
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A Comparative Analysis of System Monitoring

Architecture: Evaluating Prometheus, Elk Stack,

and Custom dashboards for performance and

Scalability

Rahul Banerjee

Abstract: The proliferation of microservices and cloud-native architectures has rendered traditional system monitoring approaches

insufficient, necessitating a paradigm shift towards comprehensive observability. This paper presents a comparative analysis of three

dominant system monitoring architectures: the metrics-centric Prometheus ecosystem, the log-centric ELK (Elastic) Stack, and the flexible

paradigm of Custom Dashboards, exemplified by Grafana. We conduct an architectural deep dive into each solution, evaluating their core

components, data models, and ingestion mechanisms. The analysis focuses on key performance indicators, including ingestion

throughput, query latency, and resource utilization, alongside a rigorous assessment of their scalability models for handling high data

volumes, managing metric cardinality, and ensuring long-term data retention. Through an examination of real-world case studies and

quantitative benchmarks, this paper establishes that the optimal choice of monitoring architecture is not a matter of universal superiority

but a strategic decision contingent on an organization's primary telemetry signals, operational maturity, and specific scalability challenges.

Prometheus excels in real-time, high-frequency metric analysis and alerting within dynamic environments, whereas the ELK Stack

provides unparalleled capabilities for deep, full-text log analysis and security forensics. Custom Dashboards offer maximum flexibility by

decoupling the visualization layer from the data backend, enabling hybrid solutions but demanding greater engineering investment. This

paper concludes with a decision-making framework to guide architects and engineers in selecting the most suitable monitoring strategy

for their distributed systems and a forward-looking perspective on emerging technologies like OpenTelemetry and eBPF that are reshaping

the observability landscape.

Keywords: System monitoring, observability, Prometheus, ELK Stack, Grafana, custom dashboards, performance metrics, scalability

1. Introduction

The landscape of software architecture has undergone a

transformative evolution over the past decade, characterized

by a strategic migration from monolithic designs to

distributed microservices architectures.1 In a monolithic

system, all application components—user interface, business

logic, and data access layers—are tightly coupled and

deployed as a single, indivisible unit.3 This approach, while

simple to develop and deploy initially, presents significant

challenges as systems grow in complexity. Scaling a monolith

is an "all or nothing" proposition, where the entire application

must be scaled to meet increased demand on a single

component, leading to inefficient resource utilization.2

Furthermore, the tightly coupled nature of the codebase

makes implementing changes cumbersome and risky,

dramatically slowing down deployment cycles and stifling

innovation.5

In response to these limitations, the microservices paradigm

emerged, advocating for the decomposition of large

applications into a collection of small, autonomous services,

each responsible for a specific business function.1 These

services communicate over well-defined APIs and can be

developed, deployed, and scaled independently.3 This

architectural style offers profound benefits, including

enhanced scalability, as individual services can be scaled

based on demand; faster deployment cycles, as smaller,

independent updates reduce risk; and improved fault

isolation, where the failure of one service does not cascade to

the entire system.1 However, this distribution of components

introduces a new set of complex challenges. What was once a

simple in-process function call in a monolith becomes a

network request in a microservices architecture, subject to

latency, unreliability, and new failure modes.3 Managing data

consistency across distributed databases, securing inter-

service communication, and debugging requests that traverse

multiple services add significant operational overhead.2 This

fundamental shift has rendered traditional monitoring

techniques, designed for the simplicity of monolithic systems,

inadequate for the distributed and dynamic nature of modern

applications.7

The inherent complexity of microservices demanded a more

profound approach to system insight than what traditional

monitoring could provide. Monitoring, in its classic sense,

focuses on tracking a predefined set of metrics and logs to

identify "known unknowns"—predictable failure modes such

as high CPU usage or low disk space.4 This approach works

well for stable, monolithic systems where the potential failure

states are well understood. However, in a distributed system,

the number of interconnected parts and potential failure

modes grows exponentially, leading to a prevalence of

"unknown unknowns"—emergent, unpredictable problems

that cannot be anticipated and pre-monitored.8

This challenge gave rise to the concept of observability.

Originating from control theory, observability is defined as

the ability to infer the internal states of a system by examining

its external outputs.8 In the context of IT systems, this means

instrumenting applications to produce rich, high-fidelity

telemetry data that allows engineers to ask arbitrary questions

about system behaviour and diagnose unforeseen issues

without needing to ship new code.4 This practice is built upon

three primary data types, often referred to as the "three pillars

of observability" 11:

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 916

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

1) Metrics: Numerical, time-stamped measurements of

system health and performance, such as request counts,

latency, and resource utilization. Metrics are optimized

for storage and mathematical aggregation, making them

ideal for dashboards, alerting, and trend analysis.11

2) Logs: Granular, time-stamped, and immutable records of

discrete events. Logs provide detailed, contextual

information about what an application was doing at a

specific point in time, making them invaluable for

debugging and root cause analysis.10

3) Traces: A representation of the end-to-end journey of a

single request as it propagates through multiple services

in a distributed system. Traces are essential for

understanding inter-service dependencies, identifying

performance bottlenecks, and visualizing the flow of

operations.10

Together, these three pillars provide a holistic view of a

system's health, enabling teams to move from a reactive

posture of fixing known problems to a proactive one of

exploring and understanding complex system dynamics.8

2. Architectural Deep Dive: The Elk Stack

The ELK Stack, now officially known as the Elastic Stack, is

a powerful suite of open-source tools designed for centralized

log management, search, and real-time data analysis.50 While

Prometheus is fundamentally a metrics-first system, the ELK

Stack is a log-first architecture, built around the formidable

search capabilities of its core component, Elasticsearch.

