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Abstract: Dynamic pricing in competitive retail markets requires strategies that adapt to fluctuating demand and competitor behavior. In 

this work, we present a systematic empirical evaluation of multi-agent reinforcement learning (MARL) approaches-specifically MAPPO and 

MADDPG-for dynamic price optimization under competition. Using a simulated marketplace environment derived from real-world retail 

data, we benchmark these algorithms against an Independent DDPG (IDDPG) baseline, a widely used independent learner in MARL 

literature. We evaluate profit performance, stability across random seeds, fairness, and training efficiency. Our results show that MAPPO 

consistently achieves the highest average returns with low variance, offering a stable and reproducible approach for competitive price 

optimization, while MADDPG achieves slightly lower profit but the fairest profit distribution among agents. These findings demonstrate that 

MARL methods-particularly MAPPO-provide a scalable and stable alternative to independent learning approaches for dynamic retail pricing. 
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1. Introduction 
 

Dynamic pricing plays a critical role in modern retail and e-

commerce platforms, where sellers must continuously adjust 

prices to respond to fluctuating demand, inventory levels, and 

competitor actions. Traditional approaches often rely on static 

business rules, manual price adjustments, or heuristics that 

struggle to adapt effectively to rapidly shifting market 

conditions. This leads to suboptimal profit outcomes and 

misses opportunities for personalized pricing strategies. 

 

Reinforcement Learning (RL) offers a promising alternative by 

enabling agents to learn pricing policies that maximize long-

term cumulative reward through interaction with the 

environment. In multi-seller settings, however, the pricing 

problem becomes a multi-agent reinforcement learning 

(MARL) task, where each agent’s decision impacts others, and 

coordination or competition emerges naturally. MARL 

methods have shown potential to produce more adaptive and 

profitable strategies, but challenges remain in achieving stable 

training, reproducibility across random seeds, and scalability to 

large action/state spaces typical of retail markets. 

 

In this work, we conduct a systematic empirical evaluation of 

several state-of-the-art MARL algorithms for dynamic retail 

pricing under competition. Specifically, we investigate: 

• MAPPO (Multi-Agent Proximal Policy Optimization), an 

on-policy centralized training–decentralized execution 

(CTDE) algorithm, 

• MASAC (Multi-Agent Soft Actor-Critic), an off-policy 

entropy-regularized algorithm, 

• MADDPG (Multi-Agent Deep Deterministic Policy 

Gradient), a widely studied actor–critic baseline and 

compare them against an Independent DDPG (IDDPG) 

baseline, a common reference point in MARL literature. 

 

Our evaluation is performed in a simulated marketplace 

environment constructed from real-world retail transaction 

data, allowing us to model realistic demand elasticity and 

competitive interactions. We measure each algorithm’s profit 

performance, training stability across random seeds, and 

sample efficiency. 

 

The key contributions of this paper are: 

1) Comprehensive benchmarking of MAPPO, MASAC, and 

MADDPG against an IDDPG baseline in a retail dynamic 

pricing environment. 

2) Stability and reproducibility analysis across multiple 

seeds, highlighting MAPPO’s low variance and consistent 

performance. 

3) Performance insights show MASAC achieving high peak 

rewards but suffering from instability, providing guidance 

for practitioners on trade-offs between exploration and 

reliability. 

4) Practical implications for deploying MARL in retail 

markets, demonstrating that MAPPO is practical and 

reliable for real-world retail applications. 

 

The results demonstrate that MAPPO consistently achieves the 

highest mean profits with significantly lower variance than 

MASAC and MADDPG, making it a strong candidate for real-

world dynamic pricing systems. 

 

2. Literature Review 
 

2.1 Dynamic Pricing and Rule-Based Methods 

 

Dynamic pricing has long been a key lever in retail revenue 

management. Early approaches relied on static business rules, 

simple demand models, or manual price adjustments driven by 
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domain experts. These rule-based strategies are easy to deploy 

but are inherently myopic, failing to adapt optimally to 

changing market conditions, competitor actions, and demand 

shifts. 

