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Abstract: The dominant paradigm in Natural Language Processing (NLP) has traditionally relied on sequential modelling, often
overlooking the rich, non-linear structural dependencies inherent in linguistic data. Graph Neural Networks (GNNs) offer a powerful
alternative by modelling text as structured graphs, yet a systematic evaluation of their comparative efficacy across tasks of varying
structural complexity remains under-explored. This paper presents a comprehensive comparative study of three prominent GNN
architectures- Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph SAGE- applied to three distinct NLP
tasks: Text Classification, Semantic Role Labelling (SRL), and Abstract Meaning Representation (AMR) Parsing. We construct task-
specific graph topologies, utilizing heterogeneous corpus graphs for document classification and syntactic dependency trees for SRL and
AMR. Our empirical results, derived from benchmarks on the 20 Newsgroups, CoNLL-2009, and AMR 2.0 datasets, reveal a clear
correlation between architectural properties and task complexity. While GCNs provide a robust and efficient baseline for global text
classification (Accuracy: 96.6%), they struggle with the fine-grained structural modelling required for semantic tasks. Conversely, GATs
demonstrate superior performance on syntax-heavy tasks, achieving a Labelled F1 score of 85.8% on SRL and a Smatch score of 74.5 on
AMR parsing, significantly outperforming the GCN baseline (82.5% and 71.2%, respectively). These findings suggest that the anisotropic
aggregation capability of attention mechanisms is critical for capturing the nuanced, long-range dependencies in natural language,
establishing GAT as the preferred architecture for structure-dependent NLP applications.

Keywords: Natural Language Processing (NLP), Graph Neural Networks (GNNs), Deep Learning, Graph Convolutional Network (GCNs),
Graph Attention Networks (GATs), GraphSAGE, Text Classification, Semantic Role Labelling (SRL), Abstract Meaning Representation
(AMR) Parsing

1. Introduction which architectures are best suited for tasks of varying
complexity, from document level classification to intricate

Most standard models in natural language processing (NLP) semantic graph parsing.

such as RNNs and Transformers, process text sequentially by

reading one word after another. Although this method has For Text classification:

proven effective for many tasks, it can struggle to capture 10 evaluate and compare the effectiveness of different GNN

complex relationship between words that are not close to each  architectures (GCN, GAT, GraphSAGE) in leveraging corpus

other in sequence. wide non-linear relationships between documents and words
to improve text classification accuracy over traditional

An alternative approach is to represent text as graph, where sequential models.

words are treated as nodes and the connections between them

are edges. This structure makes it possible to use Graph  For Semantic Role Labelling (SRL)

Neural Networks (GNNGs), a type of model built specially to To access how effectively GNN architectures can model the
learn from data in a graph format. Therefore, while traditional ~ explicit syntactic structure of sentences (i.e., dependency
models are limited to a linear view, GNNs can analyze the ~ parse trees) to identify and classify predicate argument
rich non-linear connections within a text, allowing them to relationships, thereby which models are superior at learning
capture a deeper level of meaning that sequential models from syntax rich graph representations.

might miss.
For Abstract Meaning Representation (AMR) Parsing:

The principal objective of this research is to conduct a To analyze and contrast the performance of GNN-based
systematic comparative analysis of prominent Graph Neural encoder-decoder  frameworks in the complex graph-
Network (GNN) architectures to benchmark their ~ generation task of AMR parsing. This Objective seeks to
performance and suitability across a spectrum of natural ~ identify which GNN encoding strategies produce the most
language processing tasks. The study aims to determine semantically coherent and structurally accurate meaning
representations from natural language sentences.
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2. Literature Review

The application of deep learning to Natural Language
Processing has evolved rapidly, with early approaches
predominantly relying on sequence-based encoders such as
Long Short-Term Memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997) and, more recently, Transformer-based
architectures like BERT (Devlin et al., 2018). While these
models excel at capturing local context and long-range
dependencies through self-attention mechanisms, they do not
explicitly model the structural information often inherit in
linguistic data, such as syntactic dependency tress or
knowledge graphs.

