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Abstract: The dominant paradigm in Natural Language Processing (NLP) has traditionally relied on sequential modelling, often 

overlooking the rich, non-linear structural dependencies inherent in linguistic data. Graph Neural Networks (GNNs) offer a powerful 

alternative by modelling text as structured graphs, yet a systematic evaluation of their comparative efficacy across tasks of varying 

structural complexity remains under-explored. This paper presents a comprehensive comparative study of three prominent GNN 

architectures- Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph SAGE- applied to three distinct NLP 

tasks: Text Classification, Semantic Role Labelling (SRL), and Abstract Meaning Representation (AMR) Parsing. We construct task-

specific graph topologies, utilizing heterogeneous corpus graphs for document classification and syntactic dependency trees for SRL and 

AMR. Our empirical results, derived from benchmarks on the 20 Newsgroups, CoNLL-2009, and AMR 2.0 datasets, reveal a clear 

correlation between architectural properties and task complexity. While GCNs provide a robust and efficient baseline for global text 

classification (Accuracy: 96.6%), they struggle with the fine-grained structural modelling required for semantic tasks. Conversely, GATs 

demonstrate superior performance on syntax-heavy tasks, achieving a Labelled F1 score of 85.8% on SRL and a Smatch score of 74.5 on 

AMR parsing, significantly outperforming the GCN baseline (82.5% and 71.2%, respectively). These findings suggest that the anisotropic 

aggregation capability of attention mechanisms is critical for capturing the nuanced, long-range dependencies in natural language, 

establishing GAT as the preferred architecture for structure-dependent NLP applications. 
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1. Introduction 
 

Most standard models in natural language processing (NLP) 

such as RNNs and Transformers, process text sequentially by 

reading one word after another. Although this method has 

proven effective for many tasks, it can struggle to capture 

complex relationship between words that are not close to each 

other in sequence. 

 

An alternative approach is to represent text as graph, where 

words are treated as nodes and the connections between them 

are edges. This structure makes it possible to use Graph 

Neural Networks (GNNs), a type of model built specially to 

learn from data in a graph format. Therefore, while traditional 

models are limited to a linear view, GNNs can analyze the 

rich non-linear connections within a text, allowing them to 

capture a deeper level of meaning that sequential models 

might miss. 

 

The principal objective of this research is to conduct a 

systematic comparative analysis of prominent Graph Neural 

Network (GNN) architectures to benchmark their 

performance and suitability across a spectrum of natural 

language processing tasks. The study aims to determine 

which architectures are best suited for tasks of varying 

complexity, from document level classification to intricate 

semantic graph parsing. 

 

For Text classification: 

To evaluate and compare the effectiveness of different GNN 

architectures (GCN, GAT, GraphSAGE) in leveraging corpus 

wide non-linear relationships between documents and words 

to improve text classification accuracy over traditional 

sequential models. 

 

For Semantic Role Labelling (SRL) 

To access how effectively GNN architectures can model the 

explicit syntactic structure of sentences (i.e., dependency 

parse trees) to identify and classify predicate argument 

relationships, thereby which models are superior at learning 

from syntax rich graph representations.  

 

For Abstract Meaning Representation (AMR) Parsing:  

To analyze and contrast the performance of GNN-based 

encoder-decoder frameworks in the complex graph-

generation task of AMR parsing. This Objective seeks to 

identify which GNN encoding strategies produce the most 

semantically coherent and structurally accurate meaning 

representations from natural language sentences. 
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2. Literature Review 
 

The application of deep learning to Natural Language 

Processing has evolved rapidly, with early approaches 

predominantly relying on sequence-based encoders such as 

Long Short-Term Memory (LSTM) networks (Hochreiter & 

Schmidhuber, 1997) and, more recently, Transformer-based 

architectures like BERT (Devlin et al., 2018). While these 

models excel at capturing local context and long-range 

dependencies through self-attention mechanisms, they do not 

explicitly model the structural information often inherit in 

linguistic data, such as syntactic dependency tress or 

knowledge graphs. 

