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Abstract: This paper presents the implementation of a low power 16-point FFT processor utilizing a mixed radix approach. The design 

includes sub modules like twiddle multiplication, stage wise computation, butterfly computations. The main objective relies on the 16-

point FFT, achieved by integrating the radix 2/4/2 algorithm (mixed radix) techniques along with low power strategies such as clock 

gating, FSM grey encoding and additional methods such as RAM memory. Likewise, we focus on obtaining the low power consumption. 

This approach results in a reasonable balance between power consumption and computational efficiency. The design process is conducted 

using Vivado and Cadence for simulation and synthesis to enhance power analysis reports. Overall, the dynamic power obtained using 

mixed approach is quiet high while, the best low power consumption was obtained after implementing FSM grey encoding. After 

optimization the dynamic power contribution is reduced to 14.60% of the total power consumption. This marks our approach to be effective 

for reducing the power consumption to 30.27%, significantly. 

 

Keywords: low power FFT processor, mixed radix FFT, clock gating techniques, FSM grey encoding, power optimization in VLSI. 

 

1. Introduction 
 

1.1 Discrete Fourier transform (DFT) 

 

Traditionally, O(N2) complexity is needed for the direct 

implementation of the N-point discrete Fourier transform 

(DFT). Turkey-Cooley the FFT algorithm, which was first 

published in 1965, is an effective algorithm that greatly 

reduces the computational requirements of DFT to only O(N 

log N) computations by taking advantage of its symmetry and 

periodicity properties [1]. Other technologies, particularly 

embedded systems and system-on-a-chip (SoC), thrive as 

semiconductor technology advances. The hardware 

implementation of FFT is becoming feasible due to this 

evolution. DSP is a specialized microcontroller that has 

optimized architecture for fast operation. By sampling fourier 

transform X(e^jw) , we obtain a frequency domain discrete 

sequence X(K) known as DFT which is powerful computation 

tool for frequency of DFT signal. 

X(k) =  ∑  x(n)N−1
n=0 ⋅ WN

kn                                                         (1) 
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1.2 Fast Fourier transform (FFT) 

 

 

 

 

 

 

 

Table 1: Comparison of Computational Complexity for 

Direct Computation and FFT Algorithms 

No. of 

Points 

(N) 

Direct 

computation 

complex 

additions  

(N2-N) 

Direct 

computation 

complex 

multiplications 

(N2) 

FFT complex 

multiplications 

(1/2 N log2 N) 

FFT 

complex 

additions 

(N log2 

N) 

4 pt 12 16 4 8 

8 pt 56 64 12 24 

16 pt 240 256 32 64 

 

The table illustrates how the FFT algorithm significantly 

reduces workload, whereas direct DFT computation 

necessitates a very large number of complex additions and 

multiplications as N increases. The Fast Fourier Transform 

(FFT) is a crucial method for calculating the Discrete Fourier 

Transform (DFT) in smaller segments, converting time-based 

signals into their frequency domain representations. As the 

name implies, it represents one of the quickest methods of the 

DFT algorithm, employing a divide and conquer strategy. 

Various algorithms such as Radix 2, 4,8, 22, and 2k are part of 

this divide and conquer methodology [2]. 

 

In the case of advantages in FFT, implementing hardware 

with a higher bit radix proves to be more efficient due to its 

advantage of high throughput, and reduction in power, and 

reduced latency [4]. The design employs the DIF domain, 

where the inputs are in their natural form, where twiddle 

factor multiplication occurs post-butterfly operation. This 

method offers greater advantage over DIT, where twiddle 

factor multiplication is executed after the butterfly operation.  

 

The FFT applications immense in communication systems, 

including orthogonal frequency division multiplexing 
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(OFDM) and single carrier frequency division multiple access 

(SC-FDMA). FFT is essential for 5G communication 

technologies. The ideology of OFDM was studied [3]. OFDM 

systems encompass ultra- wideband, asymmetric digital 

subscriber line, digital audio broadcasting, and digital video 

broadcasting. 

 

1.3 Radix 2 DIF FFT 

 

This algorithm efficiently evaluates the DFT using a divide 

and conquer strategy. The N-point DFT is decomposed into 

progressively smaller DFTs; if N is factored as N=r1, r2, r3, 

………. rn, then n=rv implies N=2v. In this context, r 

represents the radix of FFT algorithm. For the Fast Fourier 

Transforms, a number of algorithms have been proposed, 

including Radix-2, Radix-4, Radix-8, and several other higher 

order radix. Each of these algorithms has a unique advantage 

in terms of simplicity. Although Radix-2 is the best, it is not 

as fast as Radix-4 FFT implementation because it requires 

four more clock cycles [5]. When compared to the radix-2 

algorithm, the radix-4 and radix-8 algorithms perform better 

arithmetic operations and data transfer [6]. 