In response to this limitation, Graphical Neural Networks
(GNNs) have emerged as a robust paradigm for encoding
structured data. Seminal works by Kipf and Welling (2017)
on Graph Convolutional Networks (GCNs) and Velickovic et
al. (2018) on Graph Attention Networks (GATs) demonstrated
the efficacy of message-passing frameworks in non-
Euclidean domains. Following these developments, a
growing body of literature has explored the integration of
GNNS into NLP pipeline.

In the domain of Text-Classification, Yao et al. (2019)
proposed the TextGCN framework, constructing a
heterogeneous graph of words and documents to capture
global word co-occurrence patterns, significantly
outperforming traditional methods. Conversely, for syntax-
heavy tasks like Semantic Role Labelling (SRL),
Marcheggiani and Titov (2017) validated the utility of
encoding dependency tress using GCNs, proving that
syntactic bias improves argument identification Finally in
Abstract Meaning Representation (AMR) parsing, recent
studies have leveraged graph-to-sequence and sequence-to-
graph architectures to effectively generate semantic graphs,
though challenges remain in ensuring structural validity.

Despite these advancements, existing literature remains
largely fragmented, with studies typically focusing on
singular tasks or specific architectures in isolation. To date,
there is a scarcity of comprehensive comparative analyses that
systematically evaluate the performance of standard GNN
variants specifically GCN, GAT, and GraphSAGE across a
complexity gradient ranging from document level
classification to fine grained semantic parsing. This study
seeks to bridge this gap by providing a unified empirical
benchmark.

3. Methodology

To facilitate a rigorous comparative analysis, we evaluate
three distinct Graph Neural Network architectures: Graph
Convolutional Networks (GCN), Graph Attention Networks
(GAT), and GraphSAGE. These models were selected due to
their ubiquity in the literature and their distinct approaches to
neighbourhood aggregation ranging from  spectral
approximations to attention mechanisms and inductive
sampling.

3.1 Graph Convolutional Networks (GCN)

The GCN, introduced by Kipf and Welling (2017), operates
as a spectral based graph convolutional. It aggregates
information from a node’s immediate neighbourhood using a
fixed, isotropic normalization. Formally the hidden state of a

node v; at layer / = 1, denoted as hi(l“) is computed as:
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Where N (@) is the set of neighbours of node 7, d denotes the
degree of the node (including self-loops) W is a learnable
weight matrix and o is a non-linear activation function. The
GCN assumes that all neighbours contribute equally to the
central node’s representation, scaled only by the graph

topology.
3.2 Graph Attention Networks (GAT)

Unlike the fixed weights of the GCN, the GAT (Velickovic et
al.,, 2018) employs a self-attention mechanism to assign
learnable importance scores to a different neighbours. This
allows the model to focus on the most relevant nodes during
aggregation. The update rule is defined as:
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Here, the attention coefficient a;; is computed via a shared
mechanism o

exp(LeakyReLU(a” [Wh;||[Wh;]))
Yren exp(LeakyReLU(a” [Wh||[Why]))
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This mechanism enables the GAT to capture anisotropic
relationships, which is hypothesized to be critical for tasks
requiring syntactic focus, such as a Sematic Role Labelling.

3.3. GraphSAGE

GraphSAGE (Hamilton et al., 2017) introduces an inductive
framework that learns aggregator functions rather than
training on a fixed graph structure. It generates embeddings
by sampling and aggregating features from a node’s locl
neighbourhood. The general update rule is:

Rt =4 (WW - CONCAT(n", AGG({h{",Vj € ./\/'(i)})))

Where AGG represents an aggregation function (e.g. mean,
LSTM, or pooling), GraphSAGE inductive nature makes it
particularly suitable for large scale graphs or dynamic
environments where unseen nodes may be encountered
during inference.

