
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Low Power 16-Point FFT Processor Using Radix

2&4 Butterfly Units

Deekshitha K N1, Divya Lakshmi M2, Keerthana B K3, Jalaja S4

1Student of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India

2Student of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India

Email: msld.divya22[at]gmail.com

3Student of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India

4Faculty of Bangalore Institute of Technology, Department of Electronics Engineering (VDT), Karnataka, India

Email: jalajas[at]bit-bangalore.edu.in

https://orcid.org/0000-0001-6676-7827

Abstract: This paper presents the implementation of a low power 16-point FFT processor utilizing a mixed radix approach. The design

includes sub modules like twiddle multiplication, stage wise computation, butterfly computations. The main objective relies on the 16-

point FFT, achieved by integrating the radix 2/4/2 algorithm (mixed radix) techniques along with low power strategies such as clock

gating, FSM grey encoding and additional methods such as RAM memory. Likewise, we focus on obtaining the low power consumption.

This approach results in a reasonable balance between power consumption and computational efficiency. The design process is conducted

using Vivado and Cadence for simulation and synthesis to enhance power analysis reports. Overall, the dynamic power obtained using

mixed approach is quiet high while, the best low power consumption was obtained after implementing FSM grey encoding. After

optimization the dynamic power contribution is reduced to 14.60% of the total power consumption. This marks our approach to be effective

for reducing the power consumption to 30.27%, significantly.

Keywords: low power FFT processor, mixed radix FFT, clock gating techniques, FSM grey encoding, power optimization in VLSI.

1. Introduction

1.1 Discrete Fourier transform (DFT)

Traditionally, O(N2) complexity is needed for the direct

implementation of the N-point discrete Fourier transform

(DFT). Turkey-Cooley the FFT algorithm, which was first

published in 1965, is an effective algorithm that greatly

reduces the computational requirements of DFT to only O(N

log N) computations by taking advantage of its symmetry and

periodicity properties [1]. Other technologies, particularly

embedded systems and system-on-a-chip (SoC), thrive as

semiconductor technology advances. The hardware

implementation of FFT is becoming feasible due to this

evolution. DSP is a specialized microcontroller that has

optimized architecture for fast operation. By sampling fourier

transform X(e^jw) , we obtain a frequency domain discrete

sequence X(K) known as DFT which is powerful computation

tool for frequency of DFT signal.

X(k) = ∑ x(n)N−1
n=0 ⋅ WN

kn (1)

WN
kn = e−j (

2πkn

N
)

= cos (
2πkn

N
) − j sin (

2πkn

N
) (2)

1.2 Fast Fourier transform (FFT)

Table 1: Comparison of Computational Complexity for

Direct Computation and FFT Algorithms

No. of

Points

(N)

Direct

computation

complex

additions

(N2-N)

Direct

computation

complex

multiplications

(N2)

FFT complex

multiplications

(1/2 N log2 N)

FFT

complex

additions

(N log2

N)

4 pt 12 16 4 8

8 pt 56 64 12 24

16 pt 240 256 32 64

The table illustrates how the FFT algorithm significantly

reduces workload, whereas direct DFT computation

necessitates a very large number of complex additions and

multiplications as N increases. The Fast Fourier Transform

(FFT) is a crucial method for calculating the Discrete Fourier

Transform (DFT) in smaller segments, converting time-based

signals into their frequency domain representations. As the

name implies, it represents one of the quickest methods of the

DFT algorithm, employing a divide and conquer strategy.

Various algorithms such as Radix 2, 4,8, 22, and 2k are part of

this divide and conquer methodology [2].

In the case of advantages in FFT, implementing hardware

with a higher bit radix proves to be more efficient due to its

advantage of high throughput, and reduction in power, and

reduced latency [4]. The design employs the DIF domain,

where the inputs are in their natural form, where twiddle

factor multiplication occurs post-butterfly operation. This

method offers greater advantage over DIT, where twiddle

factor multiplication is executed after the butterfly operation.

The FFT applications immense in communication systems,

including orthogonal frequency division multiplexing

Paper ID: MR26101175225 DOI: https://dx.doi.org/10.21275/MR26101175225 149

http://www.ijsr.net/
file:///C:/Users/msldl/Downloads/msld.divya22@gmail.com
mailto:jalajas@bit-bangalore.edu.in

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

(OFDM) and single carrier frequency division multiple access

(SC-FDMA). FFT is essential for 5G communication

technologies. The ideology of OFDM was studied [3]. OFDM

systems encompass ultra- wideband, asymmetric digital

subscriber line, digital audio broadcasting, and digital video

broadcasting.

