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Abstract: Recommendation systems help users navigate vast item catalogs, yet traditional collaborative- and content-based filtering 

suffer from data-sparsity, cold-start issues, and limited ability to model complex user item relationships. To overcome these challenges, we 

present a unified hybrid pipeline that first partitions the item space with k-means clustering, then employs a deep neural network for 

feature extraction and cluster selection, refines selections through a Restricted Boltzmann Machine, and finally delivers item suggestions 

using k-Nearest Neighbors. Experiments on the Kaggle Spotify dataset after z-score normalization and SMOTE-based class-balancing 

show that our deep network attains an average F1-score of 0.97, RBM refinement boosts within-cluster accuracy, and the final k-NN stage 

yields superior Precision, Recall, NDCG, and MAP compared with baseline collaborative-filtering and matrix-factorization models. These 

results demonstrate that orchestrating complementary algorithms in a multi-stage workflow produces robust, scalable, and highly accurate 

recommendations suitable for real-world deployment. 
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1. Introduction 

 
Recommendation systems have become indispensable for 

digital platforms, powering personalized experiences across 

domains such as e-commerce, streaming services, and social 

media. These systems assist users in discovering relevant 

items from extensive catalogs, thereby enhancing user 

satisfaction and platform engagement. Traditional 

recommendation approaches, including collaborative filtering 

[17] and content-based filtering [18], have been widely 

adopted due to their simplicity and effectiveness.[16] 

However, these methods often struggle with challenges such 

as data sparsity, the cold start problem, and an inability to 

capture complex user-item relationships. 

 

Collaborative filtering, one of the most popular 

recommendation techniques, relies on user-item interaction 

data to infer preferences [16]. However, its effectiveness 

diminishes in cases of sparse data or new users and items with 

no prior interactions, known as the cold start problem. 

Content-based filtering, on the other hand, utilizes item 

attributes to recommend similar items to those a user has 

engaged with [18]. While this approach alleviates some 

limitations of collaborative filtering, it often fails to 

generalize beyond the user's existing preferences, leading to 

limited diversity in recommendations. 

 

Hybrid recommendation systems, which combine multiple 

techniques, have emerged as a promising solution to address 

these challenges. For example, matrix factorization 

techniques, such as Singular Value Decomposition (SVD), 

paired with deep learning models, have demonstrated 

improved accuracy in capturing latent user-item interactions 

[19][20]. Clustering-based methods, like k-means, have also 

been employed to group items or users into clusters, 

enhancing scalability and reducing computational 

complexity. Despite these advances, many existing hybrid 

models focus on integrating only a few components, leaving 

untapped potential for combining diverse algorithms in a 

cohesive pipeline. 

 

In this paper, we propose a novel hybrid recommendation 

system that integrates k-means clustering, deep neural 

networks (DNNs), Restricted Boltzmann Machines (RBMs), 

and k-Nearest Neighbors (k-NN) into a multi-stage pipeline. 

Our approach leverages the unique strengths of each 

algorithm to address the limitations of traditional and hybrid 

systems. K-means clustering is employed to partition the item 

space into cohesive groups, reducing the search space and 

improving computational efficiency. DNNs are used to 

perform feature extraction and classification, achieving high 

accuracy in selecting the most relevant clusters. RBMs further 

refine the selection process by probabilistically modeling 

intricate dependencies within the chosen clusters. Finally, k-

NN generates precise and personalized recommendations by 

identifying similar items within the refined cluster. 

 

To evaluate the effectiveness of our system, we use the 

Spotify dataset from Kaggle, which contains a diverse 

collection of music tracks enriched with audio features. 

Addressing class imbalance, we employ the Synthetic 

Minority Over-sampling Technique (SMOTE) [21] to 

balance the data distribution before training. Data 

normalization is also applied to ensure effective convergence 

of the learning algorithms. Our results demonstrate 

significant improvements in key performance metrics, 

including precision, recall, F1-score, Normalized Discounted 

Cumulative Gain (NDCG), and Mean Average Precision 

(MAP), compared to baseline methods such as collaborative 

filtering and matrix factorization. 

 

This paper contributes to the field by demonstrating the value 

of combining diverse algorithms in a structured, multi-stage 
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pipeline. The proposed system not only achieves high 

recommendation accuracy but also addresses critical 

challenges like data sparsity and cold start, paving the way for 

robust and scalable recommendation systems in various 

domains. 

 

1.1 K-Means Clustering 

 

K-means clustering is one of the simplest yet most widely 

used unsupervised learning algorithms for grouping similar 

data points into clusters. The algorithm divides a set of n data 

points into k non-overlapping clusters, where each data point 

belongs to the cluster with the nearest centroid. The basic goal 

is to minimize the within-cluster sum of squares (WCSS), 

which is the sum of squared Euclidean distances between 

each point and its cluster's centroid. 

