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Abstract: The combination of artificial intelligence (AI) and knowledge representation, and more particularly temporal reasoning, 

creates an integration which is a monumental shift toward systems that can conceptualize and understand time in new ways. In this 

paper, we discuss the emerging area of temporal ontology learning which concerns the automated acquisition and incremental 

formalization of conceptual models with explicit temporal semantics. We construct the foundational terms, strategies, and various uses 

of this interdisciplinary field by integrating contemporary works in AI, machine learning, natural language processing and ontology 

engineering. We discuss how AI methods aid in the continuous modeling of arbitrary points in time, the discovery of concealed 

temporal structures, and the representation of intricate recurring time patterns. We present difficulties with expressiveness, the 

incompleteness of data, and the complexities of evaluation, all with the scope of future advancements. This synthesis illustrates how 

important temporal ontology learning is for the advancement of intelligent systems that need to understand, reason, and adapt to the 

nature of the relationships and events in different science and technology domains. 
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1. Introduction 
 

Time is an essentially complex component of human 

experience which influences everything from language and 

memory to planning and prediction. In order for Artificial 

Intelligence systems to achieve enhanced understanding in 

interactions within dynamic environments, they need to 

abandon static knowledge viewpoints and adopt temporal 

information fluidity. Coming at a critical juncture, the 

research of temporal ontology learning is evolving to endow 

AI with the capacity to understand, express, and reason 

about time across all dimensions [9]. By concentrating on 

the intentional learning of temporal concepts, relations, and 

axioms from heterogeneous sources of data, this research 

goes beyond the traditional methods of ontology learning 

[1]. 

 

Temporal phenomena pose challenges for many AI tools, 

many of which use informal or ad hoc techniques which 

restrict broader applicability [9]. AI ontologies accomplish 

this by introducing formalisms for knowledge 

representation ontologies as formally specified fames of 

shared domain concepts descriptions [6]. Relating the 

temporal aspects of such ontologies helps AI systems 

comprehend processes like causality, evolution and even 

predicting phenomena at a deeper level. This paper will 

explore the fundamentals and approaches underlying the 

capacity of AI to “discover new dimensions of time,” and 

discuss current use cases, while predicting future lines of 

inquiry. 

 

Foundations of Temporal Ontology Learning 

Ontology learning typically refers to knowledge 

conceptualization extraction from different sources to build, 

enrich, or adapt ontologies [1]. The disadvantage of many 

current ontology- building methods is that they do not 

recognize the implicit temporal characteristics of domain 

concepts [9]. Temporal ontology learning deals with the 

metamorphosis of conceptual models over time and their 

interaction throughout this period. 

The initial phases of AI temporal reasoning recognized the 

necessity of having time indicated in representing some 

concepts change and the relation between these concepts, 

causality, and action. Different systems, for example, 

consider time placed in an ontology as points or intervals 

and time tracks as linear, branching or cyclic [9]. A case in 

point, the Human Time Ontology (HuTO), models complex 

time expressions by non-convex intervals and offers rich 

temporality [9]. The addition of the geometry of time and 

space gives rise to spatio-temporal ontologies. Such 

ontologies are important to phenomena in the world and 

many branches. including Geographic Information Systems 

(GIS), and Computer Aided Design and Manufacture 

(CAD/CAM), as these branches recognize the spatio-

temporal dynamics of ontologies [18]. 

 

Temporal ontology learning requires mathematical tools for 

representing, analyzing, and understanding data. These 

include the core mathematical science of machine learning: 

linear algebra, calculus, probability, and optimization [17]. 

Bearing further on this are the mathematical tools needed to 

come up with algorithms that actually learn and reason 

about temporal relations. 

