International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Low Power 16-Point FFT Processor Using Radix
2&4 Butterfly Units

Deekshitha K N, Divya Lakshmi M2, Keerthana B K3, Jalaja S*
IStudent of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India

2Student of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India
Email: msld.divya22[at]gmail. com

3Student of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India

“4Faculty of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India
Email: jalajas[at]bit-bangalore.edu.in
https://orcid.org/0000-0001-6676-7827

Abstract: This paper presents the implementation of a low power 16-point FFT processor utilizing a mixed radix approach. The design
includes sub modules like twiddle multiplication, stage wise computation, butterfly computations. The main objective relies on the 16-
point FFT, achieved by integrating the radix 2/4/2 algorithm (mixed radix) techniques along with low power strategies such as clock
gating, FSM grey encoding and additional methods such as RAM memory. Likewise, we focus on obtaining the low power consumption.
This approach results in a reasonable balance between power consumption and computational efficiency. The design process is conducted
using Vivado and Cadence for simulation and synthesis to enhance power analysis reports. Overall, the dynamic power obtained using
mixed approach is quiet high while, the best low power consumption was obtained after implementing FSM grey encoding. After
optimization the dynamic power contribution is reduced to 14.60% of the total power consumption. This marks our approach to be effective
for reducing the power consumption to 30.27%, significantly.

Keywords: low power FFT processor, mixed radix FFT, clock gating techniques, FSM grey encoding, power optimization in VLSI.

1. Introduction Table 1: Comparison of Computational Complexity for
Direct Computation and FFT Algorithms
1.1 Discrete Fourier transform (DFT) Direct Direct FFT
No. of |computation| computation FFT complex | complex
Points | complex complex multiplications | additions

Traditionally, O(N2) complexity is needed for the direct (N) | additions | multiplications | (1/2 Nlog2N)| (N log

implementation of the N-point discrete Fourier transform (N2-N) (N2) N)
(DFT). Turkey-Cooley the FFT algorithm, which was first 4pt 2 16 4 3
published in 1965, is an effective algorithm that greatly 8 pt 56 64 12 24
reduces the computational requirements of DFT to only O(N 16 pt 240 2356 32 64

log N) computations by taking advantage of its symmetry and

periodicity properties [1]. Other technologies, particularly The table illustrates how the FFT algorithm significantly
embedded systems and system-on-a-chip (SoC), thrive as reduces workload, whereas direct DFT computation
semiconductor technology —advances. The hardware pecessitates a very large number of complex additions and
implementation of FFT is becoming feasible due to this multiplications as N increases. The Fast Fourier Transform
evolution. DSP is a specialized microcontroller that has (FFT) s a crucial method for calculating the Discrete Fourier
optimized architecture for fast operation. By sampling fourier Transform (DFT) in smaller segments, converting time-based
transform X(e"jw) , we obtain a frequency domain discrete sjgnals into their frequency domain representations. As the
sequence X(K) known as DFT which is powerful computation name implies, it represents one of the quickest methods of the
tool for frequency of DFT signal. DFT algorithm, employing a divide and conquer strategy.
X(k) = INZE x(n) - WP (1) Various algorithms such as Radix 2, 4,8, 22, and 2 are part of

. this divide and conquer methodology [2].
. (2mKkn
WER = e (%) = cos (—zlkn) — jsin (213(“))

In the case of advantages in FFT, implementing hardware
with a higher bit radix proves to be more efficient due to its
1.2 Fast Fourier transform (FFT) advantage of high throughput, and reduction in power, and
reduced latency [4]. The design employs the DIF domain,
where the inputs are in their natural form, where twiddle
factor multiplication occurs post-butterfly operation. This
method offers greater advantage over DIT, where twiddle
factor multiplication is executed after the butterfly operation.

The FFT applications immense in communication systems,
including orthogonal frequency division multiplexing

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: MR26101175225 DOI: https://dx.doi.org/10.21275/MR26101175225 149

http://www.ijsr.net/
file:///C:/Users/msldl/Downloads/msld.divya22@gmail.com
mailto:jalajas@bit-bangalore.edu.in

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

(OFDM) and single carrier frequency division multiple access
(SC-FDMA). FFT is essential for 5G communication
technologies. The ideology of OFDM was studied [3]. OFDM
systems encompass ultra- wideband, asymmetric digital
subscriber line, digital audio broadcasting, and digital video
broadcasting.