1) Core Components and Data Flow Pipeline

The Elastic Stack is composed of four primary components

that form a comprehensive data pipeline 50:

a) Elasticsearch: The heart of the stack, Elasticsearch is a

distributed, RESTful search and analytics engine built on

Apache Lucene. It is responsible for storing, indexing,

and making vast quantities of data searchable in near

real-time.50
b) Logstash: A server-side data processing pipeline that

ingests data from a multitude of sources simultaneously,

transforms it, and then sends it to a "stash" like

Elasticsearch.53
c) Kibana: The visualization layer of the stack. Kibana

provides a web-based user interface for exploring,

visualizing, and discovering insights from the data stored

in Elasticsearch. It allows users to create dashboards with

charts, graphs, maps, and tables.50
d) Beats: A family of lightweight, single-purpose data

shippers. Beats are installed on servers to collect and

forward specific types of data to either Logstash or

directly to Elasticsearch.53

The canonical data flow pipeline begins with Beats collecting

data at the source. This data is then sent to Logstash for

parsing, enrichment, and transformation. Finally, the

processed data is indexed in Elasticsearch, where it becomes

available for search and visualization in Kibana.51 This

pipeline is highly flexible; for simpler use cases, Beats can

ship data directly to Elasticsearch, bypassing Logstash

entirely.56

2) The Push-Based Ingestion Model with Beats and

Logstash

Unlike Prometheus's pull model, the ELK Stack operates on

a push-based model, where agents on the monitored systems

actively send data to the central processing and storage

components.

Beats are the primary agents for this task. They are designed

to be lightweight with a minimal resource footprint, making

them safe to deploy on production servers.58 The Beats family

includes several specialized shippers 56:

a) Filebeat: Tails log files and forwards log events.

b) Metricbeat: Collects system and service metrics (e.g.,

from Docker, Nginx).

c) Packetbeat: Monitors network traffic and decodes

application-layer protocols.

d) Auditbeat: Collects audit data about system and file

integrity changes.

These agents handle the initial collection and forwarding of

data. For more complex processing, the data is sent to

Logstash. Logstash is a powerful and flexible ETL (Extract,

Transform, Load) tool. Its pipeline architecture consists of

three stages: inputs, filters, and outputs.60

• Inputs: Logstash supports a wide array of input plugins to

ingest data from sources like files, Beats, message queues

(e.g., Kafka), and databases.62
• Filters: This is where the core data processing happens.

Logstash provides a rich set of filter plugins to parse,

structure, and enrich the data. The grok filter is commonly

used to extract structured fields from unstructured log text

using regular expressions. The mutate filter can add,

remove, or modify fields, and the geoip filter can enrich

log data with geographical information based on an IP

address.60
• Outputs: After processing, Logstash sends the data to one

or more destinations using output plugins, with

Elasticsearch being the most common target.61

In high-volume environments, a direct connection from data

shippers to Logstash or Elasticsearch can be risky. A sudden

spike in log volume can overwhelm the processing pipeline,

leading to data loss.64 To mitigate this, a best practice is to

introduce a durable buffer, such as Apache Kafka or Redis,

between the shippers and Logstash. This buffer absorbs traffic

spikes and ensures data persistence even if downstream

components are temporarily unavailable.54

3) Performance Characteristics: Elasticsearch and Full-

Text Indexing

The performance and core functionality of the ELK Stack are

defined by Elasticsearch. It is a document-oriented NoSQL

database where data is stored as JSON documents.53 Unlike a

traditional database, Elasticsearch's primary strength lies in

its search capabilities, which are powered by an underlying

data structure called an inverted index.67

An inverted index is a mapping from content, such as words

or numbers, to their locations in a set of documents. Instead

of searching documents sequentially, Elasticsearch looks up

the search term in the inverted index to get a list of documents

that contain it, enabling extremely fast full-text searches.69

During the indexing process, Elasticsearch analyzes the text

fields of a document, breaking the text into individual terms

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 917

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

(tokenization) and normalizing them (e.g., converting to

lowercase) before adding them to the inverted index.69

This "index everything" approach is what gives the ELK

Stack its power for log analysis. It allows users to perform

complex, ad-hoc queries on unstructured log data with very

low latency. However, this power comes at a significant cost.

Creating and maintaining inverted indexes for every field is

resource-intensive, leading to a much larger storage footprint

and higher CPU and memory consumption compared to a

time-series database like Prometheus, which only indexes

labels.71

Data exploration is primarily done through Kibana, which

provides a user-friendly interface for building queries,

creating visualizations, and assembling dashboards.74 Users

can interact with their data using the Kibana Query Language

(KQL), a simple text-based query language, or by directly

writing more complex queries using the Elasticsearch Query

DSL or Lucene syntax.75

4) Scalability Architectures for High-Volume Log

Management

Elasticsearch is inherently designed as a distributed system,

built for horizontal scalability from the ground up.53 Its

scalability model revolves around a few key concepts 66:

• Cluster: A collection of one or more nodes that work

together.
• Node: A single server that is part of a cluster. Nodes can

have different roles, such as master nodes (responsible

for managing the cluster state) and data nodes

(responsible for storing data and executing queries).53 For

stability in production environments, it is a best practice

to have dedicated master nodes.64
• Index: A collection of documents with similar

characteristics, analogous to a database in a relational

system.
• Shard: Because an index can grow to hold a massive

amount of data that exceeds the hardware limits of a single

node, Elasticsearch allows an index to be subdivided into

multiple pieces called shards. Each shard is a fully

functional and independent index that can be hosted on

any data node in the cluster.66 Sharding allows for

horizontal scaling of both storage capacity and query

throughput, as operations can be parallelized across

shards.
• Replica: A copy of a shard. Replicas provide redundancy

and high availability; if a node containing a primary shard

fails, a replica shard on another node can be promoted to

become the new primary.53 Replicas also improve read

performance, as search requests can be handled by either

the primary or replica shards.

