International Journal of Science and Research (IJSR) ISSN: 2319-7064 **Impact Factor 2024: 7.101**

Hollow R-Annihilator δ-Lifting Modules

Gorle S K1, Wadbude R S2

¹Hutatma Rashtriya Arts and Science College, Ashti Dist. Wardha. Corresponding Author Email: sagargorle99[at]gmail.com

²Ex. Professor, Department of Mathematics, Mahatma fule Arts, Commerce and Sitaramji Choudhari Science Mahavidyalaya, Warud, Dist: Amravati. MS, India

Email: rswadbude[at]gmail.com

Abstract: In this paper we introduced the new concept hollow R- annihilator-&-lifting module by the help of R- annihilator-small submodule δ - lifting module and R- annihilator- δ -lifting module. These concepts were introduced by [4], [5], [12], [19]. Let M be an indecomposable module, M is hollow $R-a-\delta$ - lifting module if and only if M is hollow $R-a-\delta$ - lifting module but need not be factor module is δ – lifting module.

Keywords: δ-small submodule, δ-essential submodule, δ-co-essential submodule, δ-co-closed submodule, R- annihilator co-essential submodule, R- annihilator δ -submodule, δ -hollow module and δ -lifting module

1. Introduction

Through, all rings consider are associative with identity, and modules are unitary right modules. In 1975 P, Fleury introduced the concept of hollow module as follows, A module M is said to be hollow module if $M \neq 0$ and whenever M = A + B, where A and B are submodules of M, then either M = A or M = B i.e. it is hollow if $M \neq 0$ and every proper submodule of M is a small submodule of M. A submodule N of an R-module M is called small in M if for every proper submodule L of M, N + L = M (denoted by $N \ll M$). The concept of Rannihilator small (R-a-small) sub module was introduced by [5]. A submodule N of an R-module M is called R- annihilator small if N+T=M, T is submodule that $ann_R(T) = 0$, where $Ann(T) = \{r \in R : r.T = 0\}$ and (denoted by $N \ll_a M$). A submodule N of an R-module M is said to be essential submodule in M if for any $X \subseteq M$, $X \cap N = 0$ implies that X = 0 [4].

M is called singular module, if Z(M) = 0 then M is called non-singular module, many authors have been intersected in studying different definitions generalization of essential submodules. Let M be an R-module. A submodule N of M is called c-singular (denoted by $N \subseteq_{cs} M$) if $\frac{M}{N}$ is a singular module. [19] A submodule N of an R-module M is called δ -small submodule of an R-module, if N+K=M and $\frac{M}{V}$ is singular then K=M. Denoted by

of an R-module M is $Z(M) = \{x \in M : ann(x) \subseteq_e R\}$. If Z(M) = M then essential extension in M. the dully concept For $N \subseteq K \subseteq M$, N is said to be a co-essential submodule of $K \text{ in } M \text{ , if } \frac{K}{N} \ll \frac{M}{N} \text{ (denoted by } N \subseteq_{cs} M \text{). A}$ submodule N of an R-module M is called co-closed submodule in M if N has no proper submodule of K in M(denoted by $N \subseteq_{cc} K$). A submodule K of M is called δ co-closed submodule of M if $X \subseteq_{cs} K$ and $X \subseteq_{\delta cs} K$ in M for some $X \subseteq A$, then X + A, see [[11]. The concept of R-annihilator-co-essential and R-annihilator-co-closed submodule introduced by [16]. For $N \subseteq K \subseteq M$, N is said to be R-annihilator co-essential submodule of K in M, if $\frac{K}{N} << \frac{M}{N}$ (denoted by $N \subseteq_{ace} M$). A submodule N is said to be R-annihilator co-closed submodule of K in M, if $\frac{K}{N} <<_a \frac{M}{N}$. (denoted by $N \subseteq_{acc} M$) implies that N = K. Let N and K submodules of M such $N \subseteq K \subseteq M$, then N is said to be δ -co-essential submodule of K in M if $\frac{K}{N} <<_{\delta} \frac{M}{N}$. A submodule N of Mis called a fully invariant submodule if $f(N) \subseteq A$, for every $f \in End(M)$, see [8], [12]. An R-module M is called R-annihilator lifting module, if for every submodule K of M there exists a submodule L and N of M such that $M=L \oplus N$ with $L \leq N$ and $K \cap N \leq_a N$. [9] An Rmodule M is called δ -lifting module if for every submodule K of M there exists a direct summand N of M such that

 $N \le M$. For $N \subset K \subset M$, if $N \le K$, the K is called

Volume 14 Issue 9, September 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

singular

Impact Factor 2024: 7.101

 $N \subseteq_{\delta ce} K$ in M and $\frac{K}{N} <<_{\delta} \frac{M}{N}$. An R-module M is called hollow-lifting module, if for every submodule K of M with $\frac{M}{K}$ is hollow then there exists a direct summand K of K such that $K \leq_{ce} K$ in K. An R-module K is called hollow R-annihilator lifting module, if for every submodule K of K with K is hollow there exists a direct summand K of K such that $K \leq_{ace} K$ in K.

Examples

The submodule $\{\overline{0},\overline{3}\}$ of the Z-module Z_6 is a c-singular submodule of Z_6 .

The submodule $\{\overline{0}\}$ of the Z_4 -module Z_4 is not c-singular submodule of Z_4 .

Because $\frac{Z_4}{\{0\}} \square Z_4$ and Z_4 is not singular, where $ann(\bar{1}) \subseteq_e Z_4$.

Proposition: 1. Let M be an R-module. Let A, B, C are submodules of M with $A \subseteq B \subseteq C$. If $A \subseteq_{ace} C$ then $A \subseteq_{ace} B$.