3.4 Text Implementation and Graph Construction
To evaluate the selected architectures, we construct task-

specific graph topologies that capture the requisite linguistic
features for each domain.
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3.4.1. Text Classification: Heterogenous Corpus Graph

For the task of text classification, we adopt the heterogenous

graph construction method proposed by Yao et al., (2019). We

construct a single large-scale graph G = (V,E) for the entire
corpus, where the node set V contains both document nodes
and word nodes (unique vocabulary tokens).

o Nodes: |D| documents nodes + |V| unique word nodes.

o Edges: Two types of edges are established:

e Word Document edges: Weighted by the Term Frequency
Inverse Document Frequency (TF-IDF) of the word in the
document.

e Word-Word edges: Weighted by Pointwise Mutual
information (PMI) using a fixed size sliding window,
capturing global co-occurrence patterns. The GNN models
are trained to perform semi supervised node classification
on the document nodes.

3.4.2 Semantic Role
Dependency Encoding
For SRL, the objective is to classify the semantic relationship
between predicate arguments pairs. We model each sentence
as a graph based on its syntactic dependency parse tree.

e Nodes: Each word in the sentence serves as a node,
initialized with context aware embeddings (e.g., from a
pretrained BERT layer).

o Edges: Directed edges represent syntactic dependencies
(e.g., nsubj, dobj). To facilitate information flow against
the direction of dependency, we also add reverse edges and
self-loops. The GNN layers (GCN, GAT, or GraphSAGE)
are stacked on top of the embedding layer to refine the
token representations based on the syntactic structure. The
final representations are fed into a classifier to predict the
semantic role labels (e.g., ARGO, ARG1) for each word
relative to the sentence predicate.

Labelling (SRL): Syntactic

3.4.3. AMR Parsing: Graph-to-Graph Generation

AMR parsing is treated as a graph generation task. We employ

an Encoder Decoder framework where the GNN serves as the

structural encoder.

e Encoder Input: The input sentence is converted into a
graph using its dependency tree, similar to the SRL setup.

e GNN Role: The GNN architectures are employed to
encode this syntactic graph, producing structure aware
vector representations for each token.

e Decoder: These representations are passed to an attention-
based decoder which generates the Abstract Meaning
Representation graph sequentially (linearized) or via a
transition-based system.

o Comparative Focus: We isolate the impact of the GNN
encoder by keeping the decoder architecture constant
across all experiments, thereby measuring how effectively
each GNN variant captures the input sentence’s structural
semantics.

4. Experimental Setup

To ensure a rigorous and fair evaluation, we standardize the
training protocols and datasets across all comparative
experiments. This section details the datasets employed, the
implementation specifics of the GNN architectures, and the
evaluation metrics used to quantify performance.

4.1 Datasets

We utilize standard benchmark datasets for each of the three

tasks to align our results with existing literature.

o Text Classification: We employ the 20 Newsgroup (20NG)
dataset and the R8 subset of Reuters-21578.

e 20NG: Contains approximately 20,000 newsgroup
documents across 20 categories.

o R8: Contains 7,674 documents across 8§ categories.

e Preprocessing: We remove stop words and low frequency
words (appearing less than 5 times) to reduce graph noise.

e Semantic Role Labelling (SRL): We utilize the CoNLL-
2009 Shared Task dataset. This dataset provides gold
standard syntactic dependency trees and semantic role
annotations, making it the standard benchmark for
dependency based SRL.

e AMR Parsing: We use the AMR 2.0 (LDC2017T10)
dataset, which contains over 39,000 sentence graph pairs.
This version is widely used in recent parsing literature and
provides a robust testbed for structural generation.

4.2 Implementation Details

All models are implemented using PyTorch framework and

the PyTorch Geometric (PyG) library.

e Model Configuration: For all three GNN variants (GCN,
GAT, GraphSAGE), we employ a two layer architecture to
prevent over smoothing. The hidden dimension size is set
to 256 for Text Classification and 512 for SRL and AMR
tasks to accommodate the higher complexity of semantic
features.

e Training: We use the Adam Optimizer with a learning rate
of 0.005 for Text Classification and 0.0001 for SRL and
AMR. White decay is set to Se — 4 for regularization.

e Dropout: To mitigate overfitting, particularly in the
attention mechanisms of GAT, we apply dropout with p =
0.5 (classification) and p = 0.2 (SRL/AMR) between
layers.

e Hardware: All experiments are conducted on a single
NVIDIA A100 GPU (40GB) to ensure -consistent
computation times.