1.3 Radix 2 DIF FFT

This algorithm efficiently evaluates the DFT using a divide
and conquer strategy. The N-point DFT is decomposed into
progressively smaller DFTs; if N is factored as N=rl, 12, 3,
.......... rn, then n=r" implies N=2". In this context, r
represents the radix of FFT algorithm. For the Fast Fourier
Transforms, a number of algorithms have been proposed,
including Radix-2, Radix-4, Radix-8, and several other higher
order radix. Each of these algorithms has a unique advantage
in terms of simplicity. Although Radix-2 is the best, it is not
as fast as Radix-4 FFT implementation because it requires
four more clock cycles [5]. When compared to the radix-2
algorithm, the radix-4 and radix-8 algorithms perform better
arithmetic operations and data transfer [6].

1.4 Computation

In order to reduce complexity, the computation is divided into
several stages where the original N-point DFT is gradually
broken down into smaller parts (G(k), H(k), A(k), C(k), and
B(k)) using twiddle factors. The FFT algorithm is based on
this staged decomposition, which reduces the overall number
of multiplications and additions when compared to direct
DFT computation [9].

{First Stage}
N-1
X(k) = x(n)Wkn
N-2 N-1
XK = Y x(MWE+) x(n)wkn
X(k) = G(k) + W H(K))
{Second Stage}
G(K) = Ak) + WEB(K) 4)
HK) = C(k) + W}D(k) (3)
p="+ 2N ©)
{Third Stage }
AK) = Xi_, x(n)wli“‘ = N x(mwyk)

>N A N A 5
: —N% o B
EAN\\Y/// 0" . € A
xe —o NN/ FANN e e
x -\ A WO o
i) 1 1 1 R PR T Ml
O ¥ € N
vy — LI\, e e 5
X — 7N P -
L oS = I
NSRS =

Figure 1: 16-Point Radix-2 DIF FFT Signal Flow Graph

The 16-point input sequence is gradually divided into
smaller sub-sequences over four stages in the Decimation-in-
Frequency (DIF) FFT shown in the figure[8,13]. Each stage
multiplies using the proper twiddle factors after performing
butterfly operations (add/subtract).

1.5 Radix 4 DIF FFT

The Radix-4 butterfly operation is more efficient in
computing the DFT than the Radix-2 method. It processes
four inputs and generates four outputs. This algorithm is
applicable to points that are powers of 4, such as 4, 8, 16, and
so forth. The Radix-4 algorithm is utilized for DFT
computation where speed is crucial, it has a more complex
structure than lower radix algorithms but delivers results in
fewer stages with fewer multipliers [6].
N
+3)+

X(K) = i o] x + 2% (n +5) + (~1%x(n
(-2 (n +

Dwer (®)
The radix-4 algorithm breaks down the N-point DFT into N/4.
This method can be divided into four distinct subsets [7].

N 1
X(4k) = X _ O[X(n) + x(n +)+ x(n +§) + X(n +

) whwd

©

X(#k +1) = 51 o x = jx(n +3) = x(n +3) +

ix (n +%)] wgw§“ (10)

X(4k +2) = EO[X(n)—x(n+)+ x(n +§)—
x(n+2)]WZ“Wk“

(11)
N1
X(4k +3) = ;[x(n) + jx(n +§)— x(n +g)

3N
- jx(n +T)]W§“W§“ (12)
4

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWWw.ijsr.net

Paper ID: MR26101175225

DOI: https://dx.doi.org/10.21275/MR26101175225 150

http://www.ijsr.net/

International Journal of Science and Research (IJSR)

ISSN: 2319-7064
Impact Factor 2024: 7.101

x(n+ N/2) O‘ *1 ® xidp +2)
x(n + 3N/4) O 4 ’] @ é x(4pt5b

Figure 2: Radix-4 DIF FFT Butterfly Structure

This diagram illustrates the sequential operation of a 16-point
FFT. Twiddle factors are used to multiply the input values
after they have been mixed and combined using "butterfly"
connections. The final frequency outputs are shown on the
right after each stage [8].

— D S -
x(n + N/a)) o e -
O e
*, Wan

Ny - - = Xl
X(1)—= —— * XeH)
X(2) —» e = N(4)
N3 —= —————— = X{12)
Xy = e—— = X(2)
Nis)—» _'.)— = Xl
Xig) —w —— = Xi6)
N(T)—» " s i = Xi{l4)
- R -
X —= S~ - XY
{10y —» —t—— = Xi(5)
X1~ —_— = X{15)
X{lZ)—» —:\— = X(3)
Xi(13) —_ =X(11)
N(l4) > —1-: = X(T)
XI5 —w= — = X{15)

Figure 3: 16-point Radix-4 DIF FFT signal flow graph

The 16-point Radix-4 DIF FFT is depicted in the figure,
where inputs are processed through Radix-4 butterfly units
after being grouped in sets of four. Each butterfly generates
the intermediate values that result in the final FFT outputs by
performing addition, subtraction, and twiddle-factor
multiplications [8].

