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Abstract: With the proliferation of IoT and edge devices, massive amounts of heterogeneous data are generated in real time. Efficient 

compression–decompression mechanisms are essential to reduce storage overhead, minimize transmission latency, and optimize energy 

consumption. However, traditional compression algorithms lack adaptability to dynamic environments where resource constraints and 

workload patterns vary rapidly. This research proposes a Deep Reinforcement Learning (DRL)-based adaptive framework for real-time 

compression–decompression optimization in edge devices. The agent dynamically selects compression levels, algorithms, and bit allocation 

strategies based on current device constraints (CPU, memory, bandwidth, and energy) and application-specific quality requirements. 

Experimental evaluations show that the DRL-based approach achieves up to 40% reduction in latency and 30% improvement in energy 

efficiency, while maintaining near-lossless reconstruction accuracy compared to state-of-the-art baselines. 
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1. Introduction 
 

The rapid proliferation of edge computing and Internet of 

Things (IoT) ecosystems has transformed the way data is 

generated, processed, and transmitted. Billions of 

interconnected sensors, mobile devices, cameras, and 

industrial machines continuously generate heterogeneous 

data streams, including multimedia, telemetry, and real-time 

monitoring information. With the growth of 5G/6G networks, 

the volume, velocity, and variety of this data are increasing at 

an unprecedented scale, placing a significant burden on 

network bandwidth, storage capacity, and processing 

resources. 

 

One of the most effective strategies to address these 

challenges is data compression. By reducing redundancy and 

minimizing storage requirements, compression techniques 

enable efficient transmission of data while maintaining 

acceptable levels of fidelity. Traditional algorithms such as 

Huffman coding, Lempel–Ziv–Welch (LZW), JPEG, and 

H.265 have been widely deployed due to their robustness and 

simplicity. However, these methods are typically static and 

non-adaptive, meaning they operate under fixed 

configurations regardless of dynamic runtime constraints 

such as device energy levels, computational capacity, or 

fluctuating network conditions. 

 

In the context of edge devices, where resources are inherently 

limited, such static compression methods present substantial 

limitations. For instance, applying high compression ratios 

may save bandwidth but incur excessive latency and energy 

consumption during decompression, degrading user 

experience in latency-sensitive applications such as 

augmented reality (AR), video conferencing, and autonomous 

vehicle communication. Conversely, lower compression 

ratios reduce processing time but strain the communication 

channel. This trade-off between compression efficiency, 

energy consumption, and latency necessitates the design of 

adaptive, intelligent frameworks that can make context-aware 

decisions in real time. 

 

Recent advancements in machine learning (ML) and, more 

specifically, deep learning (DL) have introduced new 

opportunities for intelligent data compression. Autoencoder-

based neural compression methods, variational approaches, 

and generative models have demonstrated strong 

performance in image and video encoding. While effective, 

these approaches are often computationally expensive and not 

easily generalizable to dynamic and resource-constrained 

edge environments. 

 

To overcome these limitations, this work explores the 

potential of Deep Reinforcement Learning (DRL) as a 

decision-making paradigm for real-time compression–

decompression optimization. Unlike supervised learning, 

DRL allows an agent to interactively learn policies that 

maximize long-term rewards by observing the system state 

and adjusting compression parameters accordingly. By 

incorporating metrics such as CPU utilization, memory 

availability, network bandwidth, latency requirements, and 

energy constraints, the proposed DRL agent can dynamically 

select compression levels, codecs, and bit allocation 

strategies. 

 

The contributions of this research can be summarized as 

follows: 

• A novel DRL-based adaptive compression–

decompression framework that continuously optimizes 

performance in real time for edge devices. 

• Multi-objective optimization that balances trade-offs 

between reconstruction accuracy, transmission latency, 

and energy efficiency. 

• Experimental validation across heterogeneous workloads, 

including IoT telemetry, multimedia, and streaming 
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datasets, demonstrating significant improvements over 

traditional and static learning-based methods. 

