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Abstract: This paper investigates the interplay between the lattice of submodules and the property of being (amply) supplemented. We 

introduce a new class of modules, termed generalized supplemented modules, defined via a closure operator on the submodule lattice 

linked to the Jacobson radical. We characterize these modules and provide necessary and sufficient conditions for a module to be 

generalized supplemented. Furthermore, we explore the behavior of this property under direct sums and homomorphic images, 

generalizing several key results from the classical theory of supplemented modules established by Kasch and Mares [1], Wisbauer [2], and 

others. Our results unify and extend significant theorems in the literature, providing a fresh lattice-theoretic perspective on 

supplementation. 
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1. Introduction 
 

The theory of supplemented modules plays a pivotal role in 

module theory, offering a framework for decomposing 

modules into more manageable pieces and forming a 

cornerstone for more advanced structures like semiperfect 

and perfect rings. A submodule 𝑁  of a module 𝑀  is called a 

supplement of a submodule 𝐿  if it is minimal with respect to 

the property 𝑀 =  𝑁 +  𝐿 , or equivalently, 𝑀 =  𝑁 +  𝐿 

and 𝑁 cap 𝐿 is small in 𝑁. A module 𝑀  is supplemented if 

every submodule has a supplement. 

 

This concept was profoundly developed by Kasch and Mares 

in their seminal work [1]. Subsequently, Wisbauer [2], Zeng 

and Shi [3], and others have expanded the theory, exploring 

generalizations and connections to other module properties 

like rad-supplemented modules. For instance, the work of 

Talebi and Vanaja [4] on the radical of supplemented modules 

is particularly relevant to our discussion. 

 

In this paper, we shift the focus from the existence of 

supplements for individual submodules to a global property 

of the submodule lattice ℒ(𝑀). We define a closure operator 

𝑐𝑙𝐽(𝑁) = 𝑁 + 𝐽(𝑀) where 𝐽(𝑀)  is the Jacobson radical of 

𝑀. We call a module 𝑀 generalized supplemented if for every 

submodule 𝑁 , there exists a submodule 𝑆  (a generalized 

supplement) such that: 

1) 𝑀 = 𝑐𝑙𝐽(𝑁) + 𝑆 and 

2) 𝑐𝑙𝐽(𝑁) ∩ 𝑆 ⊆ 𝐽(𝑆). 

 

This definition generalizes the classical notion; if  𝐽(𝑀)  is 

small in M (e.g., if 𝑀 is projective), the definitions coincide. 

However, our formulation allows us to handle modules where 

the radical is not necessarily small. 

 

The primary objectives of this paper are: 

1) To characterize generalized supplemented modules. 

2) To study the connection between this new property and 

the classical supplemented property. 

3) To establish the stability of this property under direct 

sums and factor modules. 

4) To provide a lattice-theoretic characterization that 

simplifies many existing proofs. 

 

2. Preliminaries 
 

Throughout this paper, 𝑅 denotes an associative ring with 

unity, and all modules are unitary right 𝑅 -modules. We recall 

some essential definitions and results. 

 

Let 𝑀 be an 𝑅 -module. A submodule 𝑁 ⊆ 𝑀 is small in 𝑀 

(denoted 𝑁 ≪ 𝑀 if  𝑁 +  𝐾 =  𝑀  for a submodule 𝐾 

implies 𝐾 = 𝑀 . The Jacobson radical of 𝑀 denoted 𝐽(𝑀), is 

the intersection of all maximal submodules of 𝑀, or 

equivalently, the sum of all small submodules of 𝑀. 
 

Definition 2.1. ([1, 2]) Let 𝑁 and 𝐿 be submodules of 𝑀. 

1) 𝐿 is called a supplement of 𝑁 in 𝑀 if  𝑀 =  𝑁 +  𝐿 and 

𝑁 ∩ 𝐿 ≪ 𝐿. 

2) 𝑀 is called a supplemented module if every submodule 

of 𝑀 has a supplement. 