Proof: Let $A \subseteq X \subseteq M$ with $\frac{M}{A} = \frac{B}{A} + \frac{X}{A}$, thus M = B + X. But $B \subset C$, therefore M = C + X and then $\frac{M}{A} = \frac{C}{A} + \frac{X}{A}$. But $A \subseteq_{ace} C$, then $\frac{C}{A} <<_a \frac{M}{A}$ thus $ann(\frac{X}{A}) = 0$ and hence $\frac{B}{A} <<_a \frac{M}{A}$ i.e. $A \subseteq_{ace} B$.

Proposition: 2. Let M be an R-module. Let A, B, N are submodules of M. If $A \subseteq_{\delta ce} B$ and N << M, then $A \subseteq_{ace} B + N$ in M.

Proof: Suppose that $A \subseteq X \subseteq M$ with $\frac{M}{A} = \frac{B+N}{A} + \frac{X}{A}$ then M = (B+N) + X. But N << M, therefore

M = B + X and hence $\frac{M}{A} = \frac{B}{A} + \frac{X}{A}$, but $\frac{B}{A} <<_a \frac{M}{A}$.

Thus $ann(\frac{X}{A}) = 0$ this means $A \subseteq_{\delta ce} B + N$ in M .

Proposition: 3. Let $A \subseteq X \subseteq B \subseteq M$ and $X \subseteq_{\delta ce} B$ if and only if $\frac{X}{A} \subseteq_{ace} \frac{B}{A}$ in $\frac{M}{A}$.

Proof: Assume that $X \subseteq_{\delta ce} B$ in M. Since by III isomorphism theorem $\frac{B}{X} \cong \frac{B/A}{X/A}$ and $\frac{M}{X} \cong \frac{M/A}{X/A}$. Thus $\frac{B/A}{X/A} <<_a \frac{M/A}{X/A}$ and hence $\frac{X}{A} \subseteq_{ace} \frac{M}{A}$. Since $\frac{B/A}{X/A} \cong \frac{B}{X}$ and $\frac{M/A}{X/A} \cong \frac{M}{X}$. Then $\frac{B}{X} \subseteq_{ace} \frac{M}{X} \Longrightarrow X \subseteq_{\delta ce} B$ in M.

Lemma: Let M be an R-module and $A \subseteq B \subseteq C \subseteq M$. If $B \subseteq_{ace} C$ in M, then $A \subseteq_{ace} C$ in M.

Proof: Suppose that $B \subseteq_{ace} C$ in M. Then show that $A \subseteq_{ace} C$ in M. suppose that $\frac{M}{A} = \frac{C}{A} + \frac{T}{A}$, where $A \subseteq T$, thus M = C + T then $\frac{M}{B} = \frac{C}{B} + \frac{T + B}{B}$. But $B \subseteq_{ace} C$ and $\frac{C}{B} \subseteq_{a} \frac{M}{B}$, therefore $ann(\frac{T+B}{B}) = 0$. To prove that $ann(\frac{T}{B}) = 0$, Let $r \in ann(T)$, thus $r.T \subseteq A$ and $r.T \subseteq B$, since $A \subseteq B$, therefore r.T + B = B. Thus $r \in ann(\frac{T+B}{B})$ and this means $ann(\frac{T}{A}) = 0$, therefore $A \subseteq_{ace} C$ in M.

Proposition: 4. If M is an R-module and A, B, C are submodules of an R- module M such that $A+C \subseteq_{ace} B+C$ in M, then $A \subseteq_{ace} B$ in M.

Proof: Let M be an R-module and A, B, C are submodules of an R- module M. Let T be any submodule of an R-module M such that $A \subseteq T$ and

$$\frac{M}{A} = \frac{B}{A} + \frac{T}{A} \Rightarrow M = B + T \text{ and}$$

$$\frac{M}{A + C} = \frac{B + C}{A + C} + \frac{T + C}{A + C} \text{ where } ann(\frac{T}{A}) = 0. \text{ Let}$$

$$r \in ann(\frac{T}{A}), \text{ thus } r.T \subset A \subseteq (A + C) \text{ and } \text{ hence}$$

$$r(T + (A + C)) = A + C. \text{ Then } r \in ann(\frac{T + C}{A + C}) = 0,$$

$$thus ann(\frac{T}{A}) = 0. \text{ Therefore } A \subseteq_{ace} B \text{ in } M.$$

Impact Factor 2024: 7.101

Theorem: 1. Let M be an R-module and A, B, C, X are submodules of an R- module M . Then following statements are equivalent:

a) If $A \subseteq_{ace} A + B$ in M, then $A \cap B \subseteq_{ace} A$ in M.

b) If
$$A\subseteq_{ace} B$$
 in M and $Y\leq M$, then
$$A\cap Y\subseteq_{ace} B\cap Y \text{ in } M \ .$$

c) If
$$A \subseteq_{ace} B$$
 in M and $X \subseteq_{ace} C$, then
$$A \bigcap X \subseteq_{ace} B \bigcap C \text{ in } M.$$

Proof: [16]

Examples and Remarks:

- 1) Consider Z_8 as a Z-module. It is easy to see that $\{\overline{0},\overline{4}\}\subseteq_{\delta ce}\{\overline{0},\overline{2},\overline{4},\overline{6}\}$ in Z_8 .
- 2) Consider Z_6 as a Z-module. It is clear that $\{0\}$ is not δ -coessential submodule of $\{\overline{0},\overline{3}\}$ in Z_6 . If $\frac{\{\overline{0},\overline{3}\}}{\{\overline{0}\}} <<_{\delta} \frac{Z_6}{\{\overline{0}\}} \text{. it is easy to see that } \frac{\{\overline{0},\overline{3}\}}{\{\overline{0}\}} \cong \{\overline{0},\overline{3}\}$ and $\frac{Z_6}{\{\overline{0}\}} \cong Z_6$ and hence $\{\overline{0},\overline{3}\} <<_{\delta} Z_6$, which is a contradiction.
- 3) Let M be an R-module. Then $A <<_{\delta} M$ if and only if $0 <<_{\delta ce} A \text{ in } M \; .$

Proposition: 5. Let M be an R-module. Let A, B, C are submodules of M with $A \subseteq B \subseteq M$, $A \subseteq_{cs} M$, Then $A \subseteq_{\delta ce} B$ in M if and only if $M = B + X \Rightarrow M = A + X$, for every submodule X of M.