 

Recent studies indicate that reinforcement learning (RL) can 

surpass rule-based approaches by continually adapting through 

interactions with the environment. Liu et al. (2019) [1] reported 

in a large-scale field experiment on Alibaba’s Tmall platform 

that deep RL–driven pricing “significantly outperformed the 

manual pricing by operation experts,” leading to measurable 

improvements in GMV (gross merchandise volume) and 

conversion rates. Similarly, Kephart and Greenwald [4] 

showed that Q-learning Pricebot consistently achieved higher 

long-term profits than fixed-strategy Pricebot in competitive 

markets, validating the superiority of learning-based 

approaches over static heuristics. 

 

Further supporting this transition from rule-based systems to 

RL, Kropp et al. (2019) [5] demonstrated that multi-agent RL 

for product cluster pricing improved daily profits by 7–8% over 

static price control and by over 25% compared to single-agent 

RL methods, demonstrating the economic and scalability 

benefits of MARL in retail pricing. 

 

2.2 Independent vs. Multi-Agent Reinforcement Learning 

 

While independent learning approaches such as Independent 

DDPG (IDDPG) train each agent in isolation, they often fail to 

account for the coupled nature of competitive markets. This can 

lead to unstable or oscillatory pricing behaviors and suboptimal 

equilibria. Greenwald et al. (1999) [4] and subsequent works 

showed that when multiple independent learners compete, 

convergence is not guaranteed and can result in chaotic price 

fluctuations. 

 

To address these issues, multi-agent reinforcement learning 

(MARL) has been proposed, where agents are trained jointly 

under a centralized training–decentralized execution (CTDE) 

paradigm. MARL methods have been shown to produce more 

coordinated and stable strategies, improving collective reward 

or individual profitability in competitive settings. Villarrubia-

Martín et al. (2025) [6] demonstrated that MARL agents in a 

transportation pricing domain learned adaptive strategies that 

responded to user preferences and outperformed simpler 

heuristics on profit metrics. 

 

Recent benchmarks (Yu et al., 2022) [2] suggest that MAPPO 

(Multi-Agent PPO) provides superior stability and 

reproducibility compared to independent learners and several 

state-of-the-art MARL baselines (e.g., MADDPG, COMA, 

QMIX). MADDPG remains a popular baseline due to its 

simplicity and effectiveness in continuous action spaces, 

making it a natural point of comparison for new MARL 

algorithms. 

 

2.3 Positioning of This Work 

 

Building on these insights, our work focuses on benchmarking 

three representative MARL algorithms-MAPPO (on-policy), 

MASAC (off-policy entropy-regularized), and MADDPG (off-

policy deterministic)-against an IDDPG baseline in a realistic 

retail pricing simulation. 

 

While Yu et al. (2022) [2] demonstrated that MAPPO achieves 

strong stability and reproducibility across general MARL 

benchmarks, our work extends this analysis to the retail 

dynamic pricing domain and provides a head-to-head 

comparison with MASAC, MADDPG, and an IDDPG 

baseline. This allows us to evaluate not only algorithmic 

stability but also profit performance and competitive pricing 

behavior in a retail setting. 

 

This comparison allows us to quantify the benefit of moving 

from independent learners to CTDE-based MARL, understand 

the trade-off between stability (MAPPO) and peak 

performance potential (MASAC), and evaluate how 

deterministic policy gradients (MADDPG) perform relative to 

stochastic policy approaches. 

 

3. Problem Formulation 
 

We consider a competitive retail marketplace comprising N 

sellers (agents), each offering a set of products to a shared pool 

of customers. Time is discretized into T decision steps per 

episode, where each step represents a pricing period (e.g., a 

day). 

 

a) State Space 

At each discrete time step, indexed from 0 to T-1 the 

environment produces a global state 

st ∈  S ⊆  Rds  

that encodes information such as: 

• Current prices for all sellers and SKUs, 

• Inventory levels or availability indicators, 

• Observed demand signals (e.g., recent sales velocity), 

• Exogenous market features (seasonality, promotions, 

competitor activity). 

 

In the CTDE (Centralized Training, Decentralized Execution) 

paradigm, this state is used centrally for training the critics but 

only each agent’s local observation ot
i  is available to the policy 

during execution. The observation ot 
i ∈  Oi  ⊆  Rdo  typically 

includes seller-specific features (its own price, inventory, and 

recent demand) but not other agents’ private states. 