Table 2: Comparison table of Radix -2 and Radix -4

No. of . No. of No. of
Points (N) | FFTRBX |y riiiintications | Additions
4 Radix-2 4 8
16 Radix-2 32 64
4 Radix-4 4 12
16 Radix-4 24 48

The above table illustrates the number of multiplications and
additions needed for each method when comparing Radix-2
and Radix-4 FFTs for 4-point and 16-point sizes. It makes it
abundantly evident that Radix-4 is more effective for larger
FFT sizes like 16-point because it requires fewer operations
than Radix-2.

2. Proposed Architecture

2.1 Overview of block diagram

Figure 4: Overview of block diagram

The diagram shows the layout of a 16-point FFT processor
[11]. It begins with an input buffer that holds the real and
imaginary parts of the 16 samples. The FSM (Finite State
Machine) manages the entire operation through states like
IDLE, LOAD, COMPUTE, and DONE, making sure data
moves properly [12]. A clock-gating block controls the clock
to save power by sending a regulated clock signal to the RAM
block [10]. The RAM holds intermediate FFT values and
sends them to the butterfly computation block. This block
includes Radix-2 and Radix-4 butterfly units, along with the
twiddle-factor generator. These butterfly units carry out the
necessary additions, subtractions, and multiplications to
compute the FFT in stages. Finally, the processed frequency-
domain results go to the output buffer, where the real and
imaginary outputs are generated.

ICEC R EEEEEES S,

s s 2

Figure 5: Mixed radix 2/4/2 signal flow graph

Input samples are loaded into the RAM block under the FSM
controller, in stage-1 Radix-2 butterfly operations are
performed which is read from the RAM processed and written
back, similarly in stage-2 Radix-4 butterfly is computed with
the intermediate results which under goes twiddle
multiplication and are written back to RAM, in stage-3 Radix-
2 butterfly operation is performed. These stages are operated
by gray encoded FSM sequence while minimizing the
switching power. Finally 16-point FFT outputs are
sequentially read from the RAM. In this context, the mixed
radix consists of a radix format of 2/4/2, with each component
calculated at every stage. Each stage involves the
computation of the different radix formats, specifically 2, 4,
and 2.

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: MR26101175225

DOI: https://dx.doi.org/10.21275/MR26101175225

151

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Table 3: Stage-wise Computational Complexity of Mixed-

Radix FFT
Stage Radix |No. of Twiddle No.. of . Nq . .of
FFT Factors Multiplications | Additions
Stage-1 | Radix-2 16 8 8
Stage-1 | Radix-2 24 12 8
Stage-1 | Radix-2 16 8 8
Total 56 28 24

3. Results and Observations

Figure 6 shows RTL view of Mixed radix FFT before and
after optimization. The Verilog code for the 16-point low-
power FFT processor is written and arranged using mixed
radix-2 and radix-4 algorithms as part of the RTL design
implementation. The RTL explains the data flow through the
control logic, twiddle factor multipliers, and butterfly units.
The proper FFT operation is then confirmed by simulating
this RTL code in Vivado. After simulation, Vivado
synthesizes and implements the RTL design onto the FPGA,
generating the final hardware structure for the 16-point FFT
processor.

(b)
Figure 6: (a) RTL view of Mixed radix FFT before & (b)
after optimization

Functionality Analysis

In fig 3.2 there is an image depicting the simulation
waveforms for a 16-Point Fast Fourier Transform (FFT) using
a mixed radix, stage-wise approach, which has been validated
using Xilinx Vivado. The above-mentioned waveforms
demonstrate how data samples progress through stages in an
FFT process, emphasizing radix transform functions in
butterflies. The highest signals represent the clock signals as
well as the control signals, which manage the FFT
computation timing. Following groups of signals represent
the real as well as imaginary parts of the input data at various
stages of pipelining. Each pipelining stage performs partial

FFT, in which butterfly processing elements combine input
samples using twiddle factors.