Proof: Suppose that $A \subseteq_{\delta ce} B$ in M and M = B + X where $X \subseteq M$, then $\frac{M}{A} = \frac{B}{A} + \frac{X + A}{A}$. Since $A \subseteq_{cs} M$ and then $X + A \subseteq_{cs} M$, but $\frac{M / A}{X + A / A} \cong \frac{M}{X + A}$ (by III isomorphism theorem) therefore $\frac{X + A}{A} \subseteq_{cs} \frac{M}{A}$. But $\frac{B}{A} \subseteq_{cs} \frac{M}{A}$, therefore $\frac{M}{A} = \frac{X + A}{A}$. Hence M = X + A. Conversely; Let $\frac{M}{A} = \frac{B}{A} + \frac{Y}{A}$ where $A \subseteq Y$ with $\frac{Y}{B} \subseteq_{cs} \frac{M}{B}$. Then M = B + Y and $\frac{Y}{B} \subseteq_{cs} \frac{M}{B}$. Hence (by III isomorphism theorem) $Y \subseteq_{cs} M$. Therefore by our

assumption we get M=A+Y . But $A\subseteq Y$, therefore M=Y . Thus $A\subseteq_{\delta ce} B$ in M .

Proposition: 6. Let M be an R-module. Let A, B, X are submodules of M with $A \subseteq X \subseteq B \subseteq M$. Then $X \subseteq_{\delta ce} B$ in M if and only if $\frac{X}{A} \subseteq_{\delta ce} \frac{B}{A}$ in M.

Proof: Let A, B, X are submodules of M with $A \subseteq X \subseteq B \subseteq M$. Assume that $X \subseteq_{\delta ce} B$ in M. Since $\frac{B}{X} \cong \frac{B/A}{X/A}$ and $\frac{M}{X} \cong \frac{M/A}{X/A}$ (by III isomorphism theorem).

Then by $\frac{B/A}{X/A} \ll_{\delta} \frac{M/A}{X/A}$. Thus $\frac{X}{A} \subseteq_{\delta ce} \frac{B}{A}$ in M

Conversely; Suppose that $\frac{X}{A} \subseteq_{\delta ce} \frac{B}{A}$ in M . Since

 $\frac{B/A}{X/A} \cong \frac{B}{X} \text{ and } \frac{M/A}{X/A} \cong \frac{M}{X} \text{ (by } \text{ III isomorphism theorem). then } \frac{B}{X} <<_{\delta} \frac{M}{X}. \text{ Thus } X \subseteq_{\delta ce} B \text{ in } M \text{ .}$

Proposition: 7. Let M be an R-module. Let A, B, C, are submodules of M with $A \subseteq B \subseteq C \subseteq M$. Then $A \subseteq_{\delta ce} C$ in M if and only if $A \subseteq_{\delta ce} B$ in M and $B \subseteq_{\delta ce} C$ in M.

Proof: Suppose that $A \subseteq_{\delta ce} C$ in M. Since $\frac{B}{A} \subseteq \frac{C}{A} \subseteq \frac{M}{A}$, then $\frac{B}{A} <<_{\delta} \frac{M}{A}$ and hence $A \subseteq_{\delta ce} B$ in M. Now a map $f: \frac{M}{A} \to \frac{M}{B}$ define by f(m+A) = m+B for ever $m \in M$. Since f is epimorphism, therefore and $A \subseteq_{\delta ce} C$ in M. Hence $f(\frac{C}{A}) = \frac{C}{B} <<_{\delta} \frac{M}{B}$. Thus $B \subseteq_{\delta ce} C$ in M.

Conversely; assume that $A \subseteq_{\delta ce} B$ in M and $B \subseteq_{\delta ce} C$ in M. It is clear that $A \subseteq_{\delta ce} C$ in M. Let $\frac{M}{A} = \frac{C}{A} + \frac{X}{A}$ where $\frac{X}{A} \subseteq_{cs} \frac{M}{A}$, then M = C + X and hence $\frac{M}{B} = \frac{C}{B} + \frac{X + B}{B}$. Since $\frac{X}{A} \subseteq_{cs} \frac{M}{A}$, then $X \subseteq_{cs} M$ (by III isomorphism theorem) $\frac{M/B}{X + B/B} \cong \frac{M}{X + B}$ and $X + B \subseteq_{cs} M$, therefore $\frac{X + B}{B} \subseteq_{cs} \frac{M}{B}$, So

Impact Factor 2024: 7.101

$$\frac{M}{B} = \frac{X + B}{B} \Rightarrow M = X + B. \text{ Then } \frac{M}{A} = \frac{B}{A} + \frac{X}{A}. \text{ Since }$$

$$\frac{B}{A} <<_{\delta} \frac{M}{A} \text{ and } \frac{X}{A} \subseteq_{cs} \frac{M}{A}, \text{ Then } \frac{M}{A} = \frac{X}{A} \Rightarrow M = X.$$
Hence $A \subseteq_{\delta ce} C \text{ in } M$.

Proposition: 8. If M is an R-module. If $A \subseteq_{\delta ce} B$ in Mand $X \subseteq_{\delta ce} C$ in M then $A + C \subseteq_{\delta ce} B + C$ in M .