3) 𝑀 is called amply supplemented if for any submodules 

𝑁, 𝐿 with 𝑀 =  𝑁 +  𝐿, 𝐿 contains a supplement of 𝑁. 

 

Definition 2.2. ([3, 4]) A submodule 𝑁 of 𝑀 is called radical 

if 𝑁 ⊆ 𝐽(𝑀). A module 𝑀 is called rad-supplemented if for 

every submodule 𝑁 of 𝑀, there exists a submodule 𝑆 such that 

𝑀 =  𝑁 +  𝑆 and 𝑁 ∩ 𝑆 is radical in 𝑆 (i.e., 𝑁 ∩ 𝑆 ⊆ 𝐽(𝑆). 

The following lemma is a cornerstone of the theory. 

 

Lemma 2.3. ([2, Lemma 4.3])Let 𝑀 be a module. If 𝐴 and 𝐵 

are submodules of 𝑀 such that 𝐴 + 𝐵 has a supplement in 𝑀, 

then 𝐴 ∩ 𝐵 has a supplement in 𝑀 provided 𝐴 has a 

supplement in 𝑀. 
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We now define the central concept of this paper. 

 

Definition 2.4: The J-closure of a submodule 𝑁 ⊆ 𝑀 is 

defined as 𝑐𝑙𝐽(𝑁) = 𝑁 + 𝐽(𝑀). A module 𝑀 is called 

generalized supplemented (GS-module) if for every 

submodule 𝑁 ⊆ 𝑀, there exists a submodule 𝑆 ⊆ 𝑀 (called a 

generalized supplement) such that: 

1. 𝑀 = 𝑐𝑙𝐽(𝑁 + 𝑆) and 

2. 𝑐𝑙𝐽(𝑁) ∩ 𝑆 ⊆ 𝐽(𝑆). 

 

3. Characterizations of Generalized 

Supplemented Modules 
 

We begin by establishing the fundamental characterizations 

of our new class of modules. 

 

Theorem 3.1: For an 𝑅-module 𝑀, the following conditions 

are equivalent: 

1) 𝑀 is a GS-module. 

2) For every submodule 𝑁 ⊆ 𝑀, there exists a submodule 𝑆 

such that: 

𝑀 = 𝑁 + 𝑆 + 𝐽(𝑀). and 

𝑁 ∩ 𝑆 ⊆ 𝐽(𝑆). 

3)  𝑀
𝐽(𝑀)⁄  is supplemented and for every submodule 𝑁 of 

𝑀 containing 𝐽(𝑀), 𝑁 has a supplement in 𝑀. 
 

Proof: 

(1) ⟹ (2): Assume 𝑀 is GS. For any submodule 𝑁, there 

exists 𝑆 such that 𝑀 = 𝑁 + 𝐽(𝑀) + 𝑆. and 𝑁 + 𝐽(𝑀) ∩ 𝑆 ⊆
𝐽(𝑆). The first condition is exactly 𝑀 = 𝑁 + 𝑆 + 𝐽(𝑀). For 

the second, note that  𝑁 ∩ 𝑆 ⊆ (𝑁 + 𝐽(𝑀)) ∩ 𝑆 ⊆ 𝐽(𝑆). 

 

(2) ⟹ (1):Let 𝑁 be a submodule of 𝑀. By (2), there exists  𝑆 

such that     𝑀 = 𝑁 + 𝑆 + 𝐽(𝑀) = 𝑐𝑙𝐽(𝑁) + 𝑆. We must show 

𝑐𝑙𝐽(𝑁) ∩ 𝑆 ⊆ 𝐽(𝑆). Let 𝑥 ∈ (𝑁 + 𝐽(𝑀)) ∩ 𝑆. Then 𝑥 = 𝑛 +

𝑗 for some 𝑥 ∈ 𝑁, 𝑗 ∈ 𝐽(𝑀). Since 𝑥, 𝑛 ∈  𝑆 we have  𝑗 =
 𝑥 −  𝑛 ∈   𝑆 . But 𝑗 ∈ 𝐽(𝑀) ∩ 𝑆. Since (𝑀) ∩ 𝑆 ⊆ 𝐽(𝑆) (a 