1.3 Radix 2 DIF FFT

This algorithm efficiently evaluates the DFT using a divide

and conquer strategy. The N-point DFT is decomposed into

progressively smaller DFTs; if N is factored as N=r1, r2, r3,

………. rn, then n=rv implies N=2v. In this context, r

represents the radix of FFT algorithm. For the Fast Fourier

Transforms, a number of algorithms have been proposed,

including Radix-2, Radix-4, Radix-8, and several other higher

order radix. Each of these algorithms has a unique advantage

in terms of simplicity. Although Radix-2 is the best, it is not

as fast as Radix-4 FFT implementation because it requires

four more clock cycles [5]. When compared to the radix-2

algorithm, the radix-4 and radix-8 algorithms perform better

arithmetic operations and data transfer [6].

1.4 Computation

In order to reduce complexity, the computation is divided into

several stages where the original N-point DFT is gradually

broken down into smaller parts (G(k), H(k), A(k), C(k), and

B(k)) using twiddle factors. The FFT algorithm is based on

this staged decomposition, which reduces the overall number

of multiplications and additions when compared to direct

DFT computation [9].

{𝐅𝐢𝐫𝐬𝐭 𝐒𝐭𝐚𝐠𝐞}

X(k) = ∑ x(n)WN
kn

N−1

n=0

X(k) = ∑ x(n)WN
kn

N−2

n=0

+ ∑ x(n)WN
kn

N−1

n=1

X(k) = G(k) + WN
k H(k) (3)

{𝐒𝐞𝐜𝐨𝐧𝐝 𝐒𝐭𝐚𝐠𝐞}

G(k) = A(k) + WN

2

kB(k) (4)

 H(k) = C(k) + WN

2

kD(k) (5)

 β =
N2

4
+ 2N (6)

{𝐓𝐡𝐢𝐫𝐝 𝐒𝐭𝐚𝐠𝐞 }

A(k) = ∑ x(n)WN

4

nk
N

4
− 1

n=0 = ∑ x(n)W2
nkN− 1

n=0 (7)

Figure 1: 16-Point Radix-2 DIF FFT Signal Flow Graph

The 16-point input sequence is gradually divided into

smaller sub-sequences over four stages in the Decimation-in-

Frequency (DIF) FFT shown in the figure[8,13]. Each stage

multiplies using the proper twiddle factors after performing

butterfly operations (add/subtract).

1.5 Radix 4 DIF FFT

The Radix-4 butterfly operation is more efficient in

computing the DFT than the Radix-2 method. It processes

four inputs and generates four outputs. This algorithm is

applicable to points that are powers of 4, such as 4, 8, 16, and

so forth. The Radix-4 algorithm is utilized for DFT

computation where speed is crucial, it has a more complex

structure than lower radix algorithms but delivers results in

fewer stages with fewer multipliers [6].

X(k) = ∑ [x(n) + (−1)2x (n +
N

4
) + (−1)2x (n +

N

4
) +

N

4
−1

n=0

 (−j)2x (n +
3N

4
)] WN

kn (8)

The radix-4 algorithm breaks down the N-point DFT into N/4.

This method can be divided into four distinct subsets [7].

X(4k) = ∑ [x(n) + x (n +
N

4
) + x (n +

N

2
) + x (n +

N

4
−1

n=0
3N

4
)] WN

0WN

4

kn

(9)

X(4k + 1) = ∑ [x(n) − jx (n +
N

4
) − x (n +

N

2
) +

N

4
−1

n=0

 jx (n +
3N

4
)] WN

nWN

4

kn (10)

X(4k + 2) = ∑ [x(n) − x (n +
N

4
) + x (n +

N

2
) −

N

4
−1

n=0

 x (n +
3N

4
)] WN

2nWN

4

kn

(11)

X(4k + 3) = ∑ [x(n) + jx (n +
N

4
) − x (n +

N

2
)

N
4−1

n=0

− jx (n +
3N

4
)] WN

3n WN
4

kn (12)

Paper ID: MR26101175225 DOI: https://dx.doi.org/10.21275/MR26101175225 150

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 2: Radix-4 DIF FFT Butterfly Structure

This diagram illustrates the sequential operation of a 16-point

FFT. Twiddle factors are used to multiply the input values

after they have been mixed and combined using "butterfly"

connections. The final frequency outputs are shown on the

right after each stage [8].