To scale an Elasticsearch cluster, administrators can simply

add more data nodes. Elasticsearch will automatically

rebalance the shards and replicas across the available nodes

to distribute the load.77 However, managing a large-scale

cluster requires careful planning. The number of primary

shards for an index is fixed at creation time and cannot be

changed, so it must be chosen carefully based on anticipated

data volume. A common scaling bottleneck is not the data

itself, but the cluster state, which is the metadata about all

nodes, indices, shards, and mappings. An excessively large

cluster state, often caused by having too many shards or too

many unique fields in mappings, can overwhelm the master

node and lead to cluster instability.71

For managing long-term data retention and storage costs,

Elasticsearch offers index lifecycle management (ILM) and

data tiers. ILM policies can be defined to automatically

manage indices as they age. For example, an index can be

moved from a high-performance "hot" tier (using fast SSDs)

to a less expensive "warm" tier, and eventually to a low-cost

"cold" or "frozen" tier (using slower spinning disks or object

storage) before being deleted.53 This tiered approach allows

organizations to retain massive volumes of log data cost-

effectively.

3. Comparative Analysis: Performance and

Scalability

The selection of a monitoring architecture is a critical

engineering decision with long-term implications for system

reliability, operational efficiency, and cost. This section

provides a direct comparison of the Prometheus ecosystem

and the ELK Stack, focusing on their fundamental

performance characteristics and scalability models. The

fundamental trade-off between these systems stems from their

core design philosophies. The ELK Stack's "index

everything" approach provides incredible query flexibility for

unstructured text by pre-computing the locations of all terms.

This comes at the cost of massive storage and compute

overhead, as every log line is fully parsed and indexed.71

Prometheus, in contrast, is optimized for numerical

aggregation. Its indexing is focused on rapidly finding and

grouping time series by labels, not on searching the content

of the values themselves. This makes it highly efficient for its

intended purpose but unsuitable for the deep log analysis that

is ELK's strength.

Table I: Core Architectural Characteristics Comparison
Feature Prometheus Ecosystem ELK (Elastic) Stack

Primary Use Case Real-time metrics monitoring and alerting 102 Centralized log management and full-text search76

Data Model Dimensional Time Series (metric name + labels) 18 Document-oriented (JSON documents) 53

Core Telemetry Signal Metrics (numerical time series) 103 Logs (unstructured/structured text) 103

Collection Model Pull-based (server scrapes targets) 22 Push-based (agents push data) 103

Query Language PromQL (functional, for time-series) 33 KQL / Lucene / Query DSL (for full-text search)68

Default Visualization Basic Expression Browser (Grafana is standard) 73 Kibana (integrated) 50

Scalability Model Single-node with ecosystem extensions (Thanos/Cortex)37 Natively distributed (cluster of nodes) 73

a) Performance Evaluation: Ingestion Throughput,

Query Latency, and Resource Footprint

Prometheus is engineered for high-frequency, high-

throughput ingestion of numerical data. Its TSDB is

optimized for fast writes and appends, allowing a single, well-

provisioned instance to ingest hundreds of thousands of

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 918

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

samples per second.37 Query latency for typical time-series

aggregations (e.g., calculating rates, averages, or percentiles

over recent time windows) is very low, often in the sub-

second range, which is critical for real-time alerting and

dashboarding.104 The resource footprint (CPU, memory, disk)

of Prometheus is relatively low for its ingestion rate, but it is

extremely sensitive to metric cardinality. As the number of

unique time series grows, memory usage for the index can

increase dramatically, becoming the primary performance

bottleneck.30 Real-world deployments, such as Uber's M3

platform (a Prometheus-compatible backend), demonstrate

the potential for this architecture to scale to massive ingestion

rates, handling 500 million metrics per second and storing 6.6

billion time series.106

The ELK Stack, by contrast, is optimized for ingesting and

indexing large volumes of unstructured or semi-structured

text data. Elasticsearch can handle very high ingestion

throughput, but the process is more resource-intensive than in

Prometheus due to the overhead of full-text indexing.73 For

queries involving full-text search, Elasticsearch is

exceptionally fast, leveraging its inverted index to return

results from petabytes of data in seconds.68 However, for the

kind of complex numerical aggregations that are trivial in

PromQL, Elasticsearch can be slower and more

computationally expensive. The resource footprint of an ELK

cluster is significantly higher than a Prometheus instance

handling a comparable number of data points. The JVM heap,

disk I/O for indexing, and storage space required for the

inverted indexes all contribute to substantial hardware

requirements.64 The scale of Netflix's deployment, with 700-

800 production nodes across 100 clusters, exemplifies the

infrastructure investment required to support log analytics for

a global, high-traffic service.108

b) Scalability Evaluation: Data Volume, Cardinality, and

Long-Term Retention

A standalone Prometheus server is not designed for long-

term, scalable storage. Its local TSDB is typically configured

with a short retention period (e.g., 15 days) to manage disk

space.27 True scalability for data volume and long-term

retention is achieved through the ecosystem of remote storage

solutions like Thanos and Cortex. These solutions offload

historical data to cost-effective object storage, providing

virtually unlimited retention while introducing additional

architectural and operational complexity.43 The primary

scalability constraint for Prometheus remains cardinality.