Proof: Suppose that $A \subseteq_{\delta ce} B$ in M and $X \subseteq_{\delta ce} C$ in M, where $X \leq M$. To prove that $A + C \subseteq_{\mathit{ace}} B + C \ \operatorname{in} M$. the map $\phi: \frac{M}{4} \to \frac{M}{4+Y}$ defined $\phi(m+A) = m + (A+X)$ for $\varphi: \frac{M}{X} \to \frac{M}{A+X}$ defined by $\phi(m+X) = m + (A+X)$ for each $m \in M$. Since ϕ and φ are epic, therefore $\frac{C}{V} <<_{\delta} \frac{M}{V}$, then $\frac{B}{4} <<_{\delta} \frac{M}{4}$ and $\phi(\frac{B}{A}) = \frac{B+X}{A+X} <<_{\delta} \frac{M}{A+X}$ and $\varphi(\frac{C}{Y}) = \frac{C+X}{A+Y} <<_{\delta} \frac{M}{A+Y}.$ Hence $\frac{B+X}{A+X} + \frac{C+X}{A+X} = \frac{B+C}{A+X} <<_{\delta} \frac{M}{A+X},$ thus $A + X \subseteq_{sco} B + C \Rightarrow A + X \subseteq_{sce} B + C \text{ in } M$.

Proposition: 9. If M is an R-module. If $A \subseteq_{\delta ce} B$ in Mand $X\subseteq M$ in M then $A+X\subseteq_{\delta ce} B+X$ in M , converse is true for $X \ll_{\delta} M$.

 $\textbf{Proof: Assume that } A \subseteq_{\delta ce} B \quad \text{in M and } X \subseteq M \quad \text{in M} \ .$ Since $X \subseteq_{\delta ce} X$ in M , then $A + X \subseteq_{\delta ce} B + X$ in M . Conversely; Suppose that $A+X\subseteq_{\delta ce} B+X$ in M and $X<<_{\delta}M$. Then show that $A\subseteq_{\delta ce}B$ in M , let $\frac{M}{A} = \frac{B}{A} + \frac{Y}{A}$ where $\frac{Y}{A} \subseteq_{cs} \frac{M}{A}$, then M = B + Y. Hence $\frac{M}{A+X} = \frac{B+X}{A+X} + \frac{Y+X}{A+X}$. Since $\frac{Y}{A} \subseteq_{cs} \frac{M}{A}$, Then $Y \subseteq_{cs} M$. But (by III isomorphism theorem) $\frac{M/A+X}{Y+X/A+X} \cong \frac{M}{Y+X}$ and $Y+X \subseteq_{cs} M$, therefore $\frac{Y+X}{A+Y} \subseteq_{cs} \frac{M}{A+Y}$. Since $\frac{B+X}{A+Y} <<_{\delta} \frac{M}{A+Y}$, then

$$\frac{M}{B} = \frac{X + B}{B} \Rightarrow M = X + B. \text{ Then } \frac{M}{A} = \frac{B}{A} + \frac{X}{A}. \text{ Since} \qquad \frac{M}{A + X} = \frac{Y + X}{A + X} \Rightarrow M = Y + X. \text{ But } X <<_{\delta} M \text{ and}$$

$$\frac{B}{A} <<_{\delta} \frac{M}{A} \text{ and } \frac{X}{A} \subseteq_{cs} \frac{M}{A}, \text{ Then } \frac{M}{A} = \frac{X}{A} \Rightarrow M = X.$$

$$\text{Proposition: 10. Let } M \text{ be an } R\text{-module and } X <<_{\delta} M \text{ in } M.$$

$$\text{Hence } A \subseteq_{\delta ce} C \text{ in } M.$$

Proof: Suppose that $A \subseteq_{\delta ce} B$ in M and $X <<_{\delta} M$. To show that $A \subseteq_{\delta ce} B + X$ in M. Let $\frac{M}{A} = \frac{B + X}{A} + \frac{Y}{A}$ where $\frac{Y}{A} \subseteq_{cs} \frac{M}{A}$. Hence $\frac{M}{A} = \frac{B}{A} + \frac{X+Y}{A}$. Since $\frac{Y}{A} \subseteq_{cs} \frac{M}{A}$, then (by III isomorphism theorem) and $Y \subseteq_{cs} M$. But $\frac{M/A}{V+Y/A} \cong \frac{M}{V+Y}$ (by III isomorphism theorem) and $Y + X \subseteq M$, therefore $\frac{Y + X}{4} \subseteq_{cs} \frac{M}{4}$. Since $\frac{B}{A} <<_{\delta} \frac{M}{A}$, then $\frac{M}{A} = \frac{X+Y}{A}$ and M = X + Y. But $X <<_{\delta} M$ and $Y \subseteq_{cs} M$, therefore M=X . Thus $A\subseteq_{\delta ce} B+X$ in M .

Proposition: 11. Let M and N be an R-modules and let $f:M\to N$ be an epimorphism. If $A\subseteq_{\delta ce} B$ in M then $f(A) \subseteq_{\delta ce} f(B)$ in N.

Proof: Suppose that $A \subseteq_{\delta ce} B$ in M. To show that $f(A) \subseteq_{\delta ce} f(B)$ in N. Let $\frac{N}{f(A)} = \frac{f(B)}{f(A)} + \frac{X}{f(A)}$ $\frac{X}{f(A)}\subseteq_{cs}\frac{N}{f(A)}$. $N = f(B) + X \Rightarrow f^{-1}(N) = f^{-1}(f(B)) + f^{-1}(X) \Rightarrow M = B + f^{-1}(X)$, so $\frac{M}{A} = \frac{B}{A} + \frac{f^{-1}(X)}{A}$. Since $\frac{X}{f(A)} \subseteq_{cs} \frac{M}{f(A)}$, then $X \subseteq_{cs} M$ and hence $f^{-1}(X) \subseteq_{cs} M$ (by III isomorphism $\frac{M/A}{f^{-1}(X) + A/A} \cong \frac{M}{f^{-1}(X) + A}$ and $f^{-1}(X) + A \subseteq_{cs} M$, therefore $\frac{f^{-1}(X) + A}{A} \subseteq_{cs} \frac{M}{A}$. $\frac{B}{A} <<_{\delta} \frac{M}{A}$, then $f^{-1}(X) + A = M \Rightarrow f(f^{-1}(X)) + f(A) = f(M) \Rightarrow X + f(A) = N.$ $f(A) \subseteq X$, therefore N = X. $f(A) \subseteq_{\delta_{Ce}} f(B)$ in N.