 

In response to this limitation, Graphical Neural Networks 

(GNNs) have emerged as a robust paradigm for encoding 

structured data. Seminal works by Kipf and Welling (2017) 

on Graph Convolutional Networks (GCNs) and Velickovic et 

al. (2018) on Graph Attention Networks (GATs) demonstrated 

the efficacy of message-passing frameworks in non-

Euclidean domains. Following these developments, a 

growing body of literature has explored the integration of 

GNNS into NLP pipeline. 

 

In the domain of Text-Classification, Yao et al. (2019) 

proposed the TextGCN framework, constructing a 

heterogeneous graph of words and documents to capture 

global word co-occurrence patterns, significantly 

outperforming traditional methods. Conversely, for syntax-

heavy tasks like Semantic Role Labelling (SRL), 

Marcheggiani and Titov (2017) validated the utility of 

encoding dependency tress using GCNs, proving that 

syntactic bias improves argument identification Finally in 

Abstract Meaning Representation (AMR) parsing, recent 

studies have leveraged graph-to-sequence and sequence-to-

graph architectures to effectively generate semantic graphs, 

though challenges remain in ensuring structural validity. 

 

Despite these advancements, existing literature remains 

largely fragmented, with studies typically focusing on 

singular tasks or specific architectures in isolation. To date, 

there is a scarcity of comprehensive comparative analyses that 

systematically evaluate the performance of standard GNN 

variants specifically GCN, GAT, and GraphSAGE across a 

complexity gradient ranging from document level 

classification to fine grained semantic parsing. This study 

seeks to bridge this gap by providing a unified empirical 

benchmark.     

    

3. Methodology 
 

To facilitate a rigorous comparative analysis, we evaluate 

three distinct Graph Neural Network architectures: Graph 

Convolutional Networks (GCN), Graph Attention Networks 

(GAT), and GraphSAGE. These models were selected due to 

their ubiquity in the literature and their distinct approaches to 

neighbourhood aggregation ranging from spectral 

approximations to attention mechanisms and inductive 

sampling. 

 

 

 

 

3.1 Graph Convolutional Networks (GCN) 

 

The GCN, introduced by Kipf and Welling (2017), operates 

as a spectral based graph convolutional. It aggregates 

information from a node’s immediate neighbourhood using a 

fixed, isotropic normalization. Formally the hidden state of a 

node 𝑣𝑖 at layer l = 1, denoted as ℎ𝑖
(𝑙+1)

 is computed as: 

 

Where  is the set of neighbours of node i, d denotes the 

degree of the node (including self-loops) 𝑊(𝑙) is a learnable 

weight matrix and σ is a non-linear activation function. The 

GCN assumes that all neighbours contribute equally to the 

central node’s representation, scaled only by the graph 

topology. 

 

3.2 Graph Attention Networks (GAT) 

 

Unlike the fixed weights of the GCN, the GAT (Velickovic et 

al., 2018) employs a self-attention mechanism to assign 

learnable importance scores to a different neighbours. This 

allows the model to focus on the most relevant nodes during 

aggregation. The update rule is defined as: 

 
Here, the attention coefficient 𝛼𝑖𝑗 is computed via a shared 

mechanism α:  

 
This mechanism enables the GAT to capture anisotropic 

relationships, which is hypothesized to be critical for tasks 

requiring syntactic focus, such as a Sematic Role Labelling. 

 

3.3. GraphSAGE 

 

GraphSAGE (Hamilton et al., 2017) introduces an inductive 

framework that learns aggregator functions rather than 

training on a fixed graph structure. It generates embeddings 

by sampling and aggregating features from a node’s locl 

neighbourhood. The general update rule is: 

  
Where AGG represents an aggregation function (e.g. mean, 

LSTM, or pooling), GraphSAGE inductive nature makes it 

particularly suitable for large scale graphs or dynamic 

environments where unseen nodes may be encountered 

during inference. 

