

Influence of Posture, Breathing and Gender on Sinus Arrhythmia

Dr. Kailash Chavada¹, Dr. Pragna Rawal²

^{1, 2}Department of Physiology, NHL Municipal Medical College

Abstract: *Respiratory sinus arrhythmia represents a key marker of vagal control over heart rate and offers insight into autonomic regulation under everyday physiological conditions. This work examines how posture, breathing patterns, and gender shape variations in heart rate and oxygen saturation using a non-invasive approach. A cross-sectional observational design was applied to a cohort of 250 healthy adults aged 18 to 45 years, with measurements obtained through pulse oximetry during different breathing patterns and postural states. The observations show that deep and slow breathing is associated with a lower heart rate and improved oxygen saturation, suggesting enhanced parasympathetic activity. Changes in posture from supine to standing are accompanied by a gradual rise in heart rate, consistent with increased sympathetic activation. Gender-based comparisons indicate marginally higher heart rates and lower oxygen saturation values among female participants. Together, these findings highlight the sensitivity of autonomic balance to simple physiological factors and support the relevance of breathing control and posture in modulating sinus arrhythmia, while also pointing to inherent gender-related variations in autonomic function.*

Keywords: respiratory sinus arrhythmia, autonomic regulation, breathing pattern, posture, pulse oximetry

1. Introduction

Respiratory sinus arrhythmia (RSA) is the physiologic variation of heart rate that occurs with breathing—heart rate increases during inspiration and decreases during expiration—and reflects vagally mediated cardiorespiratory coupling. Posture alters autonomic balance; moving from supine to upright reduces vagal tone and modifies RSA amplitude and phase, producing measurable differences in heart-rate modulation across positions. Breathing pattern is a potent determinant of RSA; slow, deep paced breathing (≈ 6 breaths/min) typically amplifies RSA and high- frequency heart-rate fluctuations compared with spontaneous breathing. Gender effects on RSA and heart-rate variability have been reported, with some studies showing sex-dependent differences in RSA magnitude and autonomic responsiveness, though findings remain partly inconsistent. Peripheral oxygen saturation (SpO_2) is generally stable in healthy adults across postural changes, but breathing maneuvers and altered cardiorespiratory coupling can produce subtle changes that may co-vary with RSA and heart-rate metrics in specific populations.

2. Objectives

- To assess effect of posture on sinus arrhythmia
- To evaluate influence of breathing patterns
- To compare gender-based differences

3. Methodology

Study design: Cross-sectional observational study Study duration: 1 month

Study population: 250 healthy volunteers from a metro-city medical college Age group: 18–45 years

Participants: Students, faculty, and staff

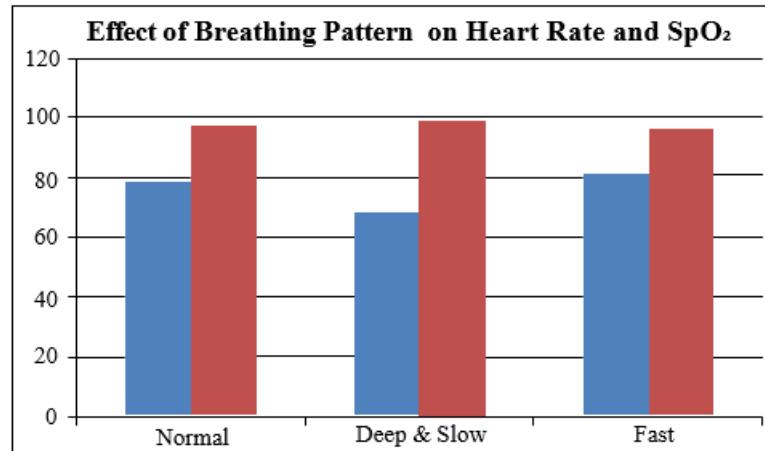
Inclusion criteria:

- Healthy individuals
- Ability to maintain required postures Ability to follow breathing instructions