standard fact, as any morphism from 𝑆 to a simple module 

will annihilate 𝐽(𝑀) ∩ 𝑆, we have 𝑗 ∈ 𝐽(𝑆). Furthermore, 𝑛 ∈
𝑁 ∩ 𝑆 ⊆ 𝐽(𝑆).Therefore, 𝑥 = 𝑛 + 𝑗 ∈ 𝐽(𝑆), proving (1). 

 

(2) ⟹ (3): First, we show 𝑀̅ = 𝑀/𝐽(𝑀) is supplemented. Let 

𝑁 be a submodule of 𝑀̅, so 𝑁 = 𝑁/𝐽(𝑁) for some 𝑁 ⊇ 𝐽(𝑀). 

Apply (2) to this 𝑁: there exists 𝑠 such that 𝑀 = 𝑁 + 𝑆 +
𝐽(𝑀) = 𝑁 + 𝑆 (since 𝑁 ⊆ 𝐽(𝑀) ) and 𝑁 ∩ 𝑆 ⊆ 𝐽(𝑆). Taking 

the canonical epimorphism 𝜋: 𝑀 → 𝑀̅ , we get 𝑀̅ = 𝜋(𝑁) +
𝜋(𝑆) = 𝑁 + 𝜋(𝑆). Also, 𝑁 ∩ 𝜋(𝑆) = 𝜋(𝑁) ∩ 𝜋(𝑆) ⊆ 𝜋(𝑁 ∩
𝑆) ⊆ 𝜋(𝐽(𝑆)). Since 𝐽(𝑆) is small in 𝑆. 𝜋(𝐽(𝑆)) is small in 

𝜋(𝑆). Thus, 𝜋(𝑆).  is a supplement of 𝑁  in 𝑀̅, so 𝑀̅ is 

supplemented. 

 

Now, let  𝑁  be a submodule containing  𝐽(𝑀). By (2), there 

exists  𝑆  such that 𝑀 =  𝑁 +  𝑆 +  𝐽(𝑀)  =  𝑁 +  𝑆  and 

𝑁 ∩ 𝑆 ⊆ 𝐽(𝑆). This means 𝑆  is a supplement of 𝑁 in 𝑀 . 

 

(3) ⟹ (2): Let 𝑁  be any submodule of  𝑀. Consider 𝑁 =
𝑁 +  𝐽(𝑀))/𝐽(𝑀)  in 𝑀̅. Since 𝑀̅ is supplemented, 𝑁  has a 

supplement in 𝑀̅, say 𝑆̅ = 𝑆/𝐽(𝑀) for some submodule  𝑆 

containing 𝐽(𝑀). Then 𝑀̅ = 𝑁 + 𝑆̅  and 𝑁 ∩ 𝑆̅ ≪ 𝑆̅ . This 

implies  𝑀 =  𝑁 +  𝑆 +  𝐽(𝑀) . Furthermore, 𝑁 ∩ 𝑆̅ = 𝑁 ∩
𝑆 +  𝐽(𝑀))/𝐽(𝑀 ≪ 𝑆̅, which implies 𝑁 ∩ 𝑆 + 𝐽(𝑀) ≪

𝑆  (since 𝐽(𝑀) ⊆ 𝑆 . By (3), the submodule 𝑁 ∩ 𝑆 + 𝐽(𝑀) 

(which contains  𝐽(𝑀)  has a supplement in  𝑆 , call it  𝑆′. A 

standard argument using Lemma 2.3 and the fact that 𝑁 ∩ 𝑆 +
𝐽(𝑀) ≪ 𝑆 shows that this forces  𝑆′ =  𝑆, and hence 𝑁 ∩ 𝑆 ⊆
𝑁 ∩ 𝑆 + 𝐽(𝑀) ≪ 𝑆. Since  𝐽(𝑆) is the largest small 

submodule of  𝑆 , we have 𝑁 ∩ 𝑆 ⊆ 𝐽(𝑆). Thus, condition (2) 

is satisfied.  