 

3.4 Text Implementation and Graph Construction  

 

To evaluate the selected architectures, we construct task-

specific graph topologies that capture the requisite linguistic 

features for each domain. 
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3.4.1. Text Classification: Heterogenous Corpus Graph 

For the task of text classification, we adopt the heterogenous 

graph construction method proposed by Yao et al., (2019). We 

construct a single large-scale graph G = (V,E) for the entire 

corpus, where the node set V contains both document nodes 

and word nodes (unique vocabulary tokens). 

• Nodes: |D| documents nodes + |V| unique word nodes. 

• Edges: Two types of edges are established: 

• Word Document edges: Weighted by the Term Frequency 

Inverse Document Frequency (TF-IDF) of the word in the 

document. 

• Word-Word edges: Weighted by Pointwise Mutual 

information (PMI) using a fixed size sliding window, 

capturing global co-occurrence patterns. The GNN models 

are trained to perform semi supervised node classification 

on the document nodes. 

 

3.4.2 Semantic Role Labelling (SRL): Syntactic 

Dependency Encoding  

For SRL, the objective is to classify the semantic relationship 

between predicate arguments pairs. We model each sentence 

as a graph based on its syntactic dependency parse tree. 

• Nodes: Each word in the sentence serves as a node, 

initialized with context aware embeddings (e.g., from a 

pretrained BERT layer). 

• Edges: Directed edges represent syntactic dependencies 

(e.g., nsubj, dobj). To facilitate information flow against 

the direction of dependency, we also add reverse edges and 

self-loops. The GNN layers (GCN, GAT, or GraphSAGE) 

are stacked on top of the embedding layer to refine the 

token representations based on the syntactic structure. The 

final representations are fed into a classifier to predict the 

semantic role labels (e.g., ARG0, ARG1) for each word 

relative to the sentence predicate. 

 

3.4.3. AMR Parsing: Graph-to-Graph Generation 

AMR parsing is treated as a graph generation task. We employ 

an Encoder Decoder framework where the GNN serves as the 

structural encoder. 

• Encoder Input: The input sentence is converted into a 

graph using its dependency tree, similar to the SRL setup. 

• GNN Role: The GNN architectures are employed to 

encode this syntactic graph, producing structure aware 

vector representations for each token. 

• Decoder: These representations are passed to an attention-

based decoder which generates the Abstract Meaning 

Representation graph sequentially (linearized) or via a 

transition-based system. 

• Comparative Focus: We isolate the impact of the GNN 

encoder by keeping the decoder architecture constant 

across all experiments, thereby measuring how effectively 

each GNN variant captures the input sentence’s structural 

semantics. 

 

4. Experimental Setup 
 

To ensure a rigorous and fair evaluation, we standardize the 

training protocols and datasets across all comparative 

experiments. This section details the datasets employed, the 

implementation specifics of the GNN architectures, and the 

evaluation metrics used to quantify performance.  

 

 

4.1 Datasets 

 

We utilize standard benchmark datasets for each of the three 

tasks to align our results with existing literature. 

• Text Classification: We employ the 20 Newsgroup (20NG) 

dataset and the R8 subset of Reuters-21578. 

• 20NG: Contains approximately 20,000 newsgroup 

documents across 20 categories.  

• R8: Contains 7,674 documents across 8 categories. 

• Preprocessing: We remove stop words and low frequency 

words (appearing less than 5 times) to reduce graph noise. 

• Semantic Role Labelling (SRL): We utilize the CoNLL-

2009 Shared Task dataset. This dataset provides gold 

standard syntactic dependency trees and semantic role 

annotations, making it the standard benchmark for 

dependency based SRL. 

• AMR Parsing: We use the AMR 2.0 (LDC2017T10) 

dataset, which contains over 39,000 sentence graph pairs. 

This version is widely used in recent parsing literature and 

provides a robust testbed for structural generation. 