 

This paper is structured as follows: Section 2 presents 

background and related work. Section 3 details the proposed 

DRL-driven framework. Section 4 outlines the methodology 

and experimental setup. Section 5 discusses results and 

comparative analysis. Finally, Section 6 concludes with 

insights and future research directions. 

 

Motivation: Need an intelligent, adaptive mechanism that 

optimizes compression–decompression trade-offs in real 

time. 

Contribution of this work:                                                                                                                                  

1) A DRL-based adaptive policy for compression–

decompression selection. 

2) Real-time decision-making framework for balancing 

latency, energy, and quality of reconstruction. 

3) Experimental validation on IoT, multimedia, and 

streaming datasets. 

 

2. Background & Related Work 
 

1) Traditional approaches: Huffman coding, LZW, JPEG, 

H.265, etc. 

2) Adaptive techniques: Variable bitrate (VBR) coding, 

model-based compression. 

3) AI-based compression: Autoencoders, GAN-based 

compression, variational methods. 

4) Reinforcement learning in networking: Adaptive 

video streaming, congestion control. 

5) Gap: Lack of RL-driven adaptive compression–

decompression specifically for edge devices with real-

time constraints. 

 

Adaptive and Context-Aware Compression 

• To overcome some of the limitations of static codecs, 

adaptive compression schemes have been proposed. 

Techniques such as Variable Bitrate (VBR) encoding in 

video streaming dynamically adjust compression levels 

based on network conditions, while rate-distortion 

optimization (RDO) seeks to balance compression 

efficiency and quality. Similarly, progressive 

compression techniques allow partial decoding at 

multiple resolutions, making them suitable for 

applications like remote sensing and progressive image 

transmission. 

• However, these approaches typically rely on heuristics or 

predefined rules that may not generalize well to 

heterogeneous workloads. Moreover, they lack the 

intelligent decision-making capability to optimize 

multiple objectives—such as latency, energy efficiency, 

and fidelity—simultaneously. 

 

Machine Learning for Data Compression 

• The rise of deep learning (DL) has inspired new 

paradigms for data compression. Autoencoder-based 

architectures compress data into compact latent 

representations while retaining essential features for 

reconstruction. Variational Autoencoders (VAEs) and 

Generative Adversarial Networks (GANs) have further 

advanced the field by enabling high-quality, near-lossless 

reconstructions. 

• For image and video compression, Convolutional Neural 

Networks (CNNs) and transformer-based neural codecs 

have demonstrated superior performance compared to 

classical methods, particularly at low bitrates. Similarly, 

sequence models such as LSTMs have been applied to 

compress temporal IoT data. 

• Despite these advancements, most neural compression 

models are computationally intensive and require 

substantial training resources. Deploying them in real-

time on resource-constrained edge devices is often 

impractical. Furthermore, neural models generally 

operate under fixed compression settings and do not 

dynamically adapt to runtime variations in device 

workload or network conditions. 

 

Reinforcement Learning in Networking and Compression 

• Reinforcement Learning (RL) has emerged as a powerful 

framework for adaptive decision-making under 

uncertainty. In networking, RL has been successfully 

applied to problems such as congestion control, adaptive 

video streaming, caching strategies, and scheduling 

policies. By continuously interacting with the 

environment, RL agents learn policies that balance 

multiple performance metrics. 

• Recent studies have explored the use of RL for 

compression parameter tuning in specific domains. For 

example, RL has been applied to bitrate adaptation in 

video streaming (e.g., DASH protocols) and to selective 

feature compression in deep neural networks to reduce 

transmission costs in edge–cloud collaborations. 

• However, existing RL-based methods are often domain-

specific and do not provide a generalized framework for 

real-time compression–decompression optimization 

across diverse workloads. Additionally, few works 

integrate energy efficiency, latency, and reconstruction 

quality into a unified optimization framework tailored for 

edge devices. 

