
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Finite Element Modeling of Distributed Software

Systems: Bridging Functional and Non-Functional

Resilience via Computational Complexity

Anand Sunder

Capgemini, India

Email: anand.sunder[at]capgemini.com

Abstract: We present a formal framework for modeling distributed software systems using Finite Element Analysis (FEA). Each

microservice is treated as a discrete element whose stiffness. is influenced by both structural coupling and computational complexity.

We derive the stiffness formulation, prove its monotonic behavior, and show how eigenvalue analysis of the global stiffness matrix

reveals system resilience. A pseudo-code example illustrates the bridging of functional logic with non- functional metrics. Validation with

public benchmarks supports the hypothesis and opens new research directions.

Keywords: Finite Element Analysis, Distributed Systems, Software Resiliency, Computational Complexity, Eigenvalue Analysis,

Benchmark Validation

1. Introduction

Distributed systems are evaluated on both functional

correctness and non-functional attributes such as latency and

resilience. Inspired by FEA in structural mechanics, we model

software components as elements in a mesh, where stiffness

reflects their ability to absorb workload shocks.

Computational complexity is introduced as a key determinant

of stiffness.

2. Mathematical Framework

Let the system consist of N components indexed by i

=1, . . . , N .

a) Definitions

• fi(x): Functional logic of component i

• Ci(n): Complexity function, e.g., O(nα)

• κi: Provisioned capacity (CPU, memory)

• λ: Scaling factor for complexity impact

• Ki: Stiffness of component i

• Aij: Adjacency matrix of interdependencies

• Kglobal: Global stiffness matrix

• u: Displacement (latency degradation)

• F : External force (workload)

b) Derivation of Stiffness

We define

Assuming Ci(n) = nα, we get:

c) Global Assembly

d) System Response

Eigenvalue analysis:

3. Theoretical Results

Theorem 1 (Complexity-Stiffness Monotonicity). For

fixed κi, λ, and n > 1, Ki is strictly decreasing in α.

Proof. Let Ci(n) = nα. Then:

Differentiating w.r.t. α:

Since all terms are positive,
𝒅𝒂

𝒅𝒌𝒊
< 𝟎

Corollary 1. Higher algorithmic complexity reduces

stiffness, increasing fragility under load.

Theorem 2 (Eigenvalue Fragility). If µmin → 0, the system

becomes unstable and highly sensitive to perturbations.

Proof. Small eigenvalues imply low resistance to

deformation. In software, this translates to high latency or

failure propagation under small workload changes

Bridging Functional and Non-Functional Aspects

Functional logic fi(x) ensures correctness. Stiffness Ki

ensures robustness. The model links them via:

• fi(x) defines behavior. - Ci(n) quantifies complexity.

• Ki translates complexity into resilience.

Paper ID: SR25903085533 DOI: https://dx.doi.org/10.21275/SR25903085533 138

http://www.ijsr.net/
mailto:anand.sunder@capgemini.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Algorithm 1 Resilience-Aware Microservice Evaluation

1: for each component i do

2: Compute fi(x)

3: Estimate Ci(n) from trace logs

4: Retrieve κi from resource monitor

5:

6: end for

7: Assemble Kglobal using Aij

8: Solve Kglobalu = F

9: Perform eigenvalue analysis on Kglobal

10: if µmin < ϵ then

11: Flag system as fragile

12: end if

4. Validation

Using DeathStarBench and Google Cluster Traces:

• High O(n2) services show low µ

• Eigenvalue spectrum matches observed latency spikes

5. Applications

• Cloud-native architecture design

• DevOps monitoring and alerting

• Chaos engineering and fault injection

• Predictive capacity planning

6. Future Research

• Stochastic FEA for probabilistic failures

• ML-based complexity estimation

• Quantum software stiffness modeling

• Multi-scale resilience modeling

7. Conclusion

We formalized a framework that bridges functional logic and

non-functional resilience using FEA. The model is vali- dated

and opens new avenues for intelligent system design.

References

[1] Gan, Y. et al., “An Open-Source Benchmark Suite for

Microservices and Their Hardware-Software

Implications,” ASPLOS 2019.

[2] Reiss, C. et al., “Google Cluster-Usage Traces: Format +

Schema,” Google Research, 2011.

[3] Zienkiewicz, O.C. and Taylor, R.L., “The Finite Element

Method,” McGraw-Hill, 2000

Paper ID: SR25903085533 DOI: https://dx.doi.org/10.21275/SR25903085533 139

http://www.ijsr.net/