Figure 3: 16-point Radix-4 DIF FFT signal flow graph

The 16-point Radix-4 DIF FFT is depicted in the figure,

where inputs are processed through Radix-4 butterfly units

after being grouped in sets of four. Each butterfly generates

the intermediate values that result in the final FFT outputs by

performing addition, subtraction, and twiddle-factor

multiplications [8].

Table 2: Comparison table of Radix -2 and Radix -4
No. of

Points (N)
FFT Radix

No. of

Multiplications

No. of

Additions

4 Radix-2 4 8

16 Radix-2 32 64

4 Radix-4 4 12

16 Radix-4 24 48

The above table illustrates the number of multiplications and

additions needed for each method when comparing Radix-2

and Radix-4 FFTs for 4-point and 16-point sizes. It makes it

abundantly evident that Radix-4 is more effective for larger

FFT sizes like 16-point because it requires fewer operations

than Radix-2.

2. Proposed Architecture

2.1 Overview of block diagram

Figure 4: Overview of block diagram

The diagram shows the layout of a 16-point FFT processor

[11]. It begins with an input buffer that holds the real and

imaginary parts of the 16 samples. The FSM (Finite State

Machine) manages the entire operation through states like

IDLE, LOAD, COMPUTE, and DONE, making sure data

moves properly [12]. A clock-gating block controls the clock

to save power by sending a regulated clock signal to the RAM

block [10]. The RAM holds intermediate FFT values and

sends them to the butterfly computation block. This block

includes Radix-2 and Radix-4 butterfly units, along with the

twiddle-factor generator. These butterfly units carry out the

necessary additions, subtractions, and multiplications to

compute the FFT in stages. Finally, the processed frequency-

domain results go to the output buffer, where the real and

imaginary outputs are generated.

Figure 5: Mixed radix 2/4/2 signal flow graph

Input samples are loaded into the RAM block under the FSM

controller, in stage-1 Radix-2 butterfly operations are

performed which is read from the RAM processed and written

back, similarly in stage-2 Radix-4 butterfly is computed with

the intermediate results which under goes twiddle

multiplication and are written back to RAM, in stage-3 Radix-

2 butterfly operation is performed. These stages are operated

by gray encoded FSM sequence while minimizing the

switching power. Finally 16-point FFT outputs are

sequentially read from the RAM. In this context, the mixed

radix consists of a radix format of 2/4/2, with each component

calculated at every stage. Each stage involves the

computation of the different radix formats, specifically 2, 4,

and 2.

Paper ID: MR26101175225 DOI: https://dx.doi.org/10.21275/MR26101175225 151

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Table 3: Stage-wise Computational Complexity of Mixed-

Radix FFT

Stage
Radix

FFT

No. of Twiddle

Factors

No. of

Multiplications

No. of

Additions

Stage-1 Radix-2 16 8 8

Stage-1 Radix-2 24 12 8

Stage-1 Radix-2 16 8 8

Total 56 28 24

3. Results and Observations

Figure 6 shows RTL view of Mixed radix FFT before and

after optimization. The Verilog code for the 16-point low-

power FFT processor is written and arranged using mixed

radix-2 and radix-4 algorithms as part of the RTL design

implementation. The RTL explains the data flow through the

control logic, twiddle factor multipliers, and butterfly units.

The proper FFT operation is then confirmed by simulating

this RTL code in Vivado. After simulation, Vivado

synthesizes and implements the RTL design onto the FPGA,

generating the final hardware structure for the 16-point FFT

processor.

(a)

(b)

Figure 6: (a) RTL view of Mixed radix FFT before & (b)

after optimization

 Functionality Analysis

In fig 3.2 there is an image depicting the simulation

waveforms for a 16-Point Fast Fourier Transform (FFT) using

a mixed radix, stage-wise approach, which has been validated

using Xilinx Vivado. The above-mentioned waveforms

demonstrate how data samples progress through stages in an

FFT process, emphasizing radix transform functions in

butterflies. The highest signals represent the clock signals as

well as the control signals, which manage the FFT

computation timing. Following groups of signals represent

the real as well as imaginary parts of the input data at various

stages of pipelining. Each pipelining stage performs partial

FFT, in which butterfly processing elements combine input

samples using twiddle factors.

Figure 7: 16-Point FFT mixed radix stage wise using

vivado

Using mixed radix helps in the reduction of the complexity of

operations by doing operations of multiple radices in stages,

thus making it faster than the radix-2 method. The output

from the stages, shown in the waveform, verifies the process

of the data pass and execution of the butterfly stages. These

stable transitions and the expected output patterns in the final

stage confirm the functional validity of the 16-point FFT

architecture. However, the purpose of the second simulation

example in the experimentation section was to showcase the

functionality of the FFT module design in performing the fast

Fourier transform operation.