 

b) Action Space 

Each seller chooses a pricing action 

at
i  ∈  Ai  =  [pmin, pmax] 

representing a price adjustment (or absolute price level) for its 

SKU(s). In our implementation, the action space is continuous 

and normalized to [−1,1], which is later scaled to the real-world 

price band [pmin, pmax]. 
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The joint action vector at time t is 

at  =  [at
1, at

2, . . . , at
N]T 

 

c) Reward Function 

 

After all agents select their prices, the marketplace simulator 

computes sales, demand allocation, and profits. Each agent i 

receives a scalar reward 

 

rt
i = πi(pt

i , dt
i )  −  ci(dt

i ), 
 

where pt 
i is the price, dt

i  is realized demand, πi  is revenue, and 

ci (⋅) is the cost function (if applicable). 

 

We optimize profit maximization, so the global objective is to 

maximize the expected discounted return: 

J(θ) =  E [∑ γt

T−1

t=0

 
1

N
 ∑ rt

i

N

i=1

], 

 

where γ ∈[0,1) is the discount factor. 

 

d) Transition Dynamics 

 

The environment follows a Markov Decision Process (MDP) 

with joint transition dynamics P (st+1 | st , at) where demand 

response is governed by a demand model D (⋅) calibrated from 

historical data to capture price elasticity, cross-elasticity, and 

stochastic noise. 

 

e) Multi-Agent RL Objective 

 

The problem is thus formulated as a stochastic game or multi-

agent MDP. Under CTDE, a centralized critic 

V (st) or Q(st, at)  is trained to estimate the global value of 

joint states or state-action pairs, while decentralized actors 

πθ
i  (ot

i ) are trained to output actions conditioned only on local 

observations. 

 

The optimization objective for each agent is: 

max
θi

Ji (θi)  = Eπθ
[∑ γt 

T−1

t=0

rt
i] ,     

where the expectation is over trajectories generated by the joint 

policy πθ (at| ot) 

 

4. Methodology 
 

This section describes the algorithms benchmarked in this 

study and the training procedure used to evaluate their 

performance in the retail dynamic pricing environment. Our 

approach follows a centralized training–decentralized 

execution (CTDE) paradigm, where a centralized critic is used 

during training to stabilize learning, but each agent executes its 

policy using only local observations. 

 

 

 

1) Benchmarked Algorithms 

 

a) Independent DDPG (IDDPG) 

 

IDDPG serves as our baseline and represents a class of 

independent learner algorithms in multi-agent reinforcement 

learning. Each agent trains its own Deep Deterministic Policy 

Gradient (DDPG) actor–critic pair, treating other agents as part 

of the environment. While computationally simple, this 

approach often suffers from non-stationarity because each 

agent’s policy changes during training, which can destabilize 

learning in competitive markets. 

 

b) MADDPG 

 

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

extends DDPG to the CTDE setting by maintaining a 

centralized critic Qi (s, a1, a2, . . . . . , aN)  for each agent, 

conditioned on the joint state and joint actions, while keeping 

decentralized actors πi (oi) for execution. This allows each 

agent to learn a better gradient signal that accounts for other 

agents’ actions, improving coordination and convergence 

stability relative to IDDPG. 

 

c) MASAC 

 

Multi-Agent Soft Actor–Critic (MASAC) is an off-policy, 

entropy-regularized algorithm that encourages exploration by 

maximizing both expected return and a policy entropy term. 

Each agent maintains two Q-networks and a target network to 

reduce overestimation bias. MASAC is more sample-efficient 

than on-policy methods but can be more sensitive to 

hyperparameter choices, sometimes leading to high variance 

across training runs. We included MASAC in our benchmarks 

despite its sensitivity and potential instability, as its entropy-

driven exploration provides a useful contrast to more stable 

algorithms and illustrates the trade-off between exploration and 

reliability in dynamic pricing. 

 

d) MAPPO 

 

Multi-Agent Proximal Policy Optimization (MAPPO) is an on-

policy policy-gradient algorithm adapted to the CTDE setting. 

Each agent maintains a stochastic actor πi (ai| oi) and a 

centralized value function V(s) shared across agents. The 

objective is optimized using the clipped surrogate loss: 

 

LCLIP(θ)  = Et [min (rt(θ)Ât, clip(rt(θ),1 − ϵ, 1 + ϵ)Ât], 

 

where rt(θ) is the likelihood ratio of new and old policies and 

Ât is the advantage estimate computed using Generalized 

Advantage Estimation (GAE). MAPPO is known for its 

stability and reproducibility, making it a strong candidate for 

real-world implementation. 