 

1.4 Computation 

 

In order to reduce complexity, the computation is divided into 

several stages where the original N-point DFT is gradually 

broken down into smaller parts (G(k), H(k), A(k), C(k), and 

B(k)) using twiddle factors. The FFT algorithm is based on 

this staged decomposition, which reduces the overall number 

of multiplications and additions when compared to direct 

DFT computation [9]. 

 

{𝐅𝐢𝐫𝐬𝐭 𝐒𝐭𝐚𝐠𝐞} 
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Figure 1: 16-Point Radix-2 DIF FFT Signal Flow Graph 

 

The 16-point input sequence is gradually divided into      

smaller sub-sequences over four stages in the Decimation-in-

Frequency (DIF) FFT shown in the figure[8,13]. Each stage 

multiplies using the proper twiddle factors after performing 

butterfly operations (add/subtract). 

 

1.5 Radix 4 DIF FFT 

 

The Radix-4 butterfly operation is more efficient in 

computing the DFT than the Radix-2 method. It processes 

four inputs and generates four outputs. This algorithm is 

applicable to points that are powers of 4, such as 4, 8, 16, and 

so forth. The Radix-4 algorithm is utilized for DFT 

computation where speed is crucial, it has a more complex 

structure than lower radix algorithms but delivers results in 

fewer stages with fewer multipliers [6].  

X(k) =  ∑ [ x(n) + (−1)2x (n +
N

4
 ) + (−1)2x (n +

N

4
) +

N

4
−1

n=0

 (−j)2x (n +
3N

4
)] WN

kn                                                                         (8) 

 

The radix-4 algorithm breaks down the N-point DFT into N/4. 

This method can be divided into four distinct subsets [7].  
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N

4
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Figure 2: Radix-4 DIF FFT Butterfly Structure 

 

This diagram illustrates the sequential operation of a 16-point 

FFT. Twiddle factors are used to multiply the input values 

after they have been mixed and combined using "butterfly" 

connections. The final frequency outputs are shown on the 

right after each stage [8]. 

 

 
Figure 3: 16-point Radix-4 DIF FFT signal flow graph 

 

The 16-point Radix-4 DIF FFT is depicted in the figure, 

where inputs are processed through Radix-4 butterfly units 

after being grouped in sets of four. Each butterfly generates 

the intermediate values that result in the final FFT outputs by 

performing addition, subtraction, and twiddle-factor 

multiplications [8].  

 

Table 2: Comparison table of Radix -2 and Radix -4 
No. of 

Points (N) 
FFT Radix  

No. of 

Multiplications 

No. of 

Additions 

4 Radix-2 4 8 

16 Radix-2 32 64 

4 Radix-4 4 12 

16 Radix-4 24 48 

 

The above table illustrates the number of multiplications and 

additions needed for each method when comparing Radix-2 

and Radix-4 FFTs for 4-point and 16-point sizes. It makes it 

abundantly evident that Radix-4 is more effective for larger 

FFT sizes like 16-point because it requires fewer operations 

than Radix-2. 

 

2. Proposed Architecture  
 

2.1 Overview of block diagram 

 

 
Figure 4: Overview of block diagram 

 

The diagram shows the layout of a 16-point FFT processor 

[11]. It begins with an input buffer that holds the real and 

imaginary parts of the 16 samples. The FSM (Finite State 

Machine) manages the entire operation through states like 

IDLE, LOAD, COMPUTE, and DONE, making sure data 

moves properly [12]. A clock-gating block controls the clock 

to save power by sending a regulated clock signal to the RAM 

block [10]. The RAM holds intermediate FFT values and 

sends them to the butterfly computation block. This block 

includes Radix-2 and Radix-4 butterfly units, along with the 

twiddle-factor generator. These butterfly units carry out the 

necessary additions, subtractions, and multiplications to 

compute the FFT in stages. Finally, the processed frequency-

domain results go to the output buffer, where the real and 

imaginary outputs are generated. 

