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Abstract: In this manuscript, the study focuses on the Brocard-Ramanujan type Diophantine equation n!+ 1 = F? where
F,=2%+1, k=2t n,t>0 isa Fermat number, is examined and demonstrates (n, k,t) = (4,2, 1) is a sole positive integer solution.
Additionally, a Python program to validate this result together with the geometrical presentation is developed.
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1. Introduction

Henri Brocard explored the Diophantine equation
nl + 1 = x?

in the 19th century. Later, Srinivasa Ramanujan
independently investigated the same equation in the early
20th century[1,2]. Their work aimed to find integer
solutions. Their combined efforts led to significant
discoveries into this equation, which has since been known
as the Brocard-Ramanujan Diophantine equation resulting in
a lasting impact on the field of Number theory.

In [9], the authors proved that the Brocard—Ramanujan
Diophantine equation m! + 1 = u?, where u is a sequence
of positive integers and has at most finitely many solutions
under some conditions. They also solved the equation when
u is a Tripell number using the recurrence relation

T =2Ty 1+ Tho+Ths
forn> 3withT,=0,T; =1and T, = 2.

In [8], Tasci and Dursun defined and explored the Gaussian
Mersenne sequence examining its properties and
relationships with other sequences, notably the Gaussian
Jacobsthal numbers and the Gaussian Jacobsthal-Lucas
numbers. For further knowledge of the Brocard-Ramanujan
Diophantine equation, see [3 — 7,10]

In this paper, the unique solution to the Brocard-Ramanujan
type  Diophantine  equation nl+1=F2 where
F, = 2% + 1,k = 2 is a Fermat number with the condition
n,t = 0 is analysed.

2. Basic definition and theorem
Definition: Fermat number

A Fermat number is a specific type of number defined by
E, = 22" + 1 wherenis a non-negative integer.

The initial Fermat numbers include:

3,5,17,257,65537,4294967297, etc.

Definition: 2-adic valuation of a Factorial
Let n € N. The 2-adic valuation of n! denoted by v,(n!) is
the exponent of the highest power of 2 divides n! given by

the formula
n
AOEDN
i=1

The sum is finite because for sufficiently large i, I%J =0.

Lemma 1
n+1

n
Ifn € N, then (T) > 221 4 27+ hold for all n > 12.

Proof
. . . n+1\" 2n n+1
The inequality to be verified (T) >2" 42 €Y

Let us prove the inequality by (1) mathematical induction on
n=12.

First, let us check whether the lemma is true when n = 12.
12

Note that LHS of (1) is (13—3) = 2.58 x 107 2)

and the RHS of (1) is 2%* + 213 = 1.68 x 107 3)

From (2) and (3), it is clear that the inequality stated in
equation (1) is true.

Assume that when n = k > 12 the inequality is true.

k
e, (S2) > 2% 4 2k (4)

Finally, the proof is completed by establishing the inequality
(isforn = k + 1.
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. . . k+2\" .
i.e., To prove that the inequality (%2) > 22k+Z 4 k2 jg
true.
Consider
("ﬁ)k“ = (2 m)"“
3 T \k+1 7 3

PPN 2 TN 251
= (=) <(5)
k+1 3
k+2\K (k42 k+1\F  (k+1
= () < @) (5) < (%)
k+1 k+1 3 3
Since by (4), the above equation can be written as

(59" > @+ 2o () ()
> (22k + 2k+1) (ﬁ)
> 22(k+1) + 2(k+1)31

Hence, the lemma is proved when n = 12 by mathematical
induction.

3. Main Result

Theorem 1

The Diophantine equation n! + 1 = F? where,
Fo=2¢+1k=2t

is a Fermat number where n,t > 0 has only a positive

integer solution (n, k,t) = (4,2,1).

Proof
Consider the given equation
nl+1=F? where F, = 2¥+ 1,k = 25,n,t > 0. (5)
= nl+1=2%k42k1 41
=n! = 22k 4 2k+1 (6)

Our goal is to prove that the equation (6) has a unique
solution only when (n, k, t) = (4,2,1).

The proof involves three distinct cases specifically,
Case (i):n=k
Case(ii):n > k
Case(ii): n < k

Case (i): Suppose n =k
The equation (6) turns out to be

n! = 221 4 pn+l (7
Here, based on the value of n, case (i) can be further divided
into two subcases.