 

2) Neural Network Architecture 

 

All actor networks consist of two fully connected layers with 

128 hidden units and Tanh activations, followed by a linear 
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output layer producing mean actions (and log standard 

deviations for stochastic policies). For MASAC and MADDPG 

critics, joint state–action vectors are concatenated before 

passing through two fully connected layers (256–256 units) 

with ReLU activations to estimate Q-values. The centralized 

value network used by MAPPO consists of a similar two-layer 

MLP with Tanh activations. 

 

3) Training Procedure 

 

Each training episode consists of T time steps. At each step, all 

agents select pricing actions in parallel, interact with the 

marketplace environment, and receive their individual rewards. 

The training procedure differs slightly between the on-policy 

(MAPPO) and off-policy (MASAC, MADDPG, IDDPG) 

algorithms. 

 

MAPPO (On-Policy) Updates 

 

MAPPO uses on-policy trajectory rollouts for policy updates. 

After each episode, we collect the full trajectory 

(st, at, rt, st+1)t=0
T−1 and compute advantages Ât using 

Generalized Advantage Estimation (GAE) with λ=0.95 and 

discount factor γ=0.99. The policy is then updated using the 

clipped surrogate PPO objective with a clipping range of ϵ=0.2. 

Each batch of trajectory data is shuffled and optimized over 4 

PPO epochs with minibatches of size 128 to improve sample 

efficiency. The centralized value network is trained 

concurrently to minimize mean-squared error between 

predicted and empirical returns. 

 

MASAC, MADDPG, and IDDPG (Off-Policy) Updates 

 

For the off-policy algorithms, experiences are stored in a replay 

buffer. After each environment step, we sample minibatches of 

size 128 from the buffer to perform gradient updates. 

 

• MASAC updates two Q-networks using a soft Bellman 

backup and optimizes the stochastic policy by maximizing 

the entropy-regularized objective. 

• MADDPG trains a centralized critic Qi(s, a1, . . . , aN) for 

each agent and updates actors deterministically using the 

policy gradient from the centralized Q-function. 

• IDDPG follows the same update rule as DDPG but trains 

each agent independently using only local observations and 

its own critic. 

 

All off-policy methods share the same discount factor γ=0.99 

and learning rate 3×10-4 to ensure a fair comparison with 

MAPPO. 

 

4) Evaluation Protocol 

 

Training continues for a fixed number of episodes. After every 

K episodes (where K=20 in our experiments), we perform 

evaluation runs with exploration disabled (deterministic 

policies for DDPG/MADDPG and mean action for stochastic 

policies) over multiple episodes and report the mean and 

standard deviation of cumulative profit. This periodic 

evaluation enables tracking of stability and convergence trends 

across random seeds. 

 

5. Experimental Setup 
 

1) Dataset and Preprocessing  

 

We use a trimmed version of the UCI Online Retail dataset, 

originally containing ~540,000 transaction rows across ~3,700 

SKUs. To build a controlled and data-rich simulation 

environment, we applied the following steps: 

 

• Row and SKU Selection: Filtered to approximately 19,000 

rows covering the top 50 SKUs by sales volume, ensuring 

sufficient demand observations per product for model 

fitting. 

• Data Cleaning: Removed canceled invoices, negative 

quantities, and records with missing customer IDs. 

• Demand Model Fitting: For each SKU, we trained a 

CatBoost gradient boosting regressor to model the price–

demand relationship at a monthly aggregation frequency. 

The fitted models achieved: 

Validation Performance: R2=0.6547, RMSE ≈ 723.01, 

MAPE ≈ 1.24. 

These results indicate a reasonably good predictive ability 

on unseen data, suitable for driving realistic demand 

simulation. 

• Train/Validation Split: The data was split chronologically 

into 160 training periods and 40 validation periods to avoid 

information leakage from future sales. 

• Feature Engineering: Constructed per-SKU features 

including normalized price, recent sales velocity, and 

remaining inventory, which together form the observation 

vector for each agent. 

 

2) Marketplace Simulation Environment  

 

The preprocessed dataset is used to parameterize a custom 

MarketplaceEnv that simulates a competitive retail 

marketplace. We model N=3 sellers, each acting as an 

autonomous agent. 