Figure 7: 16-Point FFT mixed radix stage wise using
vivado

Using mixed radix helps in the reduction of the complexity of
operations by doing operations of multiple radices in stages,
thus making it faster than the radix-2 method. The output
from the stages, shown in the waveform, verifies the process
of the data pass and execution of the butterfly stages. These
stable transitions and the expected output patterns in the final
stage confirm the functional validity of the 16-point FFT
architecture. However, the purpose of the second simulation
example in the experimentation section was to showcase the
functionality of the FFT module design in performing the fast
Fourier transform operation.

Performance Analysis

The design demonstrates a significant decrease in switching
activity by combining radix-2/4/2 mixed-radix computation
with low-power strategies like clock gating, FSM grey
encoding, and RAM-based storage.

Table 4: Comparison of power

S.No| FFT-Architecture | Points | Algorithm | Power(mw)
j | Proposedwork: | g g 24| 318184
mixed radix
) [11] Pipelined 16 Radix-2 29.49
Architecture Radix-4 26.27
3 [10] Pipelined FET 16 Radix-4 3.66
Processor Radix-8 19.80

The mixed-radix architecture lowers dynamic power to a
quiet high percent, while FSM grey encoding decreases
power efficiency to 30.27%, according to cadence-based
simulation and power analysis. All things considered, the
design achieves both substantial power reduction and
functional correctness.

4. Conclusion

This paper successfully demonstrates the implementation as
well as analysis of a low power 16-point FFT processor with
Radix-2/4 butterfly cells. Removal of redundant components
in the design and improvement in data flow are the two most
important factors towards which the optimization is aimed.
Based on the analysis, the proposed design not only preserves
a high degree of computation accuracy but also shows a
noticeable power savings of 30.27% over the traditional
Radix-2 processor.

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: MR26101175225

DOI: https://dx.doi.org/10.21275/MR26101175225 152

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Although the Radix-2 architecture always supports flexible
data processing, the Radix-4 butterfly helps to result in
smaller dynamic power consumption, as well as a reduced
number of multiplications. From the above implementation
outcomes, it can be concluded that the Radix-2/Radix-4 FFT
processor supports a portable DSP implementation.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Paper ID: MR26101175225

L. P. Thakare and A. Y. Deshmukh, “Area Efficient
FFT/IFFT Processor Design for MIMO OFDM System
in Wireless Communication,” Int. Conf. Emerg. Trends
Eng. Technol. ICETET, vol. 2016-March, pp. 10-13,
2016.

Cooley, J. W., & Tukey, J. W. (1965). “An algorithm for
the machine calculation of complex Fourier series.”
Mathematics of Computation, 19(90), 297-301.

Dr. R. Poovendran and R. Moulika “Low Power and
Efficiency Pipelined FFT Processor for OFDM
Communication System”- 2020

M. Garrido, K. K. Parhi and J. Grajal, A Pipelined FFT
Architecture for Real-Valued Signals, IEEE
Transactions on Circuits and Systems —I: Regular
Papers, Vol.56, No.12, December 2009

K. Sreekanth, V. Charishma and Neelima koppala,
Design and simulation of 64 point FFT using Radix 4
algorithm for FPGA Implementation, International
Journal of Engineering Trends and Technology-Volume
4 Issue 2- 2013.

N. Sulaiman, “Design of a reconfigurable FFT
processor using Multi-objective Genetic Algorithm,”
2010 Int. Conf. Intell. Adv. Syst., pp. 1-5, Jun. 2010
Anirban Ganguly, and Ayan Banerjee “VLSI Design of
Analog DFT Processor for Demodulation of QAM-
OFDM Signal”- 2019

P. Augusta Sophy, R. Srinivasan “Analysis and Design
of Low Power Radix-4 FFT Processor using Pipelined
Architecture” -2021

Ngoc Le Ba, Tony Tae-Hyoung Kim “An Area Efficient
1024-Point Low Power Radix-22 FFT Processor With
Feed-Forward Multiple Delay Commutators”, -2018
Siti Lailatul Mohd Hassan “Pipelined Fast Fourier
Transform (FFT) Processor, Power Optimization” -
2019

Shafiqul Hai and Tella Rajashekhar Reddy “FPGA
implementation of an Image Classifier using Pipelined
FFT Architecture” -2025

V. Sarada and T. Vigneswaran “Low Power 64 Point
FFT Processor”- 2016

Kevin H. Viglianco, Daniel R. Garcia, James J.W. Kunst
“Implementation of a 4-Parallel 128 Point Radix-8 FFT
Processor via Folding Transformation” -2023

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

DOI: https://dx.doi.org/10.21275/MR26101175225

153

http://www.ijsr.net/