Uncontrolled growth in the number of time series can

overwhelm even a scaled deployment, necessitating careful

metric and label design.30

The ELK Stack is natively designed for horizontal scalability

to handle massive data volumes. By adding more data nodes

to an Elasticsearch cluster, both storage capacity and

processing power can be scaled out linearly.53 With features

like ILM and data tiers, ELK can manage petabyte-scale

deployments and retain data for years in a cost-effective

manner.73 While not susceptible to cardinality in the same

way as Prometheus, Elasticsearch has its own scaling

challenge: cluster state management. An excessive number of

indices, shards, or unique field mappings can bloat the cluster

state, which must be managed by the master node and

propagated to all other nodes. A large cluster state can slow

down cluster operations and become a bottleneck to further

scaling.71

Custom Dashboards powered by Grafana have no inherent

scalability model; their scalability is entirely a function of the

chosen data backend. Grafana itself is stateless and can be

easily scaled horizontally behind a load balancer. However, it

cannot solve the underlying scalability challenges of its data

sources. A custom solution using Grafana forces an

organization to consciously choose its scalability trade-offs

by selecting the appropriate backend for each data type.

Table II: Scalability Solutions and Trade-offs

Feature Prometheus (Federation) Prometheus (Thanos) Prometheus (Cortex)
ELK Stack (Clustering &

Data Tiers)

Global Query View Limited (Aggregated Data) 40 Yes (Full Fidelity) 44 Yes (Full Fidelity) 48 Yes (Native) 53

Long-Term Storage No 39 Yes (Object Storage) 43 Yes (Object Storage) 47 Yes (Data Tiers) 71

High Availability No (Single Point of Failure)42 Yes (Deduplication) 43 Yes (Replication) 48 Yes (Replicas) 79

Multi-tenancy No Limited Yes (Native) 48 Limited (Spaces/RBAC) 68

Operational Complexity Low Medium High High

c) Operational Complexity and Ecosystem Maturity

For initial setup and basic use cases, Prometheus is often

considered simpler and more lightweight. Its single-binary

design and straightforward configuration make it easy to get

started.76 The ecosystem is mature and vast, particularly

within the cloud-native community, with hundreds of official

and community-contributed exporters available for nearly

every common piece of software and hardware.25 However,

as scaling requirements grow, the operational complexity

increases significantly. Deploying and managing a distributed

system like Thanos or Cortex on top of Prometheus requires

deep expertise in distributed systems.48 The case study of

DigitalOcean's migration from Graphite and OpenTSDB to

Prometheus highlights this duality. They were drawn to

Prometheus for its superior query language and the

empowerment it gave developers to create their own metrics

and alerts, but they also found it necessary to build their own

tooling to manage Prometheus at scale and eventually

developed a separate solution for long-term storage.110

The ELK Stack has a higher initial setup complexity due to

its multiple components (Beats, Logstash, Elasticsearch,

Kibana) that must be configured to work together.102

Managing a large Elasticsearch cluster is a non-trivial task,

requiring expertise in JVM tuning, shard allocation, and

capacity planning to maintain performance and stability.71

However, because it is an integrated stack from a single

vendor (Elastic), the components are designed to work

together, and the ecosystem is mature with a strong focus on

enterprise-grade features, including security, machine

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 919

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

learning, and extensive support for various log-based use

cases like Security Information and Event Management

(SIEM).68

4. Conclusion

This analysis has demonstrated that Prometheus, the ELK

Stack, and Custom Dashboards represent distinct

architectural philosophies tailored to different facets of

system observability. There is no single "best" solution;

rather, each architecture presents a unique set of trade-offs in

performance, scalability, and operational complexity.

Prometheus and its ecosystem are purpose-built for the world

of metrics. Its pull-based model, dimensional data structure,

and powerful PromQL make it exceptionally effective for

real-time monitoring, high-frequency alerting, and

performance analysis of dynamic, cloud-native systems.

While a single Prometheus instance is operationally simple

and highly reliable, its scalability for long-term storage and

global query capabilities depends on a complex ecosystem of

tools like Thanos or Cortex. Its primary performance

constraint is high cardinality, which requires disciplined

metric design. The ELK Stack is the definitive solution for

log-centric observability. Its push-based pipeline and the

powerful inverted index of Elasticsearch provide unparalleled

capabilities for full-text search, unstructured data analysis,

and deep-dive troubleshooting. It is natively designed for

horizontal scalability and can manage petabyte-scale data

volumes for long-term retention. However, this power comes

at the cost of significant resource consumption and higher

operational complexity, particularly in managing large

Elasticsearch clusters. The long-term success of architectures

like Prometheus and the ELK Stack will depend on their

ability to integrate seamlessly with these emerging standards

and to provide powerful, intelligent analysis layers. The

future of system monitoring will likely be characterized not

by a single monolithic tool, but by interoperable, hybrid

platforms that combine the strengths of different specialized

backends under a unified, AI-enhanced analytical framework.