 

Each episode consists of T=24 steps, corresponding to 24 

monthly pricing decisions (two simulated years). At each step: 

 

a) Observation: Each seller observes its local feature vector, 

including normalized price, historical sales velocity, and 

inventory state. 

b) Action: Sellers select a continuous pricing action 

representing a relative price adjustment within ±30% of the 

reference price. 

c) Demand Allocation: Market demand is shared among 

sellers using a softmax market-share model with 

competition intensity parameter β=10, allowing realistic 

competitive interactions. 

d) Reward: Profits are computed using a cost-ratio model with 

unit cost set to 70% of the selling price. 

e) State Transition: The environment updates demand history, 

inventory, and price signals for the next step 
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To better reflect real-world uncertainty, stochastic demand 

noise is added based on the residuals of the fitted demand 

models. The noise is Gaussian with calibrated standard 

deviation (σ≈730) and is clipped at three standard deviations to 

avoid unrealistic extremes. 

 

The environment supports long-term evaluation of pricing 

strategies under competition and uncertainty. 

 

3) Hyperparameter settings 

 

All algorithms are trained for 400 episodes per seed across 10 

different random seeds. Key hyperparameters are summarized 

in table 1. 

 

Table 1: Key hyperparameters 
Parameter Value Applies to 

Discount factor γ 0.99 All algorithms 

Learning rate 3×10-4 All algorithms 

PPO clip range ϵ 0.2 MAPPO only 

GAE parameter λ 0.95 MAPPO only 

Minibatch size 128 All algorithms 

PPO epochs 4 MAPPO only 

Replay buffer size 10-5 transitions MASAC, MADDPG, IDDPG 

 

Hyperparameters are kept identical across algorithms wherever 

applicable to ensure a fair comparison. For MASAC, we 

additionally use entropy coefficient tuning.  

 

4) Evaluation Metrics  

To comprehensively evaluate algorithm performance, we 

report metrics covering efficiency, stability, fairness, and 

competitive behavior: 

• Average Profit: Mean cumulative profit per episode over 

the last five evaluation runs. 

• Training Stability: Standard deviation of last-5-

episodemeans across 10 seeds, indicating reproducibility. 

• Sample Efficiency: Episodes required to exceed 80% of the 

IDDPG baseline’s asymptotic profit. 

• Learning Curves: Smoothed profit trajectories (window = 

5) over training episodes. 

• Fairness: Jain’s Index (0–1, higher = fairer) and Gini 

Coefficient (lower = fairer) of per-agent profits. 

• Competitiveness: Price volatility (std per agent), 

undercutting frequency, mean price correlation, 

competitive intensity and market-share churn (episode-to-

episode variation). 

 

Evaluations are performed every 20 episodes using 

deterministic actions (or mean actions for stochastic policies) 

over three evaluation episodes, and results are averaged. 

 

5) Hardware and Software  

All experiments were conducted on a home workstation with 

an Intel Core i7 CPU and 32 GB RAM, using CPU-only 

training. The software stack consisted of Python 3.10 and 

PyTorch 2.2.1. Random seeds were fixed for environment 

initialization, network parameter initialization, and action 

sampling to ensure reproducibility. 

6. Results and Observations 
 

This section reports the outcomes of the experiments based on 

the setup described in Section IV. 

 

A. Quantitative Results 

Table II summarizes the performance of all four algorithms 

across ten random seeds and 20 evaluation episodes. 

 

Table II: Overall metrics of all four algorithms 

Algorithm 
Average 

Profit 

Training 

Stability (std) 

Jain’s  

Index 

Gini  

Coeff 

MAPPO 0.91 0.72 0.94 0.12 

MADDPG 0.79 0.69 0.96 0.11 

IDDPG 0.62 1.12 0.78 0.29 

MASAC -0.007 0.02 0.17 -1.08 

 

Key Observations: 

• MAPPO achieved the highest average profit, outperforming 

MADDPG (+16 %) and IDDPG (+47 %) while maintaining 

high fairness (Jain’s Index = 0.94). 

• MADDPG produced the fairest outcomes with the highest 

Jain’s Index (0.96) and lowest Gini coefficient (0.11), 

suggesting balanced profit distribution among agents. 

• MASAC failed to converge to a profitable solution, with 

negative average profit and poor fairness. 

