Dr. Shruti Shirwadkar³, Dr. Harsha Pawar⁴

¹Associate Professor, Department of Ophthalmology,
Lokmanya Tilak Municipal Medical College and General Hospital, Sion

²Senior Resident, Department of Ophthalmology,
Lokmanya Tilak Municipal Medical College and General Hospital, Sion

Associate Professor, Department of Ophthalmology,
Lokmanya Tilak Municipal Medical College and General Hospital, Sion

⁴Assistant Professor, Department of Ophthalmology,
Lokmanya Tilak Municipal Medical College and General Hospital, Sion (Corresponding Author)

Abstract: *Purpose:* To assess visual and refractive outcomes following toric intraocular lens (IOL) implantation in patients with pre-existing corneal astigmatism undergoing phacoemulsification. *Methods:* A prospective interventional study included 44 eyes of patients aged 21-70 years with regular astigmatism >1D-5D. UCVA, BCVA and keratometry were recorded preoperatively and on postoperative days 1, 7, and 30. *Results:* Preoperatively, 77.3% of eyes had UCVA 6/60-6/18. By day 30, UCVA improved to 6/12-6/6 in 93.2% of eyes, with all achieving BCVA in this range. Mean astigmatism reduced from 2.16 ± 1.01 D to 0.48 ± 0.61 D ($p < 0.0001$), and 77.3% achieved residual cylinder <1D. Early complications such as Descemet folds and corneal edema resolved by day 7. *Conclusion:* Toric IOL implantation offers safe, effective astigmatism correction with significant visual improvement and reduced spectacle dependence in cataract patients.

Keywords: Toric intraocular Lens, Phacoemulsification, Astigmatism, Residual cylinder

1. Introduction

Cataract surgery is one of the most commonly performed ophthalmic procedures worldwide, offering rapid recovery and excellent visual outcomes. Corneal astigmatism >1D is present in 30-39% of cataract patients, and 3-4% exhibit high astigmatism >3D. (1) (2) Correction may be achieved postoperatively with spectacles or contact lenses, or intraoperatively using limbal relaxing incisions, arcuate keratotomy, or opposite clear corneal incisions, though these may be unpredictable. (3) (4) (5) Toric IOLs offer a more precise alternative for regular astigmatism. (6) This study evaluates their effectiveness in improving refractive outcomes and visual acuity.

2. Materials and methods

A prospective interventional case series of 44 eyes with cataract and corneal astigmatism (more than 1 D TO 5 D) in patients of 21-70 years of age were included in the study. Patients with pre-existing ocular disorders and irregular corneal astigmatism were excluded.

3. Study Procedure:

A detailed preoperative ocular examination was undertaken in all cases. Keratometry was done using auto refractometer.

Biometry was done using IOL Master (Carl Zeiss Meditec, Germany) in all patients. In the present study surgical incision site was 135 degrees in all patients Acriol EC Toric intraocular lens model AS-6T1-T6 was implanted in all cases.

Post operative evaluation of vision, autorefraction, keratometry, slit lamp examination and Intraocular Pressure measurement were conducted on follow up on post operative day 1 and 30.

4. Results

The distribution of pre-operative uncorrected visual acuity (UCVA) among the study participants showed that the majority, 77.3% (34 out of 44), had a UCVA between 6/60 and 6/18. A smaller group, 22.7% (10 out of 44), had a UCVA of less than 6/60. Notably, no participants had a pre-operative UCVA within the 6/12 to 6/6 range. The distribution of astigmatism type among the study participants shows that 59.1% (26 out of 44) had against-the-rule astigmatism, while 40.9% (18 out of 44) had with-the-rule astigmatism. The distribution of post-operative day 30 uncorrected visual acuity (UCVA) among the study participants indicates that the majority of participants, 93.2% (41 out of 44), achieved a UCVA between 6/12 and 6/6. A small percentage, 4.5% (2 out of 44), had a UCVA between 6/60 and 6/18, while only 2.3% (1 out of 44) had a UCVA of less than 6/60.