References

[1] The Evolution from Monolithic to Microservices

Architecture | Eagle Eye, accessed September 13,

2025, https://eagleeye.com/blog/the-evolution-from-

monolithic-to-microservices-architecture
[2] Evolution of Software Architecture: From Monoliths

to Microservices and Beyond - DZone, accessed

September 13, 2025,

https://dzone.com/articles/evolution-of-software-

architecture-from-monoliths
[3] Monolith vs. Microservices: A Journey Through

Architecture, History, and Evolution, accessed

September 13, 2025, https://corner.buka.sh/monolith-

vs-microservices-a-journey-through-architecture-

history-and-evolution/
[4] Monitoring to Observability: Evolution from

Monoliths to Cloud-Native Microservices | by

ProtonsAI : Tools for Engineering Excellence |

Medium, accessed September 13, 2025,

https://blog.protons.ai/monitoring-to-observability-

evolution-from-monoliths-to-cloud-native-

microservices-a5e26db8d54f

[5] Monolith to Microservices Migration: Guide for

Modernizing Enterprise Applications - Neontri,

accessed September 13, 2025,

https://neontri.com/blog/monolith-microservices-

migration/
[6] Monolith Reversion: from Microservices back to

Monolith - Ptidej Team Blog, accessed September 13,

2025, https://blog.ptidej.net/monolith-reversion-

from-microservices-back-to-a-monolith/
[7] Microservices Monitoring: Challenges, Metrics &

Tips for Success - Lumigo, accessed September 13,

2025, https://lumigo.io/microservices-monitoring/
[8] What is Observability? An Introduction - Splunk,

accessed September 13, 2025,

https://www.splunk.com/en_us/blog/learn/observabil

ity.html
[9] What is observability? Not just logs, metrics, and

traces - Dynatrace, accessed September 13, 2025,

https://www.dynatrace.com/news/blog/what-is-

observability-2/
[10] What Is Observability? | IBM, accessed September

13, 2025,

https://www.ibm.com/think/topics/observability
[11] Observability in Distributed Systems: Logs, Metrics,

and Traces | by Sruthi Sree Kumar | Big Data

Processing | Medium, accessed September 13, 2025,

https://medium.com/big-data-

processing/observability-in-distributed-systems-logs-

metrics-and-traces-ee260c60d697
[12] The Three Pillars of Observability: Logs, Metrics, and

Traces - CrowdStrike, accessed September 13, 2025,

https://www.crowdstrike.com/en-us/cybersecurity-

101/observability/three-pillars-of-observability/
[13] Three Pillars of Observability: Logs vs. Metrics vs.

Traces | Edge Delta, accessed September 13, 2025,

https://edgedelta.com/company/blog/three-pillars-of-

observability
[14] Three Pillars of Observability: Logs, Metrics and

Traces - IBM, accessed September 13, 2025,

https://www.ibm.com/think/insights/observability-

pillars
[15] Observability in Distributed Systems -

GeeksforGeeks, accessed September 13, 2025,

https://www.geeksforgeeks.org/system-

design/observability-in-distributed-systems/
[16] The 3 pillars of observability: Unified logs, metrics,

and traces | Elastic Blog, accessed September 13,

2025, https://www.elastic.co/blog/3-pillars-of-

observability
[17] What is Prometheus Monitoring? A Beginner's Guide

| Better Stack Community, accessed September 13,

2025,

https://betterstack.com/community/guides/monitorin

g/prometheus/
[18] Overview - Prometheus, accessed September 13,

2025,

https://prometheus.io/docs/introduction/overview/
[19] Prometheus Architecture: A Comprehensive Deep

Dive - dev ops, accessed September 13, 2025,

https://govi.hashnode.dev/prometheus-architecture-a-

comprehensive-deep-dive
[20] What is Prometheus? | New Relic, accessed

September 13, 2025, https://newrelic.com/blog/best-

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 920

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

practices/what-is-prometheus
[21] Data model - Prometheus, accessed September 13,

2025,

https://prometheus.io/docs/concepts/data_model/
[22] Is Prometheus Monitoring Push or Pull? - SigNoz,

accessed September 13, 2025,

https://signoz.io/guides/is-prometheus-monitoring-

push-or-pull/
[23] Why is Prometheus using a pull model?Blog - O11y,

accessed September 13, 2025,

https://o11y.eu/blog/prometheus-pull-model/
[24] When to use the Pushgateway - Prometheus, accessed

September 13, 2025,

https://prometheus.io/docs/practices/pushing/
[25] Prometheus - Monitoring system & time series

database, accessed September 13, 2025,

https://prometheus.io/
[26] Pull or Push: How to Select Monitoring Systems? -

Alibaba Cloud Community, accessed September 13,

2025, https://www.alibabacloud.com/blog/pull-or-

push-how-to-select-monitoring-systems_599007
[27] How to Configure and Optimize Prometheus Data

Retention - Last9, accessed September 13, 2025,

https://last9.io/blog/prometheus-data-retention/
[28] Understanding Time Series Database (TSDB) in

Prometheus - Saurabh Adhau's Blog, accessed

September 13, 2025,

https://devopsvoyager.hashnode.dev/understanding-

time-series-database-tsdb-in-prometheus
[29] Storage - Prometheus, accessed September 13, 2025,

https://prometheus.io/docs/prometheus/latest/storage/
[30] Optimizing Prometheus Storage: Handling High-

Cardinality Metrics at Scale - Medium, accessed

September 13, 2025,

https://medium.com/@platform.engineers/optimizing

-prometheus-storage-handling-high-cardinality-

metrics-at-scale-31140c92a7e4
[31] Optimizing Prometheus Logging: Best Practices and

Strategies - Graph AI, accessed September 13, 2025,

https://www.graphapp.ai/blog/optimizing-

prometheus-logging-best-practices-and-strategies
[32] Designing a Metrics and Monitoring System:

Prometheus at Scale - DEV Community, accessed

September 13, 2025, https://dev.to/sgchris/designing-

a-metrics-and-monitoring-system-prometheus-at-

scale-1mjo
[33] PromQL tutorial for beginners and humans | by

Aliaksandr Valialkin - Medium, accessed September

13, 2025, https://valyala.medium.com/promql-

tutorial-for-beginners-9ab455142085
[34] The Beginner's Handbook to PromQL | Better Stack

Community, accessed September 13, 2025,

https://betterstack.com/community/guides/monitorin

g/promql/
[35] Query examples | Prometheus, accessed September

13, 2025,

https://prometheus.io/docs/prometheus/latest/queryin

g/examples/
[36] An Intro to PromQL: Basic Concepts & Examples -

Logz.io, accessed September 13, 2025,

https://logz.io/blog/promql-examples-introduction/
[37] Scaling Prometheus: Handling Large-Scale

Deployments | by Platform Engineers - Medium,

accessed September 13, 2025,

https://medium.com/@platform.engineers/scaling-

prometheus-handling-large-scale-deployments-

ec130e0b7ba8
[38] M3db cluster as a Prometheus long term storage | by

Sayf Eddine HAMMEMI, accessed September 13,

2025,

https://sayfeddinehammemi.medium.com/m3db-

cluster-as-a-prometheus-long-term-storage-

dfbbb1f6aeb8
[39] Federation - Prometheus, accessed September 13,

2025,

https://prometheus.io/docs/prometheus/latest/federati

on/
[40] Prometheus Federation Scaling Prometheus Guide -

Last9, accessed September 13, 2025,

https://last9.io/blog/prometheus-federation-guide/
[41] Implementing Hierarchical Federation With

Prometheus - Pluralsight, accessed September 13,

2025,

https://www.pluralsight.com/labs/aws/implementing-

hierarchical-federation-with-prometheus
[42] Observability | Best Practices for Centralized Data

Management of Multiple Prometheus Instances -

Alibaba Cloud Community, accessed September 13,

2025,

https://www.alibabacloud.com/blog/observability-

%7C-best-practices-for-centralized-data-

management-of-multiple-prometheus-

instances_601178
[43] Scaling Prometheus Using Thanos - OpsRamp,

accessed September 13, 2025,

https://www.opsramp.com/guides/prometheus-

monitoring/prometheus-thanos/
[44] Scaling Prometheus with Thanos: A Guide to Long-

Term, Scalable Monitoring - Medium, accessed

September 13, 2025,

https://medium.com/@Nitish_Mane/scaling-

prometheus-with-thanos-a-guide-to-long-term-

scalable-monitoring-a1eca334cbd4
[45] How to Deploy a Scalable Prometheus with Thanos

on K8s Using Terraform - DevOps.dev, accessed

September 13, 2025, https://blog.devops.dev/how-to-

deploy-a-scalable-prometheus-with-thanos-on-k8s-

using-terraform-05a2626edd60
[46] Thanos - Highly available Prometheus setup with long

term storage capabilities, accessed September 13,

2025, https://thanos.io/
[47] Thanos vs Cortex | Last9, accessed September 13,

2025, https://last9.io/blog/thanos-vs-cortex/
[48] Prometheus Cortex - OpsRamp, accessed September

13, 2025,

https://www.opsramp.com/guides/prometheus-

monitoring/prometheus-cortex/
[49] Scaling Prometheus: From Single Node to Enterprise-

Grade Observability - Oodle AI, accessed September

13, 2025, https://blog.oodle.ai/scaling-prometheus-

from-single-node-to-enterprise-grade-observability/
[50] ELK Stack Made Simple: Logs, Analytics &

Visualizations Explained - Talent500, accessed

September 13, 2025, https://talent500.com/blog/what-

is-elk-stack/
[51] Log Management With ELK and Why You Should

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 921

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Care - Cprime, accessed September 13, 2025,

https://www.cprime.com/resources/blog/log-

management-elk-and-why-you-should-care/
[52] Elastic Stack: (ELK) Elasticsearch, Kibana &

Logstash, accessed September 13, 2025,

https://www.elastic.co/elastic-stack
[53] Deep Dive into Elastic Stack (ELK): Elasticsearch,

Logstash, and Kibana | by Amanat Ansari, accessed

September 13, 2025,

https://medium.com/@amanatansari07/deep-dive-

into-elastic-stack-elk-elasticsearch-logstash-and-

kibana-d8a0eb182cdb
[54] A Deep Dive into Log Monitoring Using Elastic Stack

- QBurst Blog, accessed September 13, 2025,

https://blog.qburst.com/2020/01/a-deep-dive-into-

log-monitoring-using-elastic-stack/
[55] Kibana Tutorial 2025: Elasticsearch Visualization

Made Simple - Knowi, accessed September 13, 2025,

https://www.knowi.com/blog/kibana-an-overview-

of-the-data-visualization-tool/
[56] Elastic Beats & Where They Fit With ELK Stack |

Instaclustr, accessed September 13, 2025,

https://www.instaclustr.com/blog/elastic-beats-and-

where-they-fit-with-elk-stack/
[57] Centralised Logging System Using ELK and Filebeat

| by Shreetheja S N - Medium, accessed September 13,

2025, https://medium.com/@snshagri/centralised-

logging-system-using-elk-and-filebeat-

067e1373dd71
[58] Difference Between Beats and Elastic Agent -

DevOpsSchool.com, accessed September 13, 2025,

https://www.devopsschool.com/blog/difference-

between-beats-and-elastic-agent/
[59] What are Beats, how do they work. What are Beats? |

by Cyber Tool Guardian | Medium, accessed

September 13, 2025,

https://medium.com/@cybertoolguardian/what-are-

beats-how-do-they-work-adc21f209b3
[60] Configuring Logstash Pipeline for Data Processing -