4.3 Evaluation Metrics

Performance is assessed using task specific metrics accepted

by the respective research communities:

o Text Classification: we report Accuracy and Macro-F1
Score to account for potential class imbalances in datasets.

o Semantic Role Labelling: We utilize the standard Labelled
F1 Score, which considers a prediction correct only if both
the argument span and the semantic role label match the
ground truth.

e AMR Parsing: We report the Smatch (Semantic Match)
Score, which calculates the overlap of triples between the
predicted graph and gold standard graph.

5. Results and Discussion
5.1 Task 1: Text Classification Performance
We evaluated the models on two datasets of varying

complexity: R8 (smaller, distinct categories) and 20
Newsgroups (20NG) (larger, more nuanced categories).
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Figure 1: The comparative test accuracy. GAT shows a

slight performance edge, particularly on the more complex
20NG dataset

On the simpler R8 dataset, performance across all the three
architectures is functionally equivalent, saturating around
96.5%. The dense connectivity of the corpus graph (where
documents are connected via shared words) means that simple
isotropic aggregation (GCN) is sufficient to capture topic
signals.

However, on the 20NG dataset, a clear hierarchy emerges:
GAT > GraphSAGE > GCN. The 20NG dataset contains
semantically overlapping categories (e.g., comp.sys.ibm.pc
vs com.sys.mac). GCN’s fixed normalization treats all
neighbouring word nodes equally. In contrast, GAT utilizes its
attention mechanism to assign higher importance weights to
discriminative keywords while down weighting common, less
informative words. This ability to filter noisy connections in
the heterogenous graph results in a 1.7% accuracy gain over
the GCN baseline. GraphSAGE performs intermediately,
benefitting from its localized sampling but lacking the precise
focusing capability of attention.

5.2 Task 2: Semantic Role Labelling (SRL) Performance
For SRL, the models encoded syntactic dependency trees to

identify predicate argument structures. Performance is
measured by Labelled F1 Score on the CONLL-2009 dataset.

Labeled F1 Score (%)

87 |

86 | [85.8] (GAT - Winner)

85 |

84 | [83.9] (SAGE)

83 |

82 | [82.5] (GCN)

81 |
e

GCN GAT GraphSAGE

Figure 2: A significant performance gap, with GAT
outperforming GCN by over 3 absolute percentage points

The results indicate a strong inductive bias in GAT towards
syntax heavy tasks. Syntactic dependency trees are often
deep, and the relationship between a predicate and its
argument (e.g., agent) may span several hops in graph.

The GCN suffers here due to the “Over smoothing”
phenomenon inherent in spectral convolutions over many
layers; node representations tend to converge, losing distinct
syntactic information over long paths. GAT, conversely,
mitigates this by learning attention weights that acts as “soft
shortcuts™. It allows a predicate node to attend heavily to a

distinct subject node, effectively ignoring irrelevant
intermediate nodes in the parse tree. This anisotropic
aggregation is crucial for correctly labelling complex
arguments.

5.3 Task 3: AMR Parsing Performance

In this task, the GNNs functioned as encoders within a larger
Encoder Decoder framework to generate complex semantic
graphs. Performance is measured by the Smatch score on
AMR 2.0.

. GAT (Fimal: 74.3)

. SAGE (Final: 72.8)

. GCN (Final: 71.2)

Figure 3: Training trajectories. GAT not only achieves a
higher final Smatch score but also converges faster than
GCN)

AMR parsing is the most structurally complex task. The
encoder must capture subtle semantic nuances from the input
syntax to guide the decoder. The superior performance of the
GAT-based encoder (74.5 Smatch) confirms findings from the
SRL task. To generate an accurate AMR graph, the model
must differentiate between types of syntactics edges (e.g.,
differentiating a conceptual modification from a core
argument). The GCN encoder (71.2 Smatch), by treating all
syntactic neighbours identically, fails to provide the decoder
with rich enough structural embeddings, leading to errors in
the generated graph structure.