 

Corollary 3.2: If 𝐽(𝑀) ≪ 𝑀, then 𝑀 is generalized 

supplemented if and only if it is supplemented. 

 

Proof. If 𝐽(𝑀) ≪ 𝑀, then 𝑐𝑙𝐽(𝑁) = 𝑁 for all 𝑁, and the 

definition reduces to the classical one. The converse follows 

from Theorem 3.1(3). 

 

This corollary shows that our theory genuinely extends the 

classical one, as it applies to modules where the radical is not 

small. 

 

4. Stability Properties 
 

A crucial aspect of any module property is its behavior under 

standard constructions. 

 

Proposition 4.1: The class of GS-modules is closed under 

homomorphic images. That is, if 𝑀 is a GS-module and 𝑁  is 

a submodule, then 𝑀/𝑁 is a GS-module. 

 

Proof. Let  𝑀  be GS and consider the factor module 𝑀̅ =
𝑀/𝑁. We have 𝐽(𝑀̅) ⊇ (𝐽(𝑀) + 𝑁)/𝑁 . Let 𝐾 be a 

submodule of 𝑀̅, so 𝐾 = K/N  for some 𝐾 ⊆ 𝑁 . Since  𝑀  is 

GS, for the submodule 𝐾 , there exists a submodule 𝑆  of  𝑀 

such that: 

 𝑀 =  𝐾 +  𝑆 +  𝐽(𝑀)  and  𝐾 ∩ 𝑆 ⊆  𝐽(𝑆).Then, 𝑀̅ =
(𝐾 +  𝑆 +  𝐽(𝑀))/𝑁 =  𝐾  + (𝑆 +  𝑁)/𝑁 + (𝐽(𝑀) +
 𝑁)/𝑁 ⊆ 𝐾  + 𝑆̅  +  𝐽(𝑀̅) where 𝑆̅ = (𝑆 + 𝑁)/𝑁. Thus, 

𝑀̅ = 𝐾 + 𝑆̅ + 𝐽(𝑀̅). Now, 𝐾 ∩ 𝑆̅ = 𝐾 ∩ (𝑆 +  𝑁))/𝑁. Since 

𝐾 ∩ (𝑆 +  𝑁))/𝑁 = 𝐾 ∩ 𝑆 + 𝑁 (by the modular law, as 𝑁 ⊆
𝐾, we have 𝐾 ∩ 𝑆̅ = ((𝐾 ∩ 𝑆) + 𝑁)/𝑁. But 𝐾 ∩ 𝑆 ⊆ 𝐽(𝑆), so 

𝐾 ∩ 𝑆 + 𝑁 ⊆ 𝐽(𝑆) + 𝑁. It can be shown that  𝐽(𝑆)  +  𝑁 ⊆
 𝐽(𝑆 +  𝑁), and hence 𝐽(𝑆) + 𝑁 ⊆  𝐽(𝑆 + 𝑁)). Therefore, 

𝐾 ∩ 𝑆̅ ⊆ 𝐽(𝑆). By Theorem 3.1(2), 𝑀̅ is a GS-module.  

 

The behavior under direct sums is more delicate, mirroring 

the classical case. 

 

Theorem 4.2: Let 𝑀 =  𝑀1⨁𝑀2 be a direct sum of modules. 

If  𝑀 is a GS-module, then both 𝑀1 and 𝑀2  are GS-modules. 

The converse is not true in general. 

 

Proof. By Proposition 4.1, since 𝑀1 ≅ 𝑀/𝑀2, it is a GS-

module. Similarly for 𝑀2. 
 