Volume 14 Issue 9, September 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR25904205628

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

Proposition: 12. [12] Let M be an R-module and A, B, C, X are submodules of an R- module M. Then following statements are equivalent:

a) If $A \subseteq_{\delta ce} A + B$ in M, then $A \cap B \subseteq_{\delta ce} A$ in M.

b) If
$$A \subseteq_{\delta ce} B$$
 in M and $Y \leq M$, then $A \cap Y \subseteq_{\delta ce} B \cap Y$ in M .

c) If
$$A \subseteq_{\delta ce} B$$
 in M and $X \subseteq_{\delta ce} C$, then $A \cap X \subseteq_{\delta ce} B \cap C$ in M .

Proposition: 13. Let M be an R-module and let $A \subseteq B \subseteq M$. If B = A + L and $L \ll_{\delta} M$, then If $A \subseteq_{\delta ce} B$ in M.

Proof: Assume that B = A + L and $L <<_{\delta} M$, let $\frac{M}{A} = \frac{B}{A} + \frac{X}{A}$ where $\frac{X}{A} \subseteq_{cs} \frac{M}{A}$, then M = B + X = A + L + X. Since $\frac{X}{A} \subseteq_{cs} \frac{M}{A}$, then $X \subseteq_{cs} M$, but $L <<_{\delta} M$ and $A + X \subseteq_{cs} M$, therefore M = A + X and $A \subseteq X$. Thus M = X and $A \subseteq_{\delta ce} B$ in M.

Examples and Remarks:

- 1) Consider Z4 as a Z-module, clearly Z4 is δ -lifting module.
- 2) Let Q be the set of the rational numbers. It is easy to see that Q as a Z-module is not δ -lifting module.

The dual concept is that R-annihilator δ -lifting module. An R-module M is called R-annihilator δ -lifting module, if for every submodule K of M there exists a direct summand N of

$$\text{M with } N \leq K \text{ and } \frac{K}{N} <<_{a\delta} \frac{M}{N} \text{ with } ann(K) = 0.$$

Theorem:2. [12]

Let M be an R-module, then following statements are equivalent:

- 1) M is δ -lifting.
- 2) For every submodule A in M, there is a decomposition $M=M_1\oplus M_2 \qquad \text{such} \qquad \text{that} \qquad M_1\subseteq A \text{ and}$ $A\cap M_2<<_\delta M_2.$
- 3) Every submodule A in M can be written as $A = B \oplus L$, where B is a direct summand of M and L $L <<_{\delta} M$.

Proof: (1) \Rightarrow (2) Suppose that M is δ -lifting and let A is a submodule of M. Then there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq A$ and $\frac{A}{M_1} <<_{\delta} \frac{M}{M_1}$. By modular $\text{law } A = A \cap M$ $= A \cap (M_1 \oplus M_2) = M_1 \oplus (A \cap M_2). \text{ Now, let}$

$$\varphi: \frac{M}{M_1} \to M_2 \text{ be a map defined by } \varphi(m+M_1) = m_2$$
 with $m = m_1 \oplus m_2$ where $m_1 \in M_1$ and $m_2 \in M_2$. It is clear that φ is an isomorphism. Since $\frac{A}{M_1} <<_\delta \frac{M}{M_1}$, then
$$\varphi(\frac{A}{M_1}) <<_\delta M_2. \quad \text{Since} \quad \varphi(\frac{A}{M_1}) = \{\varphi(a+M_1): a \in A\}$$

$$= \{\varphi((x+Y)+M_1: x \in M_1 \text{ and } y \in (A \cap M_2)\}$$

$$= \{\varphi(x+y)+M_1: x \in M_1, y \in M_2\}$$

$$= \{\varphi(x+y)+M_1: x \in M_1, y \in (A \cap M_2)\} \text{ and } y \in (A \cap M_2) = \{y: y \in (A \cap M_2)\} = A \cap M_2, \text{ then } A \cap M_2 <<_\delta M_2. \quad \text{Let } L = A \cap M_2, \text{ so } A = M_1 \oplus L$$

 $\begin{array}{l} \text{(2)} \Rightarrow \text{(3) Let } A \text{ be a submodule of } M \text{ . By our assumption,} \\ \text{there is a decomposition } M = M_1 \oplus M_2 \text{ such that} \\ M_1 \subseteq A \text{ and } A \cap M_2 <<_\delta M_2 \text{, hence } A \cap M_2 <<_\delta M \text{. By} \\ \text{modular } \text{law} \\ A = A \cap M = A \cap (M_1 \oplus M_2) = M_1 \oplus (A \cap M_2). \text{ Let} \\ L = A \cap M_2. \text{ Thus } A = M_1 \oplus L \text{, where } M_1 \text{ is a direct summand of } M \text{ and } L <<_\delta M. \\ \end{array}$

where M_1 is a direct summand of M and $L \lt \lt_\delta M$.

(3) \Rightarrow (1) Let A be a submodule of M. By (3) A can be written as $A=B\oplus L$, where B is a direct summand of M and $L<<_{\delta}M$. To show that $B\subseteq_{\delta ce}A$ in M, let $\frac{M}{B}=\frac{A}{B}+\frac{X}{B} \text{ where } B\subseteq X \text{ with } \frac{X}{B}\subseteq_{cs}\frac{M}{B}, \text{ then } M=A+X \text{ and hence } M=B+L+X=L+X. \text{ Since } \frac{X}{B}\subseteq_{cs}\frac{M}{B}, \text{ then } X\subseteq_{cs}M, \text{ by (the third isomorphism theorem). But } L<<_{\delta}M, \text{ therefore } M=X \text{ . Thus } M \text{ is } \delta\text{-lifting module.}$

Remark:

Let M be an R-module, then M is δ -lifting if and only if for every submodule A in M there is a decomposition $M=M_1\oplus M_2$ such that $M_1\subseteq A$ and $A\cap M_2<<_\delta M$.