5.4 Cross-Task Comparative Synthesis

Synthesizing the results across all three domains reveals a
clear correlation between task complexity and architectural
suitability.

The Necessity of Attention Mechanism: As the NLP tasks
shifts from relying on broad lexical co-occurrence (Text
Classification) to requiring precise understanding of explicit
syntactic structure (SRL and AMR), the value of the attention
mechanism becomes critical. GAT consistently outperforms
GCN in structural tasks because linguistic graph are
inherently anisotropic not all neighbours are equally
important for meaning.

Baseline vs. Specialized: GCN remains a robust,
computationally efficient baseline for tasks where global
node homophily is high (like standard text classification).
However, it is insufficient for tasks requiring the modelling of
long range or nuanced dependencies.

Inductive Capability: GraphSAGE generally performs
between GCN and GAT. Its strength lies in its inductive nature
(handling unseen nodes easily), making it a strong candidate
for dynamic real- world applications, even if slightly trails
GAT in pure structural encoding ability on fixed datasets.
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6. Conclusion and Future Work
6.1 Conclusion

This study presented a systematic comparative analysis of
three foundational Graph Neural Network architectures
Graph Convolutional Networks (GCN), Graph Attention
Networks (GAT), and GraphSAGE across a complexity
gradient of NLP tasks: Text Classification, Semantic Role
Labelling (SRL), and Abstract Meaning Representation
(AMR) Parsing.

Our empirical findings substantiate the hypothesis that the
efficacy of GNN architectures in NLP is intrinsically linked
to their ability to model anisotropic relationships (where
neighbours have varying levels of importance).

Dominance of Attention in Structural Tasks: For syntax heavy
tasks, the Graph Attention Network (GAT) emerged as the
superior architecture.

In SRL (CoNLL-2009), GAT achieved a labelled F1 score of
85.8%, outperforming the GCN baseline (82.5%) by a
significant margin of 3.3% points. This confirms that the self
attention mechanism is critical for filtering noise in
dependency trees and capturing long range predicate
argument dependencies.

In AMR Parsing (AMR 2.0), the GAT based encoder similarly
led with a Smatch Score of 74.5. compared to 71.2 for GCN.
The ability to assign learnable weights to different syntactic
edges allowed the GAT to generate more semantically
accurate graph structures.

Task Complexity and Model Suitability:In  Text
Classification, the performance gap was context dependent.
On the smaller R8 dataset, GCN proved to be a highly
efficient and sufficient Dbaseline (saturating~96.5%).
However, on the more semantically complex 20 Newsgroups
datasets, GAT’s ability to attend to discriminative keywords
resulted in a distinct accuracy advantage (96.8%) over GCN.
The inductive Trade-off: GraphSAGE consistently performed
as a robust middle ground architecture (e.g., 83.9% in SRL).
While it did not match the peak performance of GAT on fixed
structural tasks, its inductive sampling mechanism offers a
viable alternative for scenarios requiring scalability to unseen
nodes without the computational overhead of calculating
dense attention matrices.

In summary, while spectral based models like GCN provide
a strong for global classification tasks, the fine grained, non
linear nature of linguistic syntax necessitates the use of
attention based architectures like GAT to achieve state of the
art performance.

6.2 Future Work

While this study establishes a comprehensive benchmark for
standard GNN architectures, several avenues for future
research remain:

Heterogeneous Graph Transformers (HGT): Our current
graph construction treated most edges uniformly (except for
simple weights). Future work should explore architectures

like Relational GCNs (R-GCN) or HGTs that can explicitly
model different types of edges (e.g., differentiating between a
subject dependency and object dependency) to further
improve SRL and AMR performance.

Dynamic Graph Learning: Natural Language is evolving.
Research into dynamic GNNs could address how to model
temporal shifts in text classification topics or evolving news
narrative without retraining the entire graph.

Pre training Integration: Investigating the synergy between
GNNs and large scale pre trained language models (like
BERT or RoBERTa) remains a fertile ground. Specifically,
determining whether GNNs can be used to inject structured
knowledge into Transformer embeddings, rather than just
acting as a post processing layer, could yield significant
advancements in hybrid NLP systems.
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