Table 1: Distribution of pre operative and post operative cylinder

Cylinder Value	Pre-Operative	Post Operative	Total	P
<1	Number	0	34	38.63%
	%	0.00%	77.27%	
1 to 2	Number	15	7	25.00%
	%	34.10%	15.90%	
2 to 3	Number	12	2	15.90%
	%	27.30%	4.50%	
3 to 4	Number	10	1	12.50%
	%	22.70%	2.30%	
4 to 5	Number	7	0	8.00%
	%	15.90%	0.00%	

<0.0001

Pre-operatively, no patients had a cylinder value of less than 1 diopter, but post-operatively, 34 patients (77.27%) achieved this outcome, accounting for 38.63% of the total. In the 1 to 2 diopter range, 15 patients (34.10%) had this cylinder value pre-operatively, while only 7 patients (15.90%) remained in this range post-operatively, contributing to 25.00% of the total cases. For cylinder values between 2 and 3 diopters, 12 patients (27.30%) were observed pre-operatively, while 2 patients (4.50%) remained in this range post-operatively, representing 15.90% of the total. In the 3 to 4 diopter range, 10 patients (22.70%) had this cylinder value pre-operatively, but only 1 patient (2.30%) had it post-operatively, making up 12.50% of the total. Lastly, 7 patients (15.90%) had cylinder values between 4 and 5 diopters pre-operatively, with no patients remaining in this category post-operatively, contributing 8.00% to the total. The analysis showed a highly significant reduction in cylinder values post-operatively, with a p-value of less than 0.0001. The mean preoperative astigmatism in this study was 2.16 ± 1.01 D and the mean postoperative astigmatism in the present study was reduced to 0.48 ± 0.61 D.

On the first day following toric IOL implantation, a few complications were observed. Specifically, 5 cases of Descemet's membrane folds, 1 case of an air bubble in situ, and 5 cases of corneal edema were recorded. However, it is noteworthy that by the seventh day post-surgery, all these complications had fully resolved.

5. Discussion

The use of toric intraocular lenses (IOLs) has become a highly effective method for correcting pre-existing corneal astigmatism during cataract surgery, offering improved refractive outcomes, enhanced uncorrected visual acuity (UCVA), and greater postoperative patient satisfaction. Findings from the present study support this, demonstrating a significant reduction in postoperative astigmatism along with substantial visual improvement. These results are comparable to previously published work, where toric IOLs have shown superior refractive predictability and stability versus non-toric IOLs. Studies by Al-Mohtaseb Z et al. (2024) (7) reinforce the benefit of toric IOLs in reducing residual cylinder and improving refractive outcomes.

Pre-Operative Astigmatism

The mean preoperative astigmatism in this study was 2.16 ± 1.01 D, comparable to Shen J et al. (2023) (8), who reported 2.06 ± 0.79 D. Moulick PS et al. (2018) (9) reported a broader range of 1.5-4.5D, similar to the upper range observed here. In contrast, the values documented by Jeeva

IK et al. (2024) (10) 1.52 ± 0.84 D were lower, suggesting that their study populations may have included milder corneal astigmatism. Hoffmann PC et al. (11) reported that approximately 60% of cataract patients exhibit corneal astigmatism >0.75 D, emphasizing the need for toric correction where appropriate.

Post-Operative Astigmatism

The mean postoperative astigmatism in the present study was reduced to 0.48 ± 0.61 D, confirming successful cylinder neutralisation. Comparatively, Jeeva IK et al. (2024) (10) reported lower postoperative cylinder values (0.01 ± 0.09 D), while Shen J et al. (2023) (8) recorded 0.29 ± 0.30 D at three months—slightly lower than our findings, possibly due to longer postoperative stabilization. Overall, our results demonstrate favorable refractive reduction consistent with published outcomes.

Visual Acuity Outcomes

Postoperative improvement in visual acuity was notable. Preoperatively, 77.3% of patients had UCVA between 6/60-6/18, while by day-30, 93.2% achieved UCVA of 6/12-6/6 and 100% reached BCVA of 6/12-6/6. RA Ho et al. (12) also reported marked improvement in UCVA and BCVA post-toric IOL implantation. Lazar A et al. (13) observed postoperative UCVA and BCVA reaching 20/20 in most patients, slightly better than our outcomes. Moulick et al. (9) demonstrated similar improvement

6. Complications

Early postoperative complications included Descemet membrane folds and corneal edema, all resolving by day-7. Suboptimal outcomes in three patients resulted from IOL rotation and pre-existing amblyopia. Qiu X et al. (2021) (14) similarly identified IOL misalignment and amblyopia as common causes of reduced postoperative visual recovery. Visser N et al. (6) emphasised rotational instability as a major complication. Reduced outcomes were more common in eyes with high preoperative cylinder.