 

2. Methodological Approaches 
 

Temporal ontology learning leverages a blend of advanced 

AI and machine learning techniques: 

 

Natural Language Processing (NLP) 

Scientific literature and textual data abound in implicit 

temporal properties. NLP properties must be extracted for 

instance, fine-grained named entity typing with temporal 

context of the entities, or probabilistic topic models, for 

discovering time-sensitive concepts and their relationships 

within text corpora [9]. This complex task, which relies on 

NLP, usually involves the implementation of a range of 

linguistic levels, including at minimum, a lexical, a 

syntactic, a semantic, a discourse, and a pragmatic level, to 

arrive at a conceptual model [4]. 
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Figure 1: Conceptual Model Derivation from Textual Requirements [4]. This illustrates how textual requirements undergo 

lexical, syntactic, semantic, discourse, and pragmatic analyses to produce intermediate data. This data then feeds into various 

modeling approaches (standard rule-based, enhanced rule-based, ontology-based, and pattern rule-based) to ultimately 

generate a comprehensive conceptual model [4]. 

 

2.1 Machine Learning (ML) for Temporal Dynamics 

 

Machine learning focuses on learning the patterns in time-

series data and adapting to them [16]. Deep learning, 

specifically, comes into greater use for the acquisition and 

enrichment of ontologies because of the ability of deep 

learning to handle enormous datasets [2]. The synergistic 

effect of deep learning-based representation learning and 

deep clustering enhances time-series clustering by learning 

and abstracting a variety of complex spatio-temporal 

patterns [16]. 

 

 
Figure 2: Five-step Machine Learning Process [16]. This 

figure outlines a typical machine learning workflow, 

starting from “Data measurement” and “Physical 

constraints,” progressing through “Target-oriented metric” 

definition, “Training,” and ultimately employing a “Neural 

network” for complex pattern recognition [16]. 
 

For temporal data, RNNs, LSTM networks, and GRUs are 

powerful in capturing and learning the sequential 

dependencies [8] and [10]. BiL- STM networks add the 

capability of processing the sequence from the two ends, 

thus capturing richer contextual details [8] and [10]. 

 

 
Figure 3: Deep Learning Methods for Time Series 

Forecasting [8, 10]. This figure illustrates a process 

including data collection and pre-processing, feature 

importance study, development of deep learning methods 

(BiLSTM, LSTM, GRU, RNN, CNN), and model 

performance assessment for time-series forecasting [8, 10]. 

Transformer-based models are also gaining prominence for 

their ability to handle long-range dependencies in sequential 

data, exemplified in Tunnel Boring Machine (TBM) 

penetration rate prediction [23]. 
 

2.2 Graph-based Learning 

 

Temporal Knowledge Graphs (TKGs) are essential to 

understanding the evolution of knowledge and events [13]. 

Models such as Polynomial Approximation for Temporal 

Knowledge Graph Embedding (PTBox) facilitate the 

reasoning over evolving facts occurring over time by 

assuming a continuous model for arbitrary defined 

timestamps [13]. Moving along the timeline and reasoning 

through text models, dynamic knowledge graphs can 

identify newly formed knowledge communities [22]. There 

is a growing application of GNNs to the analysis of spatio 

temporal data, including the simulation of central air 

conditioning systems (Li et al, 2024 13). 

 

 
Figure 4: Graph Neural Network for Central Air 

Conditioning Systems [12]. This figure illustrates a graph 

neural network workflow, from automated graph structure 
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design using building information to development of the 

GNN, encompassing input, graph, recurrent, fully-

connected, and output layers, concluding with model 

evaluation [12]. 
 

2.3 Hybrid AI Approaches 

 

The combination of symbolic AI (ontologies) and 

connectionist AI (machine learning) is a powerful hybrid 

system. These techniques integrate the reasoning of formal 

knowledge representation and the learning ability of neural 

networks [6]. For example, prediction tasks can be solved 

using Bayesian networks as they provide a probabilistic 

graphical model [5]. The subsequent integration with other 

AI models can add to the learning process [15]. 

 

 
Figure 5: Bayesian Network Workflow [5]. This figure details a Bayesian Network workflow, covering pre-processing, 

network training (score-based, constraint-based, hybrid methods), inference (exact, approximate), and performance analysis 

using metrics like CV-RMSE, MAPE, and R-squared [5]. 
 

