# The Connection Between Fermat Numbers and Brocard-Ramanujan Type Diophantine Equations

V. Pandichelvi<sup>1</sup>, B. Umamaheswari<sup>2</sup>

<sup>1</sup>Assistant Professor, PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy.

(Affiliated to Bharathidasan University)

Email: mvpmahesh2017[at]gmail.com

<sup>2</sup>Assistant Professor, Department of Mathematics, Meenakshi College of Engineering, Chennai. Email: bumavijay[at]gmail.com

Abstract: In this manuscript, the study focuses on the Brocard-Ramanujan type Diophantine equation  $n! + 1 = F_t^2$  where  $F_t = 2^k + 1$ ,  $k = 2^t$ ,  $n, t \ge 0$  is a Fermat number, is examined and demonstrates (n, k, t) = (4, 2, 1) is a sole positive integer solution. Additionally, a Python program to validate this result together with the geometrical presentation is developed.

Keywords: Fermat number, Brocard-Ramanujan Diophantine equation, Integer solution

#### 1. Introduction

Henri Brocard explored the Diophantine equation

$$n! + 1 = x^2$$

in the 19th century. Later, Srinivasa Ramanujan independently investigated the same equation in the early 20th century[1,2]. Their work aimed to find integer solutions. Their combined efforts led to significant discoveries into this equation, which has since been known as the Brocard-Ramanujan Diophantine equation resulting in a lasting impact on the field of Number theory.

In [9], the authors proved that the Brocard-Ramanujan Diophantine equation  $m! + 1 = u^2$ , where u is a sequence of positive integers and has at most finitely many solutions under some conditions. They also solved the equation when u is a Tripell number using the recurrence relation

$$T_n = 2T_{n-1} + T_{n-2} + T_{n-3}$$

for  $n \ge 3$  with  $T_0 = 0$ ,  $T_1 = 1$  and  $T_2 = 2$ .

In [8], Tasci and Dursun defined and explored the Gaussian Mersenne sequence examining its properties and relationships with other sequences, notably the Gaussian Jacobsthal numbers and the Gaussian Jacobsthal-Lucas numbers. For further knowledge of the Brocard-Ramanujan Diophantine equation, see [3-7,10]

In this paper, the unique solution to the Brocard-Ramanujan type Diophantine equation  $n! + 1 = F_t^2$  where  $F_t = 2^k + 1, k = 2^t$  is a Fermat number with the condition  $n, t \ge 0$  is analysed.

#### 2. Basic definition and theorem

#### **Definition: Fermat number**

A Fermat number is a specific type of number defined by  $F_n = 2^{2^n} + 1$  where n is a non-negative integer.

The initial Fermat numbers include: 3,5,17,257,65537,4294967297, etc.

#### **Definition: 2-adic valuation of a Factorial**

Let  $n \in \mathbb{N}$ . The 2-adic valuation of n! denoted by  $v_2(n!)$  is the exponent of the highest power of 2 divides n! given by the formula

$$v_2(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{2^i} \right\rfloor$$

The sum is finite because for sufficiently large i,  $\left|\frac{n}{2^i}\right| = 0$ .

#### Lemma 1

If  $n \in \mathbb{N}$ , then  $\left(\frac{n+1}{3}\right)^n > 2^{2n} + 2^{n+1}$  hold for all  $n \ge 12$ .

#### Proof

The inequality to be verified  $\left(\frac{n+1}{3}\right)^n > 2^{2n} + 2^{n+1}$  (1)

Let us prove the inequality by (1) mathematical induction on n > 12.

First, let us check whether the lemma is true when n = 12.

Note that LHS of (1) is 
$$\left(\frac{13}{3}\right)^{12} \cong 2.58 \times 10^7$$
 (2)

and the RHS of (1) is 
$$2^{24} + 2^{13} \approx 1.68 \times 10^7$$
 (3)

From (2) and (3), it is clear that the inequality stated in equation (1) is true.

Assume that when n = k > 12 the inequality is true.

i.e., 
$$\left(\frac{k+1}{3}\right)^k > 2^{2k} + 2^{k+1}$$
 (4)

Finally, the proof is completed by establishing the inequality (1) is for n = k + 1.