Proposition: 14. [12] Any direct summand of δ -lifting module is δ -lifting.

Theorem: Let M be an R-module, then the following statements are equivalent:

- 1) M is δ -lifting module.
- 2) Every submodule A of M has a δ -supplement B in M such that $A \cap B$ is a direct summand in A.

Volume 14 Issue 9, September 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR25904205628

Impact Factor 2024: 7.101

Fully invariant submodule:

Let M be an R-module. If $M=M_1\oplus M_2$ then $\frac{M}{A}=\frac{A+M_1}{A}\oplus \frac{A+M_2}{A}, \text{ for every fully invariant submodule } A \text{ of } M.$

Proposition: 15. Let M be a δ - lifting module. If A is a fully invariant submodule of M, then $\frac{M}{A}$ is a δ -lifting module.

Proof: let $\frac{X}{A}$ be a submodule of $\frac{M}{A}$. Since M is δ -lifting module, then there exists a direct summand B of M such that $B \subseteq_{\delta ce} X$ in M. So $M = B \oplus B_1$, for some $B_1 \subseteq M$. Since A is a fully invariant submodule of M, then $\frac{M}{A} = \frac{B+B_1}{A} = \frac{B+A}{A} \oplus \frac{B_1+A}{A}$. Now, let $f: \frac{M}{B} \to \frac{M}{B+A}$ be a map defined by f(m+B) = m + (B+A) for all $m \in M$. It is clear that f is an epimorphism. Since $\frac{X}{B} <<_{\delta} \frac{M}{B}$, then $f(\frac{X}{B}) = \frac{X}{B+A} <<_{\delta} \frac{M}{B+A}$, and hence $B+A \subseteq_{\delta ce} X$ in M. Thus $\frac{M}{A}$ is δ -lifting

Lemma: 1. Let M=A+B be a δ -lifting module. If $A\subseteq_{\operatorname{cs}} M$, then there exists a direct summand A of M such that M=A+X and $X\subseteq_{\operatorname{\delta cs}} B$ in M.

Proof: Let A and B be submodules of M such that M = A + B and $A \subseteq_{cs} M$ Since M is δ -lifting, then there exists a direct summand X of M such that $X \subseteq_{\delta cs} B$ in M. Then $\frac{M}{X} = \frac{A + X}{X} \oplus \frac{B}{A}$. Since $A \subseteq_{cs} M$, then $A + X \subseteq_{cs} M$, and hence $\frac{A + X}{X} \subseteq_{ce} \frac{M}{X}$ by (the third isomorphism theorem). But $\frac{B}{X} <<_{\delta} \frac{M}{X}$, therefore $\frac{M}{X} = \frac{A + X}{X}$. Thus M = A + X.

Proposition: 16. Let A and B be sub modules of an R-module M such that $A \subseteq B$. If A is a R-a-small of B, then A is a R-a-small of M.

Proof: Let M = A + X, where X is a submodule of M. By modular law $M = A + B = A + (X \cap B)$. Since A is a R - a-small of B, then $ann(X \cap B) = 0$. Now $(X \cap B) \subseteq X \Rightarrow ann(X \cap B) \supseteq ann(X)$ for this $r \in ann(X) \Rightarrow r.X = 0$. Since $(X \cap B) \subseteq X$ therefore $r.(X \cap B) \Rightarrow r \in ann(A \cap X)$. So ann(X) = 0, thus A is a R - a-small of M.

Proposition: 17. Let A and B be sub modules of an R-module M such that $A \subseteq B$. If B is a R-a-small of M, then A is a R-a-small of M.

Proof: Obvious

Proposition: 18. Let M and N be R - modules and $f: M \to N$ be epimorphism and $B \subseteq N$. If B is a R-a-small of N, then $f^{-1}(B)$ is a R-a-small of M

Proposition:19. Let K and N be submodules of an R-modules of M with $K \subseteq N$. and $\frac{N}{K}$ is a R-a-small of $\frac{M}{K}$. Let $\pi:M \to \frac{M}{K}$ be an natural mapping therefore $\pi^{-1}(\frac{M}{K})$ is a R-a-small in M, but $\pi^{-1}(\frac{N}{K})=N$, then N is a R-a-small of M. Proof: Obvious;

Volume 14 Issue 9, September 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

module.

Impact Factor 2024: 7.101

Proposition: 20. Let M be an R-module and $A \subseteq X \subseteq B \subseteq M$ such that $\frac{\mathbf{B}}{\mathbf{X}}$ is a R-a-small of

$$\frac{M}{X}$$
, then $\frac{B}{A}$ is a $R-a-\text{small of }\frac{M}{A}$.

Proof: Consider the map $f: \frac{M}{A} \to \frac{M}{X}$ defined by f(m+A) = m+X for every $m \in M$, So f is epic. Since

$$f(m+A) = m+X$$
 for every $m \in M$, So f is epic. Since $\frac{B}{X}$ is a $R-a$ -small of $\frac{M}{X}$, therefore $\frac{B}{A} = f^{-1}(\frac{B}{X})$ is

a
$$R-a$$
-small of $\frac{M}{A}$. Thus $\frac{B}{A}$ is a $R-a$ -small of

$$\frac{M}{A}$$
.

Proposition: 21.Let $M=M_1\oplus M_2$ an R- module and let $K_1\subseteq M_1\subseteq M$ and $K_2\subseteq M_2\subseteq M$. If either K_1 is a R-a-small of M_1 or K_2 is a R-a-small of M_2 , then $K_1\oplus K_2$ is a R-a-small of $M_1\oplus M_2$.