3. Discovering New Dimensions of Time 
 

The notion of “discovering new dimensions of time” within 

temporal ontology learning goes beyond merely logging 

timestamps. It encompasses: 

 

3.1 Continuous Modeling of Arbitrary Timestamps 

 

Existing TKGE methods often struggle with continuous 

modeling of arbitrary timestamps. Novel approaches utilize 

techniques such as polynomial decomposition-based 

temporal representation, enabling a more continuous and 

fine- grained understanding of temporal evolution [13]. This 

allows for temporal reasoning to handle events that do not 

align with discrete intervals. 

 

3.2 Uncovering Hidden Temporal Dynamics 

 

Time-series data frequently contain intricate temporal 

patterns that are not immediately ap- parent [16]. Temporal 

data mining aims to ex- tract interpretable patterns, 

correlations, and trends. This involves machine learning 

algorithms for time-series decomposition, anomaly 

detection, and predictive modeling, revealing previously 

unrecognized temporal dimensions [16]. High-order 

temporal correlation model learning can identify complex 

dependencies in multiway arrays of time-series data, 

extending beyond simple sequential correlations [16]. 

 

3.3 Representing Complex Recurring Temporal 

Patterns 

 

Standard temporal ontologies, such as OWL- Time, often 

lack the expressiveness to model complex recurring 

temporal patterns tailored to specific domains [9]. Omitting 

such intervals disfigures the model’s integrity and is, thus, a 

worthwhile ontological enrichment. Adding structures for 

user-defined periodicity and discrete time and event control 

constraints among repeated occurrences goes a step ahead 

to enhancing the granularity and coherence of the model 

[9]. 

 

3.4 Spatio-temporal Semantic Information 

 

The models employed in predicting the urban flow often 

ignore the nested spatio-temporal semantic structures in 

them [11]. Having separate latent spaces for disjoint time 

intervals for the entire length of the prediction enables the 

AI models to learn varying temporal patterns, elucidating 

the domain’s temporal structures and, thus, introducing a 

semantic dimension to time [11]. Domain-specific 

trajectory ontologies, for example, extract semantic 

structures from raw movement data via the spatio-temporal 

lens and thus impose higher level understandings onto the 
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data [21].  
 

 
Figure 6: Spatio-Temporal Graph Neural Network Training Algorithm [11]. This figure details the training algorithm for a 

spatio-temporal uncertainty prediction model, illustrating inputs like observed traffic data and learnable embeddings, and 

outlining steps for temporal and spatial learning, hidden state adjustment, and parameter updates to generate forecasting 

traffic output and uncertainty [11]. 
 

4. Applications and Implications 
 

Identifying new dimensions temporal ontologies is able to 

discover and use is an innovation that can fundamentally 

impact various domains: 

a) Clinical Practice Guidelines (CPGs): In medicine, 

CPGs are crucial, but comorbid patients introduce 

complexities. Understanding interactions among 

different guidelines and their temporal sequencing can 

facilitate development of optimal, and more 

importantly, safer [9]. Knowledge-data integration for 

temporal reasoning is important in managing time-

stamped datasets in systems for clinical trials [9]. 

b) Topic Detection and Tracking: Through introduction 

temporal dimensions to various clustering techniques, 

AI can identify and monitor changes in evolving topics 

in scholarly, yielding an understanding of how science 

changes over time [9]. This is done by assigning time 

parameters to topics and then studying their emergence 

and proliferation over a certain time period. 

c) Time Series Forecasting: In economics, finance, 

meteorology, and business analytics, Machine Learning 

(ML) techniques are increasingly being used for time 

series forecasting [8] and [10]. A more sophisticated 

understanding of time enables the selection and 

application of the most suitable ML techniques for the 

future time steps, which is critical in adjusting to 

changing data stream patterns [8] and [10]. 

d) Historical Research:  Analyzing intricate historical 

texts especially those which navi-gate through diverse 

timelines can be facilitated through the use of the TCT 

Ontology which helps in the integration of concepts 

and aids in the analysis and interpretation of past events 

[9]. Robotics and AI: Ontologies aid in the structuring 

of data, reasoning, and in contex- tual awareness for AI 

and robotics [20]. Incor-porating the temporal 

dimension enables robots to comprehend and devise 

strategies in changing surroundings and track the 

temporal evolution of task execution to optimize Ultra-

Reliable Low- Latency Communication (URLLC) in 

5G networks [20]. 