Subcase (i): Assume n = k withn > 12

From Lemma 1, it is clear that for alln > 12,
n+1\" 2n n+1

(%) > 27+ 2 (8)
But the fact that the factorial growth dominates the growth of
()

3
n
Thus, it follows that n! > (HTH)
C)

By employing the result (7) in (9), it is evident that

22n + 2n+1 > (%1)”

(10)

Thus, equation (10) stands in contradiction to the equation

(8).

Therefore, it follows that no solution exists for n = k when
n=>12.

Subcase (ii): n = k withn < 12.

Considering this specific subcase, values of n € {1,2,4,8}.
Verifying basic numerical computations confirms that there
is no solution.

Case (ii): Selectn > k
This case can also be categorized into two subcases based on
the value of n.

Subcase (i): Taking n > k where n > 12.
Since, by the condition given in this subcase (i), it is clear
that

227’1 + 2n+1 > 22k + 2k+1 (11)

Comparing the inequality given in Lemma 1 and

equation (9), it is obvious that

n+ 1\"
n! > (T) > 22 4 n+l (12)

Using (11) in (12), it shows that
nl > 22k 4 gk+1 (13)

The disparity between (6) and (13) gives rise to a
contradiction.

Hence, it follows that subcase (i) of case (ii) also lacks a
solution.

Subcase (ii): Assume n > k withn < 12
In this subcase, the values of n and k are bounded by

n € {2,3,..11} and k € {2°2%,22,23} and a possible
combination of n and k are listed below.

n k
2 1
3,4 1,2
5,6,7,8 1,2,4
9,10,11 1,2,4,8

By applying elementary numerical calculations, the values
taken for n and k from the table above indicates a unique
solution to the equation (6) when (n, k) = (4,2).

Case (iii): Supposen < k

RHS of the equation (6) can be written as

2%k  2k+1 = 2k+1(2k=1 4 1) which is divisible by 2¢*1.
(14)

It is clear that the 2-adic valuation
v,(n!) < n. (15)
Comparing equation (15) and the given condition n < k
yields
v,(nh)<n<k<k+1
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= v,(n)<k+1 Equations (14) and (16) collectively imply that the equation
= 2Kty nl (16)  (6) is impossible for n < k, leaving (n,k,t) = (4,2,1) as
the unique solution.

This completes the proof.
The following Python program 1 is used to verify the solution of the Diophantine equation numerically.

Python program 1:
import math
def check_user_input_solution():
print("Checking the equation:n! + 1 = (2"k + 1)"2 where k = 2"t\n")
try:
n = int(input("Enter a positive integer for n: "))
t = int(input("Enter a non — negative integer fort:"))
ifn<=0ort < 0:
print("nvalid input: nmust be > Oandt > 0.")
return
k=2t
lhs = math. factorial(n) + 1
rhs = (2 *x k + 1) #* 2
print(f"\nn = {n},t = {t},k = 2"{t} = {k} - LHS = {lhs},RHS = {rhs}")
if lhs == rhs:
print(f"nique solution found: (n,k,t) = ({n},{k},{th")
print("Conclusion: The only positive integer solution is (n, k,t) = (4,2,1).")
else:
print(f"LHS and RHS are not equal for the value of (n, k,t) = ({n},{k},{t})")
except ValueError:
print("Please enter valid integer values.")
except OverflowError:
print("Number too large.Try smaller inputs.")
check_user_input_solution()

The following graph visually illustrates the behaviour of the Diophantine equation n! + 1 and (2" + 1)2 for the value
of n and k.

Graph of n! +1=(2" + 1) only when (n, k, t)=1(4,2,1)
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Figure 1: Behaviour of the Diophantine equation n! + 1 and (2% + 1)2

Remark:
To extend the above theorem by considering the Diophantine 4., Conclusion
2
equation n!+1 = (azb + 1) and investigate its solutions

In this manuscript, a novel approach to determining the

] b positive integer solutions for the Diophantine equation
generalized Fermat number, defined F,, =a®* +1 for +1 = F2 where F, = 2% + 1 wheren > 0,k = 2¢,t > 0

integer a > 0,b = 0 has the only positive integer solution  represents a Fermat number is exhibited. Future studies
(n,a,b) = (4,2,1). could build upon this work by exploring similar Brocard-

under the constraint that the right-hand side is the square of a
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Ramanujan type equations involving different number
sequences with distinct properties.
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