 

 
Figure 5: Mixed radix 2/4/2 signal flow graph 

 

Input samples are loaded into the RAM block under the FSM 

controller, in stage-1 Radix-2 butterfly operations are 

performed which is read from the RAM processed and written 

back, similarly in stage-2 Radix-4 butterfly is computed with 

the intermediate results which under goes twiddle 

multiplication and are written back to RAM, in stage-3 Radix-

2 butterfly operation is performed. These stages are operated 

by gray encoded FSM sequence while minimizing the 

switching power. Finally 16-point FFT outputs are 

sequentially read from the RAM. In this context, the mixed 

radix consists of a radix format of 2/4/2, with each component 

calculated at every stage. Each stage involves the 

computation of the different radix formats, specifically 2, 4, 

and 2. 
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Table 3: Stage-wise Computational Complexity of Mixed-

Radix FFT  

Stage 
Radix 

FFT 

No. of Twiddle 

Factors 

No. of 

Multiplications 

No. of 

Additions 

Stage-1 Radix-2 16 8 8 

Stage-1 Radix-2 24 12 8 

Stage-1 Radix-2 16 8 8 

Total  56 28 24 

 

3. Results and Observations 
 

Figure 6 shows RTL view of Mixed radix FFT before and 

after optimization. The Verilog code for the 16-point low-

power FFT processor is written and arranged using mixed 

radix-2 and radix-4 algorithms as part of the RTL design 

implementation. The RTL explains the data flow through the 

control logic, twiddle factor multipliers, and butterfly units. 

The proper FFT operation is then confirmed by simulating 

this RTL code in Vivado. After simulation, Vivado 

synthesizes and implements the RTL design onto the FPGA, 

generating the final hardware structure for the 16-point FFT 

processor.  

 
(a) 

 

 
(b) 

Figure 6: (a) RTL view of Mixed radix FFT before & (b) 

after optimization 

 

   Functionality Analysis 

In fig 3.2 there is an image depicting the simulation 

waveforms for a 16-Point Fast Fourier Transform (FFT) using 

a mixed radix, stage-wise approach, which has been validated 

using Xilinx Vivado. The above-mentioned waveforms 

demonstrate how data samples progress through stages in an 

FFT process, emphasizing radix transform functions in 

butterflies. The highest signals represent the clock signals as 

well as the control signals, which manage the FFT 

computation timing. Following groups of signals represent 

the real as well as imaginary parts of the input data at various 

stages of pipelining. Each pipelining stage performs partial 

FFT, in which butterfly processing elements combine input 

samples using twiddle factors.  
 

 
Figure 7: 16-Point FFT mixed radix stage wise using 

vivado 

 

Using mixed radix helps in the reduction of the complexity of 

operations by doing operations of multiple radices in stages, 

thus making it faster than the radix-2 method. The output 

from the stages, shown in the waveform, verifies the process 

of the data pass and execution of the butterfly stages. These 

stable transitions and the expected output patterns in the final 

stage confirm the functional validity of the 16-point FFT 

architecture. However, the purpose of the second simulation 

example in the experimentation section was to showcase the 

functionality of the FFT module design in performing the fast 

Fourier transform operation. 

 
Performance Analysis 

The design demonstrates a significant decrease in switching 

activity by combining radix-2/4/2 mixed-radix computation 

with low-power strategies like clock gating, FSM grey 

encoding, and RAM-based storage. 

 
Table 4: Comparison of power 

S. No FFT-Architecture Points Algorithm Power(mw) 

1 
Proposed work: 

mixed radix 
16 Radix 2/4/2 3.18184 

2 
[11] Pipelined 

Architecture 
16 

Radix-2 

Radix-4 

29.49 

26.27 

3 
[10] Pipelined FET 

Processor 
16 

Radix-4 

Radix-8 

3.66 

19.80 

 

The mixed-radix architecture lowers dynamic power to a 

quiet high percent, while FSM grey encoding decreases 

power efficiency to 30.27%, according to cadence-based 

simulation and power analysis. All things considered, the 

design achieves both substantial power reduction and 

functional correctness. 

 

4. Conclusion 
 

This paper successfully demonstrates the implementation as 

well as analysis of a low power 16-point FFT processor with 

Radix-2/4 butterfly cells. Removal of redundant components 

in the design and improvement in data flow are the two most 

important factors towards which the optimization is aimed. 

Based on the analysis, the proposed design not only preserves 

a high degree of computation accuracy but also shows a 

noticeable power savings of 30.27% over the traditional 

Radix-2 processor. 
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Although the Radix-2 architecture always supports flexible 

data processing, the Radix-4 butterfly helps to result in 

smaller dynamic power consumption, as well as a reduced 

number of multiplications. From the above implementation 

outcomes, it can be concluded that the Radix-2/Radix-4 FFT 

processor supports a portable DSP implementation. 
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