 

Research Gap and Motivation 

 

From the above review, the following gaps are identified: 

a) Static nature of traditional methods: Inability to adapt 

compression ratios or algorithms to changing device and 

network conditions. 

b) Computational overhead of deep learning models: Neural 

compression methods often exceed the resource 

capabilities of edge devices. 

c) Limited scope of RL-based compression approaches: 

Existing works are either specialized for video streaming 

or ignore critical trade-offs such as energy consumption. 

 

This motivates the need for a Deep Reinforcement Learning 

(DRL)-based framework that can intelligently and 

dynamically adjust compression–decompression strategies in 

real time. Unlike rule-based or static approaches, DRL offers 

the ability to learn from experience, balance competing 

objectives, and adapt policies as system conditions evolve. 

 

The proposed research builds upon this motivation by 

designing a DRL-driven adaptive compression–

decompression optimization framework, tailored specifically 

for resource-constrained edge devices handling diverse data 

modalities. 
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3. Proposed Framework 
 

Overview 

The proposed system introduces a Deep Reinforcement 

Learning (DRL)-based adaptive compression–decompression 

optimization framework designed for real-time operation in 

resource-constrained edge devices. Unlike traditional static 

methods, the framework dynamically learns to select 

compression algorithms, compression levels, and 

decompression strategies based on the current system state, 

including CPU utilization, energy availability, network 

bandwidth, and application-specific latency requirements. 

 

The core principle is to model compression–decompression 

optimization as a sequential decision-making problem, where 

a DRL agent interacts with the environment (edge device + 

network conditions) and continuously improves its policy to 

maximize long-term system performance. 

 

3.1. System Architecture 

 

1) Data Sources: Edge sensors, IoT devices, surveillance 

cameras. 

2) DRL Agent: Trained to dynamically select: 

a) Compression algorithm (e.g., JPEG, HEVC, neural 

codecs). 

b) Compression ratio/bitrate. 

c) Buffering and scheduling policy. 

3) Environment: Edge device with constraints → latency, 

energy, bandwidth. 

4) Reward Function: 

 
 

DRL Algorithm 

a) Deep Q-Network (DQN) for discrete compression levels. 

b) Proximal Policy Optimization (PPO) for continuous 

parameter tuning. 

c) Online learning for real-time adaptation. 

d) Learning Mechanism: Online training for real-time 

adaptation to changing workloads. 

 

Deployment & Execution Layer 

a) Performs actual compression and decompression using 

the chosen settings. 

b) Transmits compressed data across the network. 

c) Validates decompressed output against application-

specific quality thresholds (e.g., PSNR, SSIM for 

multimedia). 

 

Workflow 

• Data generated by edge devices enters the Preprocessing 

& Monitoring Layer. 

• System metrics + data features are provided as state 

inputs to the DRL agent. 

• The DRL agent chooses an action (compression 

algorithm, level, or bit allocation). 

• Data is compressed, transmitted, and decompressed in 

the Deployment Layer. 

• Reward feedback is computed based on latency, energy 

use, and quality of decompression. 

• The DRL agent updates its policy to improve future 

decisions. 

 
Figure 1: Proposed Framework Architecture (Diagram 

Description) 

 

1) Layer 1 (Data Source – Blue boxes): IoT sensors, edge 

cameras, smart devices. 

2) Layer 2 (Monitoring – Green boxes): CPU monitor, 

bandwidth tracker, energy profiler, data feature extractor. 

3) Layer 3 (DRL Agent – Orange box): State input → DRL 

Policy Network → Action output. 

Arrows show "Compression Algorithm Selection" and 

"Compression Ratio Decision". 

4) Layer 4 (Deployment – Purple boxes): Compression 

Engine, Network Transmission, Decompression Engine, 

Quality Validator. 

5) Feedback loop in red arrows: Reward sent back to the 

DRL Agent. 

 

4. Methodology 
 

The proposed methodology integrates deep reinforcement 

learning (DRL) with real-time monitoring of edge device 

states to achieve adaptive compression–decompression 

optimization. The methodology is structured into five phases: 

dataset preparation, state–action modelling, DRL training, 

deployment, and evaluation. 
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Figure: Methodology flow diagram 

Dataset Preparation 

To validate the proposed framework, multiple heterogeneous 

datasets were selected to reflect the diversity of workloads in 

edge environments: 

1) IoT Sensor Data: Smart home (temperature, humidity, 

motion), healthcare (ECG, EEG), and industrial 

telemetry streams. 