e) Educational Technology: Knowledge Tracing (KT) 

applies deep learning to forecast learning outcomes and 

offers tailored assistance [20]. Knowledge ontology-

embedded models in assessments, especially in terms 

of the temporal advancement of the learner, lack ability 

to adjust and explain variables (Wang et al., 2024 19). 

 

 
Figure 7: Knowledge Ontology Enhanced Model for 

Explainable Knowledge Tracing [20]. This figure depicts a 

knowledge ontology-enhanced model for explainable 

knowledge tracing, illustrating the flow from question and 

skill representation to student exercise records, integrated 

with knowledge and student ontologies, culminating in 

modeling components for prediction [20]. 

 

5. Challenges and Future Directions 
 

Despite considerable progress, temporal ontology learning 

faces several challenges: 
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a) Expressiveness and Consistency: Building ontologies 

that can capture intricate temporal patterns and 

relationships in their broadest sense remains a 

challenge [1]. Current ontologies may not possess all 

degrees of flexibility in accommodating all nuances in 

temporal information, such as user-defined periodicity 

and time constraints [9]. 

b) Automated Acquisition and Enrichment: The 

process of automatically acquiring and enriching 

ontologies, in particular temporal axioms, remains 

time-consuming and labor- intensive (Armary et al., 

2024 2). Also included are learning axioms and rules 

from various data sources [1]. 

c) Evaluation and Validation: One of the greatest 

challenges lies in the quantitative measurement of 

different temporal learning and their combinations’ 

usefulness and correctness [9]. It is imperative to put 

forward adequate metrics to measure the degree to 

which temporal dimensions are illuminated and 

applied. 

d) Multimodal Hybrid Deep Learning Architectures: 

Further developing multimodal hybrid deep learning 

architectures that integrate multiple data types (e.g., 

image, text, and time series) and multiple temporal 

dimensions [3]. 

e) Explainable AI (XAI) for Temporal Reasoning: 

Integrating explainability into tem-poral AI systems 

and providing insights into the rationale for their 

reasoning, particularly on intricate temporal relations 

[19]. This involves assessing XAI approaches tailored 

for temporal datasets, focusing on attributes like 

brevity and accuracy of the reasoning [14]. 

 

 
Figure 8: Explainable AI Research Agenda [19]. This figure illustrates a research agenda for Explainable AI, highlighting 

importance, challenges, desiderata, and taxonomy of XAI techniques, contributing to a comprehensive research plan [19]. 
 

f) Interdisciplinary Collaboration: Encouraging AI 

researchers, specialists (e.g., historians, doctors), and 

philosophers of time to work together and represent 

time in AI more accurately and comprehensively [9]. 

g) Mathematical Formalisms for Temporal Semantics: 

Improving the mathematical formalism for representing 

temporal semantics, perhaps using topological data 

analysis to derive topological invariants from high-

dimensional data, which could be applied to intricate 

temporal systems [7]. 

 

6. Conclusion 
 

Temporal ontology learning is a rapidly evolv-ing and 

critical field aimed at empowering AI systems to discover, 

represent, and reason about the intricate dimensions of time. 

By integrating advanced machine learning techniques, 

particularly deep learning and graph-based approaches, with 

formal ontological structures, AI can move towards a more 

nuanced understanding of dynamic environments. The 

ability to model continuous timestamps, uncover hidden 

temporal patterns, and represent complex recurring events 

significantly enhances AI’s predictive and analytical 

capabilities across diverse applications, from healthcare and 

urban planning to scientific discovery. Addressing current 

challenges related to ontology expressiveness, automated 

acquisition, robust evaluation, and scalability will be 

paramount for realizing the full potential of AI systems 

capable of truly discovering and leveraging new dimensions 

of time. 
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