Performance Analysis

The design demonstrates a significant decrease in switching

activity by combining radix-2/4/2 mixed-radix computation

with low-power strategies like clock gating, FSM grey

encoding, and RAM-based storage.

Table 4: Comparison of power

S. No FFT-Architecture Points Algorithm Power(mw)

1
Proposed work:

mixed radix
16 Radix 2/4/2 3.18184

2
[11] Pipelined

Architecture
16

Radix-2

Radix-4

29.49

26.27

3
[10] Pipelined FET

Processor
16

Radix-4

Radix-8

3.66

19.80

The mixed-radix architecture lowers dynamic power to a

quiet high percent, while FSM grey encoding decreases

power efficiency to 30.27%, according to cadence-based

simulation and power analysis. All things considered, the

design achieves both substantial power reduction and

functional correctness.

4. Conclusion

This paper successfully demonstrates the implementation as

well as analysis of a low power 16-point FFT processor with

Radix-2/4 butterfly cells. Removal of redundant components

in the design and improvement in data flow are the two most

important factors towards which the optimization is aimed.

Based on the analysis, the proposed design not only preserves

a high degree of computation accuracy but also shows a

noticeable power savings of 30.27% over the traditional

Radix-2 processor.

Paper ID: MR26101175225 DOI: https://dx.doi.org/10.21275/MR26101175225 152

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 15 Issue 1, January 2026
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Although the Radix-2 architecture always supports flexible

data processing, the Radix-4 butterfly helps to result in

smaller dynamic power consumption, as well as a reduced

number of multiplications. From the above implementation

outcomes, it can be concluded that the Radix-2/Radix-4 FFT

processor supports a portable DSP implementation.

References

[1] L. P. Thakare and A. Y. Deshmukh, “Area Efficient

FFT/IFFT Processor Design for MIMO OFDM System

in Wireless Communication,” Int. Conf. Emerg. Trends

Eng. Technol. ICETET, vol. 2016-March, pp. 10–13,

2016.

[2] Cooley, J. W., & Tukey, J. W. (1965). “An algorithm for

the machine calculation of complex Fourier series.”

Mathematics of Computation, 19(90), 297–301.

[3] Dr. R. Poovendran and R. Moulika “Low Power and

Efficiency Pipelined FFT Processor for OFDM

Communication System”- 2020

[4] M. Garrido, K. K. Parhi and J. Grajal, A Pipelined FFT

Architecture for Real-Valued Signals, IEEE

Transactions on Circuits and Systems –I: Regular

Papers, Vol.56, No.12, December 2009

[5] K. Sreekanth, V. Charishma and Neelima koppala,

Design and simulation of 64 point FFT using Radix 4

algorithm for FPGA Implementation, International

Journal of Engineering Trends and Technology-Volume

4 Issue 2- 2013.

[6] N. Sulaiman, “Design of a reconfigurable FFT

processor using Multi-objective Genetic Algorithm,”

2010 Int. Conf. Intell. Adv. Syst., pp. 1–5, Jun. 2010

[7] Anirban Ganguly, and Ayan Banerjee “VLSI Design of

Analog DFT Processor for Demodulation of QAM-

OFDM Signal”- 2019

[8] P. Augusta Sophy, R. Srinivasan “Analysis and Design

of Low Power Radix-4 FFT Processor using Pipelined

Architecture” -2021

[9] Ngoc Le Ba, Tony Tae-Hyoung Kim “An Area Efficient

1024-Point Low Power Radix-22 FFT Processor With

Feed-Forward Multiple Delay Commutators”, -2018

[10] Siti Lailatul Mohd Hassan “Pipelined Fast Fourier

Transform (FFT) Processor, Power Optimization” -

2019

[11] Shafiqul Hai and Tella Rajashekhar Reddy “FPGA

implementation of an Image Classifier using Pipelined

FFT Architecture” -2025

[12] V. Sarada and T. Vigneswaran “Low Power 64 Point

FFT Processor”- 2016

[13] Kevin H. Viglianco, Daniel R. Garcia, James J.W. Kunst

“Implementation of a 4-Parallel 128 Point Radix-8 FFT

Processor via Folding Transformation” -2023

Paper ID: MR26101175225 DOI: https://dx.doi.org/10.21275/MR26101175225 153

http://www.ijsr.net/