GeeksforGeeks, accessed September 13, 2025,

https://www.geeksforgeeks.org/elasticsearch/configu

ring-logstash-pipeline-for-data-processing/
[61] How Logstash Works - Elastic, accessed September

13, 2025,

https://www.elastic.co/docs/reference/logstash/how-

logstash-works
[62] Getting Started with Logstash - Your First Steps in

Data Processing - MoldStud, accessed September 13,

2025, https://moldstud.com/articles/p-getting-started-

with-logstash-your-first-steps-in-data-processing
[63] Creating a Logstash Pipeline - Elastic, accessed

September 13, 2025,

https://www.elastic.co/docs/reference/logstash/creati

ng-logstash-pipeline
[64] 7 Ways to Optimize Your Elastic (ELK) Stack in

Production | Better Stack Community, accessed

September 13, 2025,

https://betterstack.com/community/guides/scaling-

elastic-stack/optimize-elastic-stack/
[65] Optimizing Your ELK Stack: 7 Ways To Better

Production | Opstergo Blog, accessed September 13,

2025, https://www.opstergo.com/blog/optimizing-

elk-stack-better-production

[66] Elasticsearch Architecture: 7 Key Components |

NetApp, accessed September 13, 2025,

https://www.netapp.com/learn/cvo-blg-elasticsearch-

architecture-7-key-components/
[67] What is Elasticsearch? Complete Guide for 2025

(How It Works) - Knowi, accessed September 13,

2025, https://www.knowi.com/blog/what-is-elastic-

search/
[68] Prometheus vs. ELK - MetricFire, accessed

September 13, 2025,

https://www.metricfire.com/blog/prometheus-vs-elk/
[69] ElasticSearch Architecture: A Comprehensive Guide

- DEV Community, accessed September 13, 2025,

https://dev.to/wadee_sami_4562c11ecf8066/elasticse

arch-architecture-a-comprehensive-guide-12me
[70] The Ultimate Guide to ELK Log Analysis -

ChaosSearch, accessed September 13, 2025,

https://www.chaossearch.io/blog/ultimate-guide-elk-

log-analysis
[71] Scaling Elasticsearch by Cleaning the Cluster State -

Sematext, accessed September 13, 2025,

https://sematext.com/elasticsearch-scaling-cluster-

state/
[72] Loki vs Elasticsearch - Which tool to choose for Log

Analytics? - SigNoz, accessed September 13, 2025,

https://signoz.io/blog/loki-vs-elasticsearch/
[73] Comparing ELK, Grafana, and Prometheus for

Observability - Last9, accessed September 13, 2025,

https://last9.io/blog/elk-vs-grafana-vs-prometheus/
[74] How to Create a Dashboard in Kibana - ChaosSearch,

accessed September 13, 2025,

https://www.chaossearch.io/blog/how-to-create-

kibana-dashboard
[75] Explore and analyze data with Kibana | Elastic Docs,

accessed September 13, 2025,

https://www.elastic.co/docs/explore-analyze
[76] Prometheus vs Elasticsearch stack - Key concepts,

features, and differences - SigNoz, accessed

September 13, 2025,

https://signoz.io/blog/prometheus-vs-elasticsearch/
[77] Maximizing Elasticsearch performance when adding

nodes to a cluster | Elastic Blog, accessed September

13, 2025, https://www.elastic.co/blog/maximizing-

elasticsearch-performance-when-adding-nodes-to-a-

cluster
[78] Elasticsearch scaling considerations | Elastic Docs,

accessed September 13, 2025,

https://www.elastic.co/docs/deploy-

manage/production-guidance/scaling-considerations
[79] Scaling with Elasticsearch: use cases - Severalnines,

accessed September 13, 2025,

https://severalnines.com/blog/scaling-with-

elasticsearch-use-cases/
[80] Kubernetes Monitoring with Grafana, accessed

September 13, 2025,

https://grafana.com/solutions/kubernetes/
[81] Grafana Guide | InfluxData, accessed September 13,

2025, https://www.influxdata.com/grafana/
[82] Graphite and Grafana | MetricFire, accessed

September 13, 2025,

https://www.metricfire.com/blog/graphite-and-

grafana/
[83] Visualization and monitoring solutions | Grafana

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 922

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Labs, accessed September 13, 2025,

https://grafana.com/solutions/
[84] Graphite OSS | Time-series data platform - Grafana,

accessed September 13, 2025,

https://grafana.com/oss/graphite/
[85] Grafana - How to read Graphite Metrics - MetricFire,

accessed September 13, 2025,

https://www.metricfire.com/blog/grafana-how-to-

read-graphite-metrics/
[86] Kubernetes Monitoring Stack | DigitalOcean

Marketplace 1-Click App, accessed September 13,

2025,

https://marketplace.digitalocean.com/apps/kubernete

s-monitoring-stack
[87] InfluxDB monitoring made easy | Grafana Labs,

accessed September 13, 2025,

https://grafana.com/solutions/influxdb/monitor/
[88] InfluxDB Overview | Grafana Labs, accessed

September 13, 2025,

https://grafana.com/grafana/dashboards/13109-

influxdb-oss-overview/
[89] InfluxDB OSS Stats monitoring dashboard | Grafana

Labs, accessed September 13, 2025,

https://grafana.com/grafana/dashboards/10346-

influxdb-oss-stats-monitoring-dashboard/
[90] Grafana Cloud Graphite Monitoring Tools, accessed