 

Mathematical Formulation: 

 

The K-means algorithm works by iteratively optimizing an 

objective function that measures the compactness of clusters. 

The objective function is: 

 

, 
 

where: 

• k is the number of clusters, 

• Ci is the set of points assigned to cluster i, 

•  is the centroid of cluster i, 

• x is a data point. 

 

The K-means algorithm proceeds as follows: 

1) Initialization: Randomly initialize k centroids. 

2) Assignment Step: Assign each data point to the nearest 

centroid, forming clusters. 

3) Update Step: Recompute the centroids of each cluster 

based on the mean of the points in the cluster. 

4) Convergence: Repeat steps 2 and 3 until the centroids no 

longer change significantly, signaling convergence. 

 

While K-means is computationally efficient and simple to 

implement, it has some limitations: 

• It requires specifying k in advance. 

• It can get stuck in local minima depending on the initial 

centroid positions. 

• It assumes clusters to be spherical and of equal size, which 

may not always be the case. 

 

In recommendation systems, K-means is often used for 

preprocessing to reduce the dimensionality and complexity of 

the data. By grouping users or items into clusters, it becomes 

easier to perform subsequent tasks like predicting ratings or 

suggesting new items. For example, grouping users with 

similar preferences can help in collaborative filtering by 

identifying shared preferences between clusters. 

 

K-means clustering has been extensively used in 

recommendation systems for various preprocessing and 

grouping tasks: 

1) User Segmentation: By clustering users based on their 

preferences or behavioral data (e.g., purchase history, 

clickstream data), K-means helps in creating segments of 

users with similar interests. This segmentation aids in 

personalized recommendations for groups of users rather 

than individuals, improving scalability [17]. 

2) Item Clustering: Similarly, K-means can cluster items 

based on their features (e.g., genre, price range, or 

attributes) to recommend similar items to users. For 

example, if a user interacts with an item from a specific 

cluster, other items from the same cluster can be 

suggested. 

3) Cold-Start Problem: In situations where new users or 

items lack sufficient interaction data, clustering can help 

provide recommendations based on their similarity to 

existing clusters. New users can be assigned to clusters 

based on demographic or initial interaction data, and 

recommendations can be drawn from the cluster's 

common preferences. 

4) Dimensionality Reduction: High-dimensional datasets in 

recommendation systems (e.g., user-item interaction 

matrices) can be simplified by grouping similar users or 

items into clusters. This reduces the computational 

complexity of collaborative filtering methods, as 

predictions can be made at the cluster level instead of the 

individual level. 
 

1.2 Deep Neural Network (DNNs) 

 

Deep Neural Networks (DNNs) have revolutionized machine 

learning and recommendation systems by enabling the 

extraction of complex features and modeling intricate 

relationships between users and items. A DNN consists of 

multiple layers of interconnected neurons that can learn non-

linear mappings from inputs to outputs. In recommendation 

systems, DNNs are often used for predicting user preferences 

by capturing latent features through a process of hierarchical 

learning. 

 

The loss function used in a typical DNN is cross-entropy loss, 

which measures the difference between the true and predicted 

class probabilities. The formula for cross-entropy loss is: 

 

, 

where: 

• N is the number of samples, 

• C is the number of classes (clusters or ratings), 

•  is the true label, 

•   is the predicted probability. 

 

The training of a DNN involves the backpropagation 

algorithm, which computes gradients and updates the weights 

to minimize the loss function. DNNs can learn complex user-

item interactions, making them effective in collaborative 

filtering, where the goal is to predict user preferences based 

on historical interactions.  

 

One common application of DNNs in recommendation 

systems is Neural Collaborative Filtering (NCF), where a 

DNN is used to model the interaction between users and 

items. In this framework, the user and item embeddings are 

learned through the network layers, allowing the model to 

capture intricate user-item relationships that traditional 

methods may miss. Key applications include: 
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1) Neural Collaborative Filtering (NCF): NCF 

frameworks, such as Neural Matrix Factorization 

(NeuMF), utilize DNNs to model user-item interactions. 

Instead of relying solely on traditional latent factor 

models, NCF combines user and item embeddings with 

non-linear transformations in a neural network to capture 

complex and non-linear relationships [20]. 

2) Content-Based Recommendations: DNNs are widely 

used in content-based recommendation systems for 

learning representations from high-dimensional data like 

text, images, and audio. For instance, Convolutional 

Neural Networks