 

4.2 Implementation Details   

 

All models are implemented using PyTorch framework and 

the PyTorch Geometric (PyG) library. 

• Model Configuration: For all three GNN variants (GCN, 

GAT, GraphSAGE), we employ a two layer architecture to 

prevent over smoothing. The hidden dimension size is set 

to 256 for Text Classification and 512 for SRL and AMR 

tasks to accommodate the higher complexity of semantic 

features. 

• Training: We use the Adam Optimizer with a learning rate 

of 0.005 for Text Classification and 0.0001 for SRL and 

AMR. White decay is set to 5e – 4 for regularization. 

• Dropout: To mitigate overfitting, particularly in the 

attention mechanisms of GAT, we apply dropout with p = 

0.5 (classification) and p = 0.2 (SRL/AMR) between 

layers. 

• Hardware: All experiments are conducted on a single 

NVIDIA A100 GPU (40GB) to ensure consistent 

computation times. 

 

4.3 Evaluation Metrics 

 

Performance is assessed using task specific metrics accepted 

by the respective research communities: 

• Text Classification: we report Accuracy and Macro-F1 

Score to account for potential class imbalances in datasets. 

• Semantic Role Labelling: We utilize the standard Labelled 

F1 Score, which considers a prediction correct only if both 

the argument span and the semantic role label match the 

ground truth. 

• AMR Parsing: We report the Smatch (Semantic Match) 

Score, which calculates the overlap of triples between the 

predicted graph and gold standard graph. 

 

5. Results and Discussion 
 

5.1 Task 1: Text Classification Performance 

 

We evaluated the models on two datasets of varying 

complexity: R8 (smaller, distinct categories) and 20 

Newsgroups (20NG) (larger, more nuanced categories). 
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Figure 1: The comparative test accuracy. GAT shows a 

slight performance edge, particularly on the more complex 

20NG dataset 

 

On the simpler R8 dataset, performance across all the three 

architectures is functionally equivalent, saturating around 

96.5%. The dense connectivity of the corpus graph (where 

documents are connected via shared words) means that simple 

isotropic aggregation (GCN) is sufficient to capture topic 

signals. 

 

However, on the 20NG dataset, a clear hierarchy emerges: 

GAT > GraphSAGE > GCN. The 20NG dataset contains 

semantically overlapping categories (e.g., comp.sys.ibm.pc 

vs com.sys.mac). GCN’s fixed normalization treats all 

neighbouring word nodes equally. In contrast, GAT utilizes its 

attention mechanism to assign higher importance weights to 

discriminative keywords while down weighting common, less 

informative words. This ability to filter noisy connections in 

the heterogenous graph results in a 1.7% accuracy gain over 

the GCN baseline. GraphSAGE performs intermediately, 

benefitting from its localized sampling but lacking the precise 

focusing capability of attention. 

 

5.2 Task 2: Semantic Role Labelling (SRL) Performance  

 

For SRL, the models encoded syntactic dependency trees to 

identify predicate argument structures. Performance is 

measured by Labelled F1 Score on the CoNLL–2009 dataset. 

 

 
Figure 2: A significant performance gap, with GAT 

outperforming GCN by over 3 absolute percentage points 

 

The results indicate a strong inductive bias in GAT towards 

syntax heavy tasks. Syntactic dependency trees are often 

deep, and the relationship between a predicate and its 

argument (e.g., agent) may span several hops in graph. 

 

The GCN suffers here due to the “Over smoothing” 

phenomenon inherent in spectral convolutions over many 

layers; node representations tend to converge, losing distinct 

syntactic information over long paths. GAT, conversely, 

mitigates this by learning attention weights that acts as “soft 

shortcuts”. It allows a predicate node to attend heavily to a 

distinct subject node, effectively ignoring irrelevant 

intermediate nodes in the parse tree. This anisotropic 

aggregation is crucial for correctly labelling complex 

arguments. 