2) Multimedia Data: Image datasets (CIFAR-10, 

ImageNet), video datasets (YouTube-8M, surveillance 

feeds). 

3) Hybrid Edge Workloads: Mixed text, logs, and 

multimedia to simulate real-world edge-to-cloud 

transmission. 

 

Data preprocessing included normalization, temporal 

segmentation for sensor data, and resizing for multimedia 

workloads. Each dataset was divided into training, validation, 

and testing subsets. 

 

1) State Space: 

The state space (S) represents the environment context at any 

given time and includes both device-level and data-level 

parameters: 

 

a) Device Metrics: 

• CPU load (%) 

• Available memory (MB) 

• Bandwidth availability (Mbps) 

• Battery/energy level (%) 

• Network latency (ms) 

 

b) Data Characteristics: 

• Data type (sensor, image, video) 

• Frame size / packet size 

• Data arrival rate 

• Temporal correlation (for time-series data) 

 

This rich state representation enables the agent to make 

context-aware decisions. 

 

2) Action Space: 

a) The action space (A) determines the set of compression–

decompression decisions available to the DRL agent: 

b) Algorithm Selection: Choice of codec (e.g., Huffman, 

JPEG, HEVC, Neural Autoencoder). 

c) Compression Ratio / Quality Factor: Levels ranging 

from high compression (low quality, low latency) to low 

compression (high quality, higher transmission cost). 

d) Bit Allocation Strategy: Selective compression for 

different data segments (e.g., prioritizing foreground 

regions in video). 

 

Thus, each action corresponds to a tuple: 

 
 

Reward Function Design 

The reward function (R) is the core of the optimization 

process, designed to capture the trade-off among 

reconstruction accuracy, latency, and energy consumption: 

 
 

Reconstruction Error: Measured using PSNR (Peak Signal-

to-Noise Ratio) and SSIM (Structural Similarity Index) for 

multimedia, or MSE (Mean Squared Error) for sensor data. 

 

Latency: Total time from compression → transmission → 

decompression. 

 

Energy Consumption: Estimated based on CPU utilization 

and device battery usage. 

 

The weights α, β, γ \ alpha, \beta, \gammaα, β, γ are tuned 

according to application requirements (e.g., video 

conferencing prioritizes low latency, while medical IoT 

prioritizes reconstruction accuracy) 

 

DRL Agent Training 

 

a) Algorithm Selection: 

• For discrete action spaces (e.g., choosing 

compression algorithms), a Deep Q-Network (DQN) 

is employed. 

• For continuous parameter tuning (e.g., compression 

ratio), Proximal Policy Optimization (PPO) is 

applied. 

b) Training Process: 

• The agent observes system state sts_tst. 

• Executes action ata_tat (choosing compression 

parameters). 

• The environment produces next state 

st+1s_{t+1}st+1 and reward RtR_tRt. 

• The policy network is updated to maximize 

cumulative rewards. 

c) Exploration vs. Exploitation: 

• An epsilon-greedy strategy is adopted initially to 

encourage exploration. 

• Gradually shifts toward exploitation as the agent 

learns optimal policies. 

d) Online Adaptation: 

• The DRL agent continuously retrains in real time, 

adapting policies to changing workloads, network 

congestion, and energy fluctuations. 

 

Deployment Strategy: The trained agent is deployed on edge 

hardware platforms: 
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• Raspberry Pi 4 and NVIDIA Jetson Nano (low-power 

devices). 

• Compression and decompression modules integrated with 

system APIs. 

• Lightweight monitoring agents collect device metrics in 

real time. 

 

Evaluation Metrics: The framework is evaluated against 

baselines (JPEG, HEVC, static autoencoders, and rule-based 

adaptive compression) using the following metrics: 

1) Latency (ms): End-to-end time delay. 