Proof: Let K be the R-a-small of M and the projection map $\rho_1: M_1 \oplus M_2 \to M_1$. Since K_1 is a R-a-small of M_1 , then we have $\rho_1^{-1}(K_1) = K_1 \oplus M_1$ is a R-a-small of $M_1 \oplus M_2$. Since $K_1 \oplus K_2 \subseteq M_1 \oplus M_2$, therefore $K_1 \oplus K_2$ is a R-a-small of $M_1 \oplus M_2$.

$$R-a$$
 - small of $\frac{M}{K_1+K_2}$. Then

1)
$$\frac{N_1 + K_2}{K_1}$$
 is a $R - a$ - small of $\frac{\mathbf{M}}{\mathbf{K}_1}$.

2)
$$\frac{K_1 + N_2}{K_2}$$
 is a $R - a$ - small of $\frac{M}{K_2}$.

3)
$$\frac{N_1}{K_1} \oplus \frac{N_2}{K_2}$$
 is a $R-a$ -small of $\frac{M}{K_1} \oplus \frac{M}{K_2}$.

Proof: 1. Consider the maps $\pi_1: \frac{M}{K_1} \to \frac{M}{K_1 + K_2}$ defined

by
$$\pi_1(m+K_1) = (m+K_1+K_2) \quad \forall m \in M \text{ and}$$

$$\pi_2: \frac{M}{K_2} \to \frac{M}{K_1+K_2} \text{ defined}$$
 by

$$\pi_2(m+K_2) = (m+K_1+K_2), \ \forall m \in M. \text{ So } \pi_1 \text{ and } \pi_2$$

are epimorphisms. Therefore $\frac{N_1+K_2}{K_1+K_2}\subseteq \frac{N_1+N_2}{K_1+K_2}$. Since

$$\frac{N_1 + N_2}{K_1 + K_2}$$
 is a $R - a - \text{small}$ of $\frac{M}{K_1 + K_2}$ therefore

$$\frac{N_1 + K_2}{K_1 + K_2}$$
 is a $R - a$ - small of $\frac{M}{K_1 + K_2}$. We have by

previous prop.
$$\frac{N_1 + K_2}{K_1} = \pi_1^{-1} (\frac{N_1 + N_2}{K_1 + K_2})$$
 is a $R - a - a$

small of
$$\frac{M}{K_1}$$
. ..1

small of
$$\frac{\mathbf{M}}{\mathbf{K}_1 + \mathbf{K}_2}$$
 , therefore $\frac{K_1 + N_2}{K_1 + K_2}$ is a $R - a - \text{small}$

of
$$\frac{M}{K_1 + K_2}$$
. We have by previous prop

$$\frac{K_1 + N_2}{K_2} = \pi_2^{-1} \left(\frac{K_1 + N_2}{K_1 + K_2} \right) \text{ is a } R - a - \text{small of } \frac{M}{K_2}.$$

3. From equation (1) we obtain
$$\frac{N_1}{K_1} \oplus \frac{N_2}{K_2}$$
 is a $R-a-a$

small of
$$\frac{M}{K_1} \oplus \frac{M}{K_2}$$
.

Remark: An R- module M is R-a – lifting module if and only if for any sub module N of M there exists a submodule L of M such that $M=L\oplus K$ and $L\cap K<<_a M$. 2. Every R-a – hollow module is R-a – lifting module.

Definition: Hollow R-Annihilator δ -Lifting Modules: An R-module M is called hollow R-annihilator δ -lifting module, if for every submodule K of M with $\frac{M}{K}$ is hollow then there exists a direct summand N of M with $N \leq_{ca} K$ and $\frac{K}{N} <<_{a\delta} \frac{M}{N}$ with ann(K)=0.

Proposition: 22. Let M be an R-module. Let K_1, K_2 be hollow modules and let $M = K_1 \oplus K_2$ be faithful module, then every hollow $R - a - \delta$ - lifting module is $-R - a - \delta$ - lifting module.

Proof: Let M be an R-module. Let N be a sub module of M. Consider the two natural projections $\rho_1:M\to K_1$ and $\rho_2:M\to K_2$.

Impact Factor 2024: 7.101

Case I; If $\rho_1(N) \neq K_1$ and $\rho_2(N) \neq K_2$, we have $\rho_1(N) <<_{a\delta} K_1$ and $\rho_2(N) <<_{a\delta} K_2$. We obtain $\rho_1(N) \oplus \rho_2(N) <<_{a\delta} K_1 \oplus K_2 = M$ [Waren Anderson]. Now we claim that $N \leq \rho_1(N) \oplus \rho_2(N)$, for this let $t \in N$. Then $t \in M = K_1 \oplus K_2$ and hance $t = (t_1, t_2)$ where $t_1 \in K_1$ and $t_2 \in K_2$. Now $\rho_1(t) = \rho_1(t_1, t_2) = t_1$ and $\rho_2(t) = \rho_2(t_1, t_2) = t_2$. Thus $t = (\rho_1(t), \rho_2(t))$ and we obtain $N \leq \rho_1(N) \oplus \rho_2(N)$,

Case II; If $\rho_1(N) = K_1$ and $\rho_1(N) = \rho_1(M)$. This shows $M = N + K_2$ and by second isomorphism theorem $\frac{N + K_2}{N} \cong \frac{K_2}{N \cap K_2}$. Since K_2 is a- δ -hollow module,

hence $N \ll_{a\delta} M$. However, M is faithful thus by

 $N <<_{a\delta} M$. Hence M is $-R - a - \delta$ - lifting module.

then $\frac{K_2}{N \cap K_2}$ is $a\text{-}\delta\text{-hollow}$ module. (every epimorphic

image of a- δ -hollow module is a- δ -hollow). However, M hollow R-a-lifting module, therefore there exists an $R-a-\delta$ - coessential submodule of N in M, which is direct summand of M. Thus M is $R-a-\delta$ -lifting module.

Theorem: 3. Let M be an indecomposable module. The following statements are equivalent.

- (a) M is hollow $R a \delta$ lifting module.
- (b) M is hollow $R-a-\delta$ lifting module but need not be factor module is δ -lifting module.