 

5.3 Task 3: AMR Parsing Performance 

 

In this task, the GNNs functioned as encoders within a larger 

Encoder Decoder framework to generate complex semantic 

graphs. Performance is measured by the Smatch score on 

AMR 2.0. 

 

 
Figure 3: Training trajectories. GAT not only achieves a 

higher final Smatch score but also converges faster than 

GCN.) 

 

AMR parsing is the most structurally complex task. The 

encoder must capture subtle semantic nuances from the input 

syntax to guide the decoder. The superior performance of the 

GAT-based encoder (74.5 Smatch) confirms findings from the 

SRL task. To generate an accurate AMR graph, the model 

must differentiate between types of syntactics edges (e.g., 

differentiating a conceptual modification from a core 

argument). The GCN encoder (71.2 Smatch), by treating all 

syntactic neighbours identically, fails to provide the decoder 

with rich enough structural embeddings, leading to errors in 

the generated graph structure. 

 

5.4 Cross-Task Comparative Synthesis 

 

Synthesizing the results across all three domains reveals a 

clear correlation between task complexity and architectural 

suitability. 

 

The Necessity of Attention Mechanism: As the NLP tasks 

shifts from relying on broad lexical co-occurrence (Text 

Classification) to requiring precise understanding of explicit 

syntactic structure (SRL and AMR), the value of the attention 

mechanism becomes critical. GAT consistently outperforms 

GCN in structural tasks because linguistic graph are 

inherently anisotropic not all neighbours are equally 

important for meaning. 

 

Baseline vs. Specialized: GCN remains a robust, 

computationally efficient baseline for tasks where global 

node homophily is high (like standard text classification). 

However, it is insufficient for tasks requiring the modelling of 

long range or nuanced dependencies. 

 

Inductive Capability: GraphSAGE generally performs 

between GCN and GAT. Its strength lies in its inductive nature 

(handling unseen nodes easily), making it a strong candidate 

for dynamic real- world applications, even if slightly trails 

GAT in pure structural encoding ability on fixed datasets. 
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6. Conclusion and Future Work 
 

6.1 Conclusion 

 

This study presented a systematic comparative analysis of 

three foundational Graph Neural Network architectures 

Graph Convolutional Networks (GCN), Graph Attention 

Networks (GAT), and GraphSAGE across a complexity 

gradient of NLP tasks: Text Classification, Semantic Role 

Labelling (SRL), and Abstract Meaning Representation 

(AMR) Parsing. 

 

Our empirical findings substantiate the hypothesis that the 

efficacy of GNN architectures in NLP is intrinsically linked 

to their ability to model anisotropic relationships (where 

neighbours have varying levels of importance). 

Dominance of Attention in Structural Tasks: For syntax heavy 

tasks, the Graph Attention Network (GAT) emerged as the 

superior architecture. 

 

In SRL (CoNLL-2009), GAT achieved a labelled F1 score of 

85.8%, outperforming the GCN baseline (82.5%) by a 

significant margin of 3.3% points. This confirms that the self 

attention mechanism is critical for filtering noise in 

dependency trees and capturing long range predicate 

argument dependencies. 

 

In AMR Parsing (AMR 2.0), the GAT based encoder similarly 

led with a Smatch Score of 74.5. compared to 71.2 for GCN. 

The ability to assign learnable weights to different syntactic 

edges allowed the GAT to generate more semantically 

accurate graph structures. 

 

Task Complexity and Model Suitability:In Text 

Classification,  the performance gap was context dependent. 

On the smaller R8 dataset, GCN proved to be a highly 

efficient and sufficient baseline (saturating~96.5%). 

However, on the more semantically complex 20 Newsgroups 

datasets, GAT’s ability to attend to discriminative keywords 

resulted in a distinct accuracy advantage (96.8%) over GCN. 

The inductive Trade-off: GraphSAGE consistently performed 

as a robust middle ground architecture (e.g., 83.9% in SRL). 