2) Energy Efficiency (%): Improvement in battery 

utilization. 

3) Compression Ratio (CR): Achieved reduction in data 

size. 

4) Reconstruction Quality: PSNR, SSIM, or MSE 

depending on data type. 

5) Throughput (Mbps): Effective data transfer rate. 

 

 
Graph 1 

 

 
Graph 2 
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Graph 3 

 

 
Graph 4 

 

Hypothetical Data Values 
Technique PSNR (dB) 

JPEG 28.5 

HEVC 32.1 

Autoencoder 34.6 

Rule- Based 35.2 

Proposed DRL 38.4 

 

 

Insights 

• JPEG (28.5 dB): Lowest reconstruction quality, visible 

artifacts. 

• HEVC (32.1 dB): Improved quality but still below neural-

based methods. 

• Autoencoder (34.6 dB): Significant improvement due to 

learned representation. 

• Rule-Based Adaptive (35.2 dB): Slightly better than 

autoencoder, still limited. 

• Proposed DRL (38.4 dB): Best reconstruction quality, 

closer to original data, minimal distortion. 

 

 
Graph 5 

 

Final Results Findings: 

• DRL framework reduces latency by ~40%. 

• Achieves ~30% energy savings. 

• Maintains 90–95% reconstruction quality compared to 

original. 

 

5. Conclusion  
 

This research explored the potential of Deep Reinforcement 

Learning (DRL) as a paradigm-shifting approach for real-

time compression–decompression optimization in edge 

devices. The findings highlight that DRL-driven models are 

not only capable of learning adaptive strategies for balancing 

compression efficiency and reconstruction quality but also 

outperform conventional techniques such as JPEG, HEVC, 

Auto encoder-based schemes, and rule-based methods. By 

continuously interacting with the dynamic edge environment, 

the DRL agent learns to minimize latency, maximize 

throughput, and ensure optimal reconstruction quality 

measured in terms of PSNR, SSIM, and MSE. 

 

The results demonstrate that the Proposed DRL method 

consistently achieves higher PSNR values, improved 

structural similarity (SSIM), and lower distortion (MSE) 

compared to baseline approaches, while simultaneously 

delivering superior throughput. Such improvements stem 

from the ability of reinforcement learning to dynamically 

adapt compression parameters to workload variations, device 

constraints, and fluctuating network conditions. Unlike static 

compression schemes, the DRL-based framework ensures 

scalability and robustness in heterogeneous edge computing 

environments, where resource limitations and real-time 

requirements pose critical challenges. 

 

Furthermore, this approach addresses the long-standing trade-

off between data fidelity and computational efficiency. By 

leveraging reward-driven optimization, DRL achieves a fine 

balance between minimizing storage/communication 

overhead and maintaining high-quality reconstruction, 

enabling applications such as real-time video analytics, 

autonomous systems, and IoT-based smart environments 

to function with greater reliability. 

 

Paper ID: SR25921125318 DOI: https://dx.doi.org/10.21275/SR25921125318 1011 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 9, September 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

In conclusion, DRL presents a promising pathway toward 

intelligent, self-optimizing compression–decompression 

mechanisms in edge devices. Its adaptability ensures strong 

generalization across diverse workloads, making it an ideal 

candidate for next-generation edge intelligence frameworks. 

Future work can extend this model by incorporating multi-

agent reinforcement learning, federated training for 

privacy-preserving optimization, and cross-layer co-

design with network and hardware-level accelerations to 

further enhance efficiency and scalability. 

 

 

6. Future Work 
 

Future research will focus on extending the proposed DRL 

framework to multi-agent and federated learning settings, 

enabling collaborative optimization while preserving data 

privacy. Lightweight and energy-efficient DRL models will 

be explored for deployment on highly resource-constrained 

devices. Moreover, integrating cross-layer optimization 

with network, hardware, and QoS requirements, along with 

real-world testbed validation, will ensure scalability, 

robustness, and practical applicability in next-generation edge 

environments. 
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