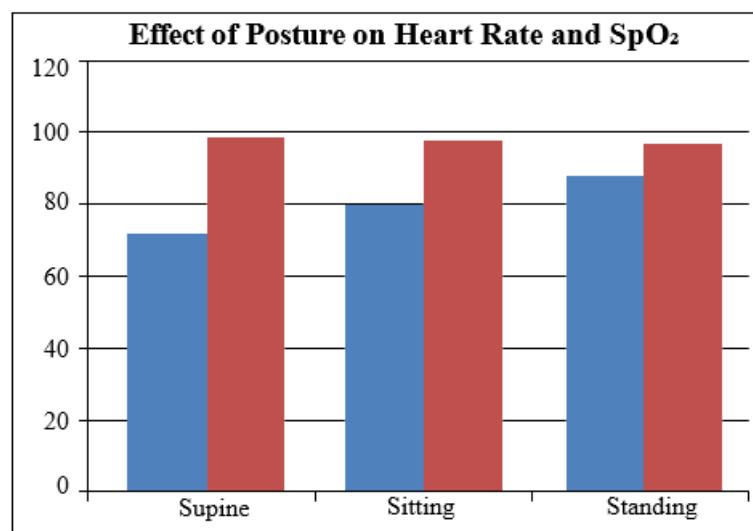
Exclusion criteria:

- History of cardiovascular or significant pulmonary disease Use of medications affecting autonomic function
- Current smokers or smoking within last 6 months
- Pregnant or lactating women
- Recent acute illness (within last 2 weeks)

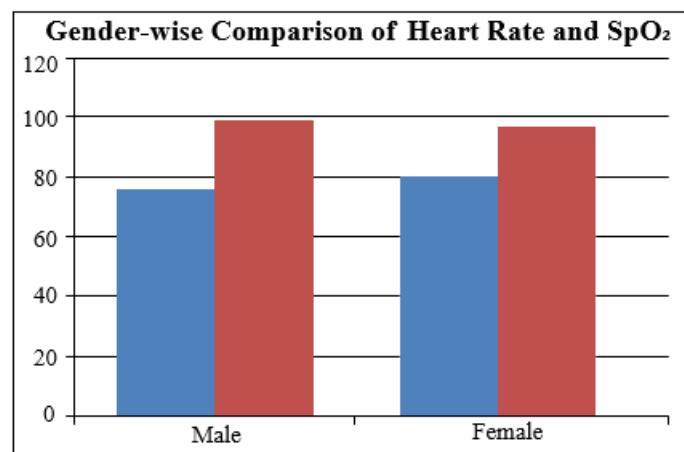
Parameters recorded:


Heart rate and peripheral oxygen saturation (SpO_2)

Equipment used:


Pulse oximeter for continuous recording

Study Conditions:


Measurements taken during different postures and breathing patterns

- Deep slow breathing reduces heart rate and improves SpO₂, while fast breathing increases heart rate with comparatively lower SpO₂.

- Heart rate increases from supine to standing, while SpO₂ remains relatively stable with a slight decline on standing.

- Females show slightly higher heart rate and marginally lower SpO₂ compared to males.

4. Results

- Deep and slow breathing significantly reduced heart rate and improved SpO₂.
- Heart rate increased progressively from supine to standing posture.

- Females showed slightly higher heart rate and lower SpO₂.

5. Discussion

- Deep breathing enhances vagal tone and RSA.

- Postural change induces sympathetic activation.
- Gender differences may reflect hormonal and autonomic influences.

6. Conclusion

- Breathing pattern and posture significantly influence sinus arrhythmia.
- Deep breathing improves autonomic balance.
- Gender-based autonomic variation exists.

7. Limitations & Future Scope

- Pulse oximetry lacks beat-to-beat HRV precision.
- Future studies should include ECG-based HRV analysis.

References

- [1] Balaji P., Varne S.R. A systematic review on physiological role of yoga and pranayama in management of orthostatic hypotension and vasovagal syncope. Indian J Clin Anat Physiol. 2023;10(3):149-152. <https://doi.org/10.18231/j.ijcap.2023.033>
- [2] Khandelwal E., Rathore M., Rathore V. Unlocking the mind-body connection: An HRV-based assessment of cardiac autonomic responses to yogic postures. Indian J Clin Anat Physiol. 2024;11(4):221-226. <https://doi.org/10.18231/j.ijcap.2024.047>
- [3] Tripathi R., Pramanik A. Effect of pursed-lip breathing on lung capacity and heart rate variability of healthy young adults. Indian J Yoga Exercise & Sport Sci Phys Educ. 2025;10(1):59-67.
- [4] Vaishnav R.B., Shah H.D., Solanki R. A Pilot Study to Check Effects of Alternate Nostril Breathing on Heart Rate Variability in Indian Male Adults. Int J Clin Exp Physiol. 2025;12(1):9-14. DOI:10.5530/ijcep.2025.12.1.3
- [5] Malik M., et al. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur Heart J. 1996; 17: 354–381.
- [6] Yasuma F., Hayano J. Respiratory Sinus Arrhythmia: Why Does the Heartbeat Synchronize with Respiration? Chest. 2004;125(2):683-690.