While it did not match the peak performance of GAT on fixed 

structural tasks, its inductive sampling mechanism offers a 

viable alternative for scenarios requiring scalability to unseen 

nodes without the computational overhead of calculating 

dense attention matrices. 

 

 In summary, while spectral based models like GCN provide 

a strong for global classification tasks, the fine grained, non 

linear nature of linguistic syntax necessitates the use of 

attention based architectures like GAT to achieve state of the 

art performance. 

 

6.2 Future Work 

 

While this study establishes a comprehensive benchmark for 

standard GNN architectures, several avenues for future 

research remain: 

 

Heterogeneous Graph Transformers (HGT): Our current 

graph construction treated most edges uniformly (except for 

simple weights). Future work should explore architectures 

like Relational GCNs (R-GCN) or HGTs that can explicitly 

model different types of edges (e.g., differentiating between a 

subject dependency and object dependency) to further 

improve SRL and AMR performance. 

 

Dynamic Graph Learning: Natural Language is evolving. 

Research into dynamic GNNs could address how to model 

temporal shifts in text classification topics or evolving news 

narrative without retraining the entire graph. 

 

Pre training Integration: Investigating the synergy between 

GNNs and large scale pre trained language models (like 

BERT or RoBERTa) remains a fertile ground. Specifically, 

determining whether GNNs can be used to inject structured 

knowledge into Transformer embeddings, rather than just 

acting as a post processing layer, could yield significant 

advancements in hybrid NLP systems. 

 

References 

 

[1] Kipf, T. N., & Welling, M. (2017). Semi-Supervised 

Classification with Graph Convolutional Networks. 

Proceedings of the 5th International Conference on 

Learning Representations (ICLR). 

[2] Veličković, P., Cucurull, G., Casanova, A., Romero, A., 

Lio, P., & Bengio, Y. (2018). Graph Attention Networks. 

Proceedings of the 6th International Conference on 

Learning Representations (ICLR). 

[3] Hamilton, W. L., Ying, Z., & Leskovec, J. (2017). 

Inductive Representation Learning on Large Graphs. 

Proceedings of the 31st Conference on Neural 

Information Processing Systems (NeurIPS), 1024–

1034. 

[4] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., 

& Monfardini, G. (2009). The Graph Neural Network 

Model. IEEE Transactions on Neural Networks, 20(1), 

61–80. 

[5] Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How 

Powerful are Graph Neural Networks? Proceedings of 

the 7th International Conference on Learning 

Representations (ICLR). 

[6] Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). 

DeepGCNs: Can GCNs Go as Deep as CNNs? 

Proceedings of the IEEE/CVF International Conference 

on Computer Vision (ICCV), 9267-9276. 

[7] Yao, L., Mao, C., & Luo, Y. (2019).    Graph 

Convolutional Networks for Text Classification. 

Proceedings of the 33rd AAAI Conference on Artificial 

Intelligence (AAAI), 7370–7377.  

[8] Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen, Z., & Wang, L. 

(2020). Every Document Owns Its Structure: Inductive 

Text Classification via Graph Neural Networks. 

Proceedings of the 58th Annual Meeting of the 

Association for Computational Linguistics (ACL), 334–

339.  

[9] Liu, X., You, X., Zhang, X., Wu, J., & Lv, P. (2020). 

Tensor Graph Convolutional Networks for Text 

Classification. Proceedings of the 34th AAAI 

Conference on Artificial Intelligence (AAAI).  

[10] Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., ... & 

Yang, Q. (2018). Large-Scale Hierarchical Text 

Classification with Recursively Regularized Deep 

Paper ID: MR251231122151 DOI: https://dx.doi.org/10.21275/MR251231122151 147 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 15 Issue 1, January 2026 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Graph-CNN. Proceedings of the 2018 World Wide Web 

Conference (WWW), 1063–1072. 