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

### International Journal of Science and Research (IJSR)

ISSN: 2319-7064 **Impact Factor 2024: 7.101** 

i.e., To prove that the inequality  $\left(\frac{k+2}{3}\right)^n > 2^{2k+2} + 2^{k+2}$  is

Consider

onsider
$$\left(\frac{k+2}{3}\right)^{k+1} = \left(\frac{k+2}{k+1} \times \frac{k+1}{3}\right)^{k+1}$$

$$= \left(\frac{k+2}{k+1}\right)^{k} \times \left(\frac{k+1}{3}\right)^{k+1}$$

$$= \left(\frac{k+2}{k+1}\right)^{k} \times \left(\frac{k+2}{k+1}\right) \times \left(\frac{k+1}{3}\right)^{k} \times \left(\frac{k+1}{3}\right)$$

Since by (4), the above equation can be written as

Hence, the lemma is proved when  $n \ge 12$  by mathematical induction.

#### 3. Main Result

#### Theorem 1

The Diophantine equation  $n! + 1 = F_t^2$  where,  $F_t = 2^k + 1, k = 2^t$ 

$$F_t = 2^k + 1, k = 2^t$$

is a Fermat number where  $n, t \ge 0$  has only a positive integer solution (n, k, t) = (4,2,1).

#### **Proof**

Consider the given equation

$$n! + 1 = F_t^2$$
 where  $F_t = 2^k + 1$ ,  $k = 2^t, n, t \ge 0$ . (5)  
 $\Rightarrow n! + 1 = 2^{2k} + 2^{k+1} + 1$   
 $\Rightarrow n! = 2^{2k} + 2^{k+1}$  (6)

Our goal is to prove that the equation (6) has a unique solution only when (n, k, t) = (4,2,1).

The proof involves three distinct cases specifically,

Case (i): n = kCase(ii): n > k

Case(iii): n < k

Case (i): Suppose n = k

The equation (6) turns out to be

$$n! = 2^{2n} + 2^{n+1} \tag{7}$$

Here, based on the value of  $n_i$  case (i) can be further divided into two subcases.

Subcase (i): Assume n = k with  $n \ge 12$ 

From Lemma 1, it is clear that for all  $n \ge 12$ ,  $\left(\frac{n+1}{3}\right)^n > 2^{2n} + 2^{n+1}$ 

$$\left(\frac{n+1}{3}\right)^n > 2^{2n} + 2^{n+1} \tag{8}$$

But the fact that the factorial growth dominates the growth of

Thus, it follows that  $n! > \left(\frac{n+1}{3}\right)^n$ 

By employing the result (7) in (9), it is evident that

$$2^{2n} + 2^{n+1} > \left(\frac{n+1}{3}\right)^n \tag{10}$$

Thus, equation (10) stands in contradiction to the equation

Therefore, it follows that no solution exists for n = k when

Subcase (ii): n = k with n < 12.

Considering this specific subcase, values of  $n \in \{1,2,4,8\}$ . Verifying basic numerical computations confirms that there is no solution.

Case (ii): Select n > k

This case can also be categorized into two subcases based on the value of n.

Subcase (i): Taking n > k where  $n \ge 12$ .

Since, by the condition given in this subcase (i), it is clear that

$$2^{2n} + 2^{n+1} > 2^{2k} + 2^{k+1} \tag{11}$$

Comparing the inequality given in Lemma 1 and equation (9), it is obvious that

$$n! > \left(\frac{n+1}{3}\right)^n > 2^{2n} + 2^{n+1} \tag{12}$$

Using (11) in (12), it shows that  $n! > 2^{2k} + 2^{k+1}$ 

$$n! > 2^{2k} + 2^{k+1} \tag{13}$$

The disparity between (6) and (13) gives rise to a contradiction.

Hence, it follows that subcase (i) of case (ii) also lacks a solution.

**Subcase (ii):** Assume n > k with n < 12

In this subcase, the values of n and k are bounded by  $n \in \{2,3,...11\}$  and  $k \in \{2^0,2^1,2^2,2^3\}$  and a possible combination of n and k are listed below.

| n       | k       |
|---------|---------|
| 2       | 1       |
| 3,4     | 1,2     |
| 5,6,7,8 | 1,2,4   |
| 9,10,11 | 1,2,4,8 |

By applying elementary numerical calculations, the values taken for n and k from the table above indicates a unique solution to the equation (6) when (n, k) = (4,2).

Case (iii): Suppose n < k

RHS of the equation (6) can be written as  $2^{2k} + 2^{k+1} = 2^{k+1}(2^{k-1} + 1)$  which is divisible by  $2^{k+1}$ .

(14)

It is clear that the 2-adic valuation

$$v_2(n!) < n. \tag{15}$$

Comparing equation (15) and the given condition n < kyields

$$v_2(n!) < n < k < k + 1$$

Volume 14 Issue 9, September 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

(9)

## **International Journal of Science and Research (IJSR)**

ISSN: 2319-7064 Impact Factor 2024: 7.101

$$\Rightarrow v_2(n!) < k+1$$
$$\Rightarrow 2^{k+1} \nmid n!$$

Equations (14) and (16) collectively imply that the equation (16) (6) is impossible for n < k, leaving (n, k, t) = (4, 2, 1) as the unique solution.