September 13, 2025, https://grafana.com/go/hosted-

graphite-monitoring/
[91] Loki vs. Elasticsearch: Choosing the Right Logging

System for You - KubeBlogs, accessed September 13,

2025, https://www.kubeblogs.com/loki-vs-

elasticsearch/
[92] Grafana Loki vs ELK Logging Stacks - Wallarm,

accessed September 13, 2025,

https://www.wallarm.com/cloud-native-products-

101/grafana-loki-vs-elk-logging-stacks
[93] Grafana Loki — Our journey on replacing Elastic

Search and adopting a new logging solution at

Arquivei | by João Guilherme Luchetti | Engenharia

Qive | Medium, accessed September 13, 2025,

https://medium.com/engenharia-arquivei/grafana-

loki-our-journey-on-replacing-elastic-search-and-

adopting-a-new-logging-solution-at-f65aec407e47
[94] Guide - Custom vs Off-the-Shelf Software: Pros and

Cons - Scrums.com, accessed September 13, 2025,

https://www.scrums.com/guides/the-pros-and-cons-

of-custom-vs-off-the-shelf-software-development
[95] Custom Software vs Off-the-Shelf: Hidden Costs &

Benefits Revealed - Netguru, accessed September 13,

2025, https://www.netguru.com/blog/custom-

software-vs-off-the-shelf
[96] I Built My Company's First Monitoring System —

Here's What I Learned | by Naomi Kriger | Data

Science Collective - Medium, accessed September 13,

2025, https://medium.com/data-science-collective/i-

built-my-companys-first-monitoring-system-here-s-

what-i-learned-bed76942cc72
[97] Custom Software vs. Off-the-Shelf Solutions: A

Complete Cost-Benefit Analysis for Growing

Businesses - Full Scale, accessed September 13, 2025,

https://fullscale.io/blog/custom-software-vs-off-the-

shelf-cost-analysis/
[98] Custom vs. Off-the-Shelf: Software Solutions for You

From GovPilot, accessed September 13, 2025,

https://www.govpilot.com/blog/custom-vs.-off-the-

shelf-software-solutions-for-you-from-govpilot
[99] How to Build a Data Monitoring System (Quickest

Way to Start) - Telmai, accessed September 13, 2025,

https://www.telm.ai/blog/how-to-build-a-data-

monitoring-system/
[100] Create and manage custom dashboards - Monitoring -

Google Cloud, accessed September 13, 2025,

https://cloud.google.com/monitoring/charts/dashboar

ds
[101] Getting Started with Dashboards - Datadog Docs,

accessed September 13, 2025,

https://docs.datadoghq.com/getting_started/dashboar

ds/
[102] Prometheus vs. Elasticsearch - Atatus, accessed

September 13, 2025,

https://www.atatus.com/blog/prometheus-vs-

elasticsearch/
[103] Prometheus vs ELK Stack: Choosing the Right

Monitoring Solution for Your Needs, accessed

September 13, 2025,

https://www.tetrain.com/blogs/post/117/prometheus-

vs-elk-stack-choosing-the-right-monitoring-solution-

for-your-needs.html
[104] Comparison of Time-Series Databases: InfluxDB vs.

Prometheus - GeeksforGeeks, accessed September 13,

2025, https://www.geeksforgeeks.org/blogs/influxdb-

vs-prometheus/
[105] Prometheus vs InfluxDB [Detailed Technical

Comparison for 2025], accessed September 13, 2025,

https://uptrace.dev/comparisons/prometheus-vs-

influxdb
[106] Uber | CNCF, accessed September 13, 2025,

https://www.cncf.io/case-studies/uber/
[107] M3: Uber's Open Source, Large-scale Metrics

Platform for Prometheus | Uber Blog, accessed

September 13, 2025, https://www.uber.com/blog/m3/
[108] arRESTful Development: How Netflix Uses

Elasticsearch to Better ..., accessed September 13,

2025,

https://www.elastic.co/elasticon/conf/2015/sf/arrestfu

l-development-how-netflix-uses-elasticsearch-to-

better-understand
[109] Solved: Prometheus vs ELK Stack - Which is better

for Monitoring? - Squadcast, accessed September 13,

2025,

https://www.squadcast.com/compare/prometheus-vs-

elk-stack-a-comprehensive-comparison-of-

monitoring-and-logging-solutions
[110] Prometheus user profile: How DigitalOcean uses

Prometheus | CNCF, accessed September 13, 2025,

https://www.cncf.io/blog/2017/02/28/prometheus-

user-profile-digitalocean-uses-prometheus/
[111] Centralized Logging with Elastic Search, Logstash &

Kibana — ELK Stack - Medium, accessed September

13, 2025,

https://medium.com/@dineshmurali/centralized-

logging-with-elastic-search-logstash-kibana-elk-

stack-81e7ff2b0d34
[112] What Is OpenTelemetry? A Complete Guide | Splunk,

accessed September 13, 2025,

https://www.splunk.com/en_us/blog/learn/opentelem

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 923

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

etry.html
[113] What is OpenTelemetry? An open-source standard for

logs, metrics, and traces - Dynatrace, accessed

September 13, 2025,

https://www.dynatrace.com/news/blog/what-is-

opentelemetry/
[114] CNCF Annual Survey 2023, accessed September 13,

2025, https://www.cncf.io/reports/cncf-annual-

survey-2023/
[115] CNCF Annual Survey 2022, accessed September 13,

2025, https://www.cncf.io/reports/cncf-annual-

survey-2022/

Paper ID: SR25917095133 DOI: https://dx.doi.org/10.21275/SR25917095133 924

http://www.ijsr.net/