7. Conclusion

The study's findings emphasize the effectiveness of toric intraocular lenses in providing precise astigmatism correction for cataract patients, leading to improved visual outcomes with spectacle independence and patient satisfaction. These results support the consideration of toric intraocular lenses as a valuable option in cataract surgery, particularly for patients with significant pre-existing corneal astigmatism.

References

- [1] Michelitsch M, Ardjomand N, Vidic B, Wedrich A, Steinwender G. [Prevalence and age-related changes of corneal astigmatism in patients before cataract surgery]. *Ophthalmol Z Dtsch Ophthalmol Ges.* 2017 Mar;114(3):247-51.
- [2] Prasher P, Sandhu JS. Prevalence of corneal astigmatism before cataract surgery in Indian population. *Int Ophthalmol.* 2017;37 (3):683-689.
- [3] Thornton S. P. Astigmatic keratotomy: a review of basic concepts with case reports. *Journal of Cataract & Refractive Surgery.* 1990;16(4):430-435.
- [4] Nichamin L. D. Astigmatism control. *Ophthalmology Clinics of North America.* 2006;19(4):485-493.
- [5] Price F. W., Grene R. B., Marks R. G., Gonzales J. S. Arcuate transverse keratotomy for astigmatism followed by subsequent radial or transverse keratotomy. *Journal of Refractive Surgery.* 1996;12(1):68-76.
- [6] Visser N, Bauer NJ, Nuijts RM. Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. *J Cataract Refract Surg.* 2013 Apr;39(4):624-37.
- [7] Al-Mohtaseb Z, Steigleman WA, Pantanelli SM, Lin CC, Hatch KM, Rose-Nussbaumer JR, Santhiago MR, Olsen TW, Kim SJ, Schallhorn JM. Toric Monofocal Intraocular Lenses for the Correction of Astigmatism during Cataract Surgery: A Report by the American Academy of Ophthalmology. *Ophthalmology.* 2024 Mar;131(3):383-392.
- [8] Shen J, Spors F, Egan D, Liu C. Peripheral refraction and image blur in four meridians in emmetropes and myopes. *Clin Ophthalmol.* 2018; 12:345-358.
- [9] Moulick PS, Mohindra VK, Gurunadh VS, Patel P, Gupta S, Khan MA. A clinical study to evaluate the results after toric intraocular lens implantation in cases of corneal astigmatism. *Med J Armed Forces India.* 2018 Apr;74(2):133-138.
- [10] Jeeva IK, Masud S, Ali TS, Siddiqui MAR, Waheed AA, Awan A. Evaluation of visual outcomes with toric intraocular lens implantation using digital marker during cataract surgery. *J Pak Med Assoc.* 2024 Mar;74(3):450-455.
- [11] Hoffmann PC, Auel S, Hutz WW. Results of higher power toric intraocular lens implantation. *J Cataract Refract Surg.* Aug 2011;37(8):1411-1418.
- [12] Ra Ho, Hwang HS, Kim HS, Kim MS, Kim EC. Toric intraocular lens implantation in cataract patients with corneal opacity. *BMC Ophthalmol.* 2020 Mar 13;20(1):98.
- [13] Lazăr AS, Tăbăcaru B, Stanca S, Stanca TH. Toric intraocular lens implantation - atypical cases. *Rom J Ophthalmol.* 2020 Oct-Dec;64(4):432-443. 96.
- [14] Qiu X, Shi Y, Han X, Hua Z, Lu Y, Yang J. Toric Intraocular Lens Implantation in the Correction of Moderate-To-High Corneal Astigmatism in Cataract Patients: Clinical Efficacy and Safety. *J Ophthalmol.* 2021 Jan 20; 2021: 5960328.