Proof: \Rightarrow Suppose that M has a hollow factor module. Then there exists a proper sub module N of M such that $\frac{M}{N}$ is δ -Hollow. Since M is hollow $R-a-\delta$ - lifting module there is a direct summand K of M such that $K <<_{aces} N$ of M. However, M is indecomposable module, therefore K=0, hence $N <<_{a\delta} M$. Thus M is hollow $R-a-\delta$ -lifting module.

 \Leftarrow obvious.

Proposition: 23. Let M be hollow $R-a-\delta$ - lifting module. Then every $R-a-\delta$ - coclosed submodule K such that $\frac{M}{K}$ is δ - hollow module is a direct summand of M.

Proof: Let M be hollow $R-a-\delta$ - lifting module and let K be $R-a-\delta$ - coclosed submodule in M such that $\frac{\mathbf{M}}{K}$ is δ -

hollow module. Since M be $R-a-\delta$ - lifting module, then there exists a fully invariant direct summand N of M such that $N <<_{a\delta ac} K$ in M. However, K is $R-a-\delta$ - coclosed submodule in M, so K=N, Thus K is fully invariant direct submodule of M.

Proposition: 24. Let M be an R-module. If M is $R-a-\delta$ -lifting module. Then for every submodule K of M with $\frac{M}{K}$ is δ -hollow module. There exists a submodule X of K such that $M = X + X_1$, $X_1 \subseteq M$ and $A \cap X_1 <<_{a\delta} X_1$.

Proof: Let M be an R-module. Let X be a proper submodule of hollow module M, with $\frac{M}{X}$ is δ -hollow module. Assume that there exists a submodule X of M (where $X \subseteq K$) such that $M = X \oplus X_1$, $X_1 \subseteq_{ace} K$ in M. Now we must show that $A \cap X_1 <_{a\delta} X_1$. For this suppose that $X_1 = A \cap X_1 + L$, where $L \subseteq X_1$. Again we must prove that Ann(L) = 0. By modular law $A = A \cap M = A \cap (X \oplus X_1) = X \oplus (A \cap X_1)$. Since $M = X \oplus X_1$, then $M = X + (A \cap X_1) + L$. Now $\frac{M}{X} = \frac{A}{X} + \frac{L + X}{X}$ and since $X \subseteq_{ace} A$ in M, therefore $Ann(\frac{L + X}{X}) = 0$. To show that Ann(L) = 0, let $r \in Ann(L) \Rightarrow r.L = 0$ and hence r.L + T = T i.e. $r \in Ann(\frac{L + X}{X}) = 0$. Hence $A \cap X_1 <_{a\delta} X_1$.

Corollary: Let M be an R-module. If M is hollow $R-a-\delta$ - lifting module, then for every submodule K of M, with $\frac{M}{K}$ is δ -hollow module, there exists a submodule X of K such that $M=X+X_1, X_1\subseteq M$ and $A\cap X_1<<_{a\delta}M$.

References

- [1] Anderson F. W. and Fuller, K. R. (1992). "Rings and Categories of Modules", Springer-Verlag, New York.
- [2] Amouzegar Kalati, T. and Keskin–Tutuncu, D. (2013). "Annihilator small submodules", Bulletine of the Iranian Mathematical Society, 39(6), 1053-1063.
- [3] Baanoon H. and Khalid W. (2022) "e*-essential submodule" European Journal of Pure and Applied Mathematics, 15 (1) 224-228.
- [4] Goodearl K. R.(1976) "Ring theory, Non-Singular Rings and Modules", Mercel Dekker, New York,].
- [5] H. Al-Hurmuzy and B. AL-Bahrany (2016) "*R-Annihilator-small submodules*", M.sc thesis, College of Science, Baghdad University, Baghdad, Iraq.

Impact Factor 2024: 7.101

- [6] Inas Salman O. and Mukdad Qaess H. (2023) "T-HOLLOW-LIFTING MODULES" International Journal of Applied Sciences and Technology.
- [7] Khawla Ahmed*, Nuhad S. Al. Mothafar (2024) "Pure-Hollow Modules and Pure-Lifting Modules" Iraqi Journal of Science, Vol. 65, No. 3, pp. 1571-1577.
- [8] Kasch, F. (1982) "Modules and Rings", Academic Press, Inc-London.].
- [9] Kosan M. T. (2007) "δ-Lifting and δ-Supplemented Modules", Algebra colloquium, 14 (1)), 53-60.
- [10] Lomp, C. (1996) "On Dual Goldie Dimension", Diploma thesis, University of Glasgow.
- [11] Lomp, C. and E. Büyükasik, (2009) "When δ-Semiperfect Rings are Semiperfect", Turk. J. Math., 33, 1-8.
- [12] N Orhan, D. K. Tutuncu and R Tribak, (2007) "On hollow-lifting modules", Taiwanese J. Math.
- [13] N. Orhan, D. K. Tutuncu and R. Tribak, (2007) "On Hollow Modules", Taiwanese J. Math., 11 (2), 545-568.
- [14] Nicholson, W.K and Zhou, Y., (2011), "Annihilator-small right ideals, algebra" Colloqum, 18(1), 785-800.
- [15] Omar K. Ibrahim and 2Alaa A Elew (2020) "Hollow-R-Annihilator-Lifting Modules" Journal of Physics:1530, 012072.
- [16] Omar K. Ibrahim*, Alaa A. Elewi (2020) "R-annihilator-Coessential and R-annihilator-Coclosed Submodules" Iraqi Journal of Science, Vol. 61, No. 4, pp: 820-823.
- [17] Sahira M Yaseen, (2018) "R- annihilator-hollow and R- annihilator lifting modules", Sci. Int. (Lahore), 30(2), pp 204-207. 11(2), pp 545-568.
- [18] Yousef A. Qasim, Sahira M. Yaseen: (2021) "Annihilator Essential Submodules" 1818 012213 Journal of Physics.
- [19] Zhou, Y.Q. (2000) "Generalizations of Perfect Semiperfect and Semiregular Rings", Algebra Colloge 7, 305-318.