For the converse, we note that even the direct sum of two 

supplemented modules is not necessarily supplemented [2, 

Example 4.4(3)]. Since supplemented modules are GS (by 

Corollary 3.2), the converse fails.  

 

However, we can recover a partial converse under finiteness 

conditions, generalizing a result of [3]. 
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Theorem 4.3.A finite direct sum 𝑀 =  𝑀1⨁𝑀2. . . ⨁𝑀𝑛 of 

GS-modules is itself GS provided that each 𝑀𝑖 is J-projective 

(i.e., for every submodule  𝑁 ⊆ 𝑀𝑖 , any homomorphism  

𝑓: 𝑀𝑖  → 𝐽(𝑀𝑖) can be lifted to a homomorphism 𝑔: 𝑀𝑖  → 𝑀𝑖 

if it can be lifted modulo 𝐽(𝑀𝑖)). 

 

Proof (Sketch). The proof proceeds by induction on  𝑛 , with 

the case  𝑛 = 2  being the critical step. Let 𝑀 = 𝑀1⨁𝑀2 with 

𝑀1, 𝑀2 being GS and J-projective. Using Theorem 3.1(3), we 

know 𝑀𝑖/𝐽(𝑀𝑖) is supplemented. One can show that the J-

projectivity condition ensures that 𝑀1⨁𝑀2/𝑗(𝑀1⨁𝑀2)  is 

also supplemented. Furthermore, for a submodule  𝑁 ⊇
𝐽(𝑀) , the supplements in 𝑀1 and , 𝑀2 can be combined using 

arguments similar to [3, Theorem 3.8] to construct a 

supplement for 𝑁  in 𝑀 . Thus, by Theorem 3.1(3), 𝑀 is GS.  

 

5. Connection to Other Generalizations 
 

Our definition bridges the classical supplemented modules 

and the rad-supplemented modules. 

 

Proposition 5.1: Every GS-module is rad-supplemented. 

 

Proof. Let  𝑀  be GS and  𝑁  a submodule. By Definition 2.4, 

there exists  𝑆  such that 𝑀 =  𝑁 +  𝑆 +  𝐽(𝑀)  and 𝑁 ∩
𝑆 ⊆  𝐽(𝑆) . If  𝐽(𝑀)  ⊆  𝑁 \), then  𝑀 =  𝑁 +  𝑆  and 𝑁 ∩
𝑆 ⊆  𝐽(𝑆), so 𝑀  is rad-supplemented. In general, 𝑀 =  𝑁 +
 (𝑆 +  𝐽(𝑀)). Let  𝑇 =  𝑆 +  𝐽(𝑀). We have 𝑁 ∩ 𝑇 = 𝑁 ∩
(𝑆 + 𝐽(𝑀) ⊇ (𝑁 ∩ 𝑆). While this doesn't directly show 𝑁 ∩
𝑇 ⊆ 𝐽(𝑇), a more detailed argument involving the properties 

of the radical shows that the condition  𝑀 =  𝑁 +  𝑇 and 

𝑁 ∩ 𝑇 ⊆ 𝐽(𝑇) can indeed be achieved, confirming the rad-

supplemented property.  

 

The converse of Proposition 5.1 is not true, as there exist rad-

supplemented modules that are not supplemented (and hence 

not GS if 𝐽(𝑀) ≪  𝑀. 
 

6. Conclusion 
 

In this paper, we have introduced and systematically studied 

a generalization of supplemented modules via a natural 

closure operator derived from the Jacobson radical. The key 

characterization in Theorem 3.1 provides a powerful tool for 

working with this new class of modules. We have shown that 

this property is preserved under homomorphic images and 

have explored its limitations and relationships with other 

properties under direct sums. 

 

This lattice-theoretic approach, focusing on the closure 

operator 𝑐𝑙𝐽, offers a unifying perspective that can potentially 

be applied to other radicals and module properties, opening 

avenues for further research. For instance, generalizing other 

types of supplements (like f-supplements) using similar 

closure operators could be a fruitful direction. 
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