[11] Marcheggiani, D., & Titov, I. (2017). Encoding 

Sentences with Graph Convolutional Networks for 

Semantic Role Labeling. Proceedings of the 2017 

Conference on Empirical Methods in Natural Language 

Processing (EMNLP), 1506–1515. 

[12] Zhang, Y., Qi, P., & Manning, C. D. (2018). Graph 

Convolution over Pruned Dependency Trees Improves 

Relation Extraction. Proceedings of the 2018 

Conference on Empirical Methods in Natural Language 

Processing (EMNLP), 2205–2215.  

[13] Shi, P., & Lin, J. (2019). Simple BERT Models for 

Relation Extraction and Semantic Role Labeling. arXiv 

preprint arXiv:1904.05255.  

[14] He, L., Lee, K., Lewis, M., & Zettlemoyer, L. (2017). 

Deep Semantic Role Labeling: What Works and What’s 

Next. Proceedings of the 55th Annual Meeting of the 

Association for Computational Linguistics (ACL), 473–

483.  
[15] Banarescu, L., Bonial, C., Cai, S., Georgescu, M., 

Griffitt, K., Hermjakob, U., ... & Schneider, N. (2013). 

Abstract Meaning Representation for Sembanking. 

Proceedings of the 7th Linguistic Annotation Workshop 

and Interoperability with Discourse, 178–186.  

[16] Zhang, S., Ma, X., Wang, K., & Duh, K. (2019). AMR 

Parsing as Sequence-to-Graph Transduction. 

Proceedings of the 57th Annual Meeting of the 

Association for Computational Linguistics (ACL), 80–

94.  

[17] Cai, D., & Lam, W. (2020). Graph Transformer for 

Graph-to-Sequence Learning. Proceedings of the 34th 

AAAI Conference on Artificial Intelligence (AAAI), 

7464–7471.  

[18] Zhu, J., Li, J., Zhu, M., Qian, L., Zhang, M., & Zhu, G. 

(2019). Modeling Graph Structure in Transformer for 

Better AMR-to-Text Generation. Proceedings of the 

2019 Conference on Empirical Methods in Natural 

Language Processing (EMNLP), 5459–5468.  

[19] Damonte, M., & Cohen, S. B. (2019). Structural Neural 

Encoders for AMR-to-Text Generation. Proceedings of 

the 2019 Conference of the North American Chapter of 

the Association for Computational Linguistics 

(NAACL).  

[20] Lang, K. (1995). Newsweeder: Learning to Filter 

Netnews. Proceedings of the 12th International 

Conference on Machine Learning (ICML), 331–339. 

(Source of the 20 Newsgroups dataset).  

[21] Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., 

Martí, M. A., Màrquez, L., ... & Xue, N. (2009). The 

CoNLL-2009 Shared Task: Syntactic and Semantic 

Dependencies in Multiple Languages. Proceedings of 

the 13th Conference on Computational Natural 

Language Learning (CoNLL).  

[22] Cai, S., & Knight, K. (2013). Smatch: an Evaluation 

Metric for Semantic Feature Structures. Proceedings of 

the 51st Annual Meeting of the Association for 

Computational Linguistics (ACL), 748–752. 

[23] Fey, M., & Lenssen, J. E. (2019). Fast Graph 

Representation Learning with PyTorch Geometric. 

arXiv preprint arXiv:1903.02428.  

[24] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., 

Chanan, G., ... & Chintala, S. (2019). PyTorch: An 

Imperative Style, High-Performance Deep Learning 

Library. Advances in Neural Information Processing 

Systems (NeurIPS), 8024–8035.  

[25] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, 

C., Moi, A., ... & Rush, A. M. (2020). Transformers: 

State-of-the-Art Natural Language Processing. 

Proceedings of the 2020 Conference on Empirical 

Methods in Natural Language Processing (EMNLP): 

System Demonstrations. 

 

Paper ID: MR251231122151 DOI: https://dx.doi.org/10.21275/MR251231122151 148 

http://www.ijsr.net/