• IDDPG exhibited the highest variability, confirming the 

need for more stable CTDE approaches 

 

B. Learning Curves 

 
Figure 1: Smoothed profit trajectories for MAPPO, 

MADDPG, IDDPG and MASAC 

 

Fig 1 shows that MAPPO consistently outperforms other 

algorithms across training episodes, with a minor dip around 

episodes 10–12 followed by recovery. MADDPG is more 

stable but converges slightly lower than MAPPO. IDDPG 

remains mostly flat after early training, while MASAC’s curve 

drops sharply into negative territory and stays flat, indicating 

failure to learn profitable strategies. 
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C Fairness and Competitiveness 

 

 
 

Fig 2. Comparison of MARL algorithm across key metrics 

Fairness analysis confirms that MADDPG achieves the most 

balanced profit distribution across agents, while MAPPO offers 

slightly lower equity but higher profitability. Where price and 

market-share data were available, MADDPG and MAPPO 

exhibited moderate price volatility and market-share churn, 

indicating healthy competition without excessive undercutting. 

 

Figures 1 and 2 together capture both learning dynamics and 

overall performance. Fig. 1 shows that MAPPO consistently 

converges to the highest profit trajectory, whereas MADDPG 

maintains more stable but slightly lower profits, and MASAC 

fails to learn a profitable policy. Fig. 2 complements this by 

highlighting MAPPO’s superior profitability and MADDPG’s 

superior fairness, confirming that the choice of algorithm 

depends on whether maximizing profit or ensuring equitable 

agent outcomes is the primary objective. Together, these 

figures provide a holistic view of algorithm performance, 

stability, and fairness, supporting MAPPO as the most 

competitive solution for profit maximization in multi-agent 

pricing, with MADDPG as a strong candidate where fairness is 

prioritized. 

 

MASAC exhibited negative average profit and a sharp 

performance collapse early in training (Fig. 1). We hypothesize 

that this failure is due to a combination of overestimation bias 

in Q-values and sensitivity to entropy regularization 

coefficients in multi-agent settings. In our environment, where 

price-setting actions directly affect rewards, MASAC’s 

stochastic exploration likely produced overly aggressive 

pricing policies, leading to sustained profit losses. Despite 

multiple entropy tuning attempts, MASAC remained unstable, 

suggesting that additional stabilization techniques (e.g., twin 

critics, target smoothing, or adaptive entropy adjustment) may 

be necessary for competitive performance in this domain. 

 

7. Conclusion 
 

This paper investigated the application of multi-agent 

reinforcement learning (MARL) for dynamic pricing in 

competitive retail marketplaces. We implemented and 

evaluated four representative algorithms-IDDPG (baseline), 

MADDPG, MAPPO, and MASAC-on a custom environment 

derived from the UCI Online Retail dataset. The evaluation 

considered multiple performance dimensions, including 

average profit, training stability, sample efficiency, fairness 

(via Jain’s Index and Gini coefficient), and competitiveness 

(price volatility, undercutting frequency, and market-share 

churn). 

 

Our results demonstrate that MAPPO consistently achieves the 

highest overall profitability, outperforming MADDPG by 16 % 

and IDDPG by 47 %, while maintaining competitive fairness 

levels. MADDPG, while slightly less profitable, produces the 

fairest outcomes across agents, making it attractive in scenarios 

where equitable profit distribution is prioritized. In contrast, 

MASAC fails to converge to profitable policies in this 

environment, likely due to its sensitivity to entropy 

regularization and overestimation bias, which resulted in early 

performance collapse and negative long-run profits. These 

findings confirm that CTDE methods such as MAPPO and 

MADDPG significantly outperform independent learners like 

IDDPG in stability, reproducibility, and overall market 

performance. 

 

This work highlights the trade-off between profit maximization 

and fairness in multi-agent pricing strategies. MAPPO emerges 

as the best choice when profitability is the primary objective, 

whereas MADDPG is the preferred algorithm when fairness is 

a key requirement. The combination of quantitative metrics, 

fairness analysis, and competitiveness measures provides a 

holistic view of algorithm performance in multi-agent 

economic environments. 

 

Future directions include incorporating more realistic retail 

dynamics (demand shocks, inventory limits), exploring 

stabilization techniques to improve MASAC performance, and 

scaling to larger agent populations. We also plan to validate 

these findings with real transactional data and explore online-

learning deployment strategies. 
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Appendix 
 

Reference code used as part of analysis. 

https://github.com/kriarar82/dynamic-pricing-rl-comparison 
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