This completes the proof.

The following Python program 1 is used to verify the solution of the Diophantine equation numerically.

```
Python program 1:
```

```
import math
def check_user_input_solution():
 print("Checking the equation: n! + 1 = (2^k + 1)^2 where k = 2^t n")
    n = int(input("Enter a positive integer for n: "))
    t = int(input("Enter\ a\ non-negative\ integer\ for\ t:"))
    if \ n <= 0 \ or \ t < 0:
      print("nvalid input: n must be > 0 and t \ge 0.")
      return
    k = 2 ** t
    lhs = math.factorial(n) + 1
    rhs = (2 ** k + 1) ** 2
    print(f"\n = \{n\}, t = \{t\}, k = 2^{t} = \{k\} \rightarrow LHS = \{lhs\}, RHS = \{rhs\}")
    if lhs == rhs:
      print(f"nique solution found: (n, k, t) = (\{n\}, \{k\}, \{t\})")
      print("Conclusion: The only positive integer solution is (n, k, t) = (4, 2, 1).")
      print(f"LHS \text{ and } RHS \text{ are not equal } for \text{ the value of } (n,k,t) = (\{n\},\{k\},\{t\})")
  except ValueError:
    print("Please enter valid integer values.")
  except OverflowError:
    print("Number too large.Try smaller inputs.")
check_user_input_solution()
```

The following graph visually illustrates the behaviour of the Diophantine equation n! + 1 and  $(2^k + 1)^2$  for the value of n and k.



**Figure 1:** Behaviour of the Diophantine equation n! + 1 and  $(2^k + 1)^2$ 

#### Remark:

To extend the above theorem by considering the Diophantine equation  $n! + 1 = (a^{2^b} + 1)^2$  and investigate its solutions under the constraint that the right-hand side is the square of a generalized Fermat number, defined  $F_{a,b} = a^{2^b} + 1$  for integer a > 0,  $b \ge 0$  has the only positive integer solution (n, a, b) = (4,2,1).

#### 4. Conclusion

In this manuscript, a novel approach to determining the positive integer solutions for the Diophantine equation  $n!+1=F_k^2$  where  $F_k=2^k+1$  where  $n\geq 0, k=2^t, t\geq 0$  represents a Fermat number is exhibited. Future studies could build upon this work by exploring similar Brocard-

#### Volume 14 Issue 9, September 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

# International Journal of Science and Research (IJSR) ISSN: 2319-7064

**Impact Factor 2024: 7.101** 

Ramanujan type equations involving different number sequences with distinct properties.

#### References

- [1] Gupta, H. "On a Brocard-Ramanujan problem." *Math. Student*, Vol.3,No.1,1935, 935.
- [2] Ramanujan, S. Collected Papers of Srinivasa Ramanujan. American Mathematical Soc., New York, 2000.
- [3] Berndt, Bruce C., and William F. Galway. "On the Brocard–Ramanujan Diophantine equation  $n! + 1 = m^2$ ." The Ramanujan Journal, Vol. 4, No.1,2000, 41 42.
- [4] Kihel, Omar, and Florian Luca. "Variants of the Brocard-Ramanujan equation."
- [5] Pink, István, and Márton Szikszai. "A Brocard-Ramanujan-type equation with Lucas and associated Lucas sequences." *Glasnik matematički*, Vol.52, No.1, 2017, 11 21.
- [6] Pongsriiam, Prapanpong. "Fibonacci and Lucas numbers associated with the Brocard-Ramanujan equation." *Communications of the Korean Mathematical Society*, Vol. 32, No. 3, 2017, 511-522
- [7] Koshy, T.S. Fibonacci and Lucas Numbers with Applications, Vol. 2. John Wiley & Sons, New York, 2019.
- [8] Tasci, Dursun. "On Gaussian Mersenne numbers." Journal of Science and Arts, Vol. 21, No.4, 2021, 1021 – 1028.
- [9] Bravo, JHON J., Maribel Diaz, and Jose L. Ramirez. "On a variant of the Brocard–Ramanujan equation and an application." *Publicationes Mathematicae Debrecen*, Vol 98.No.1 2, 2021, 243 253.
- [10] İbrahimov, Seyran, and Ayşe Nalli. "Mersenne version of Brocard-Ramanujan equation." *Journal of New Results in Science*, Vol.12, No. 1,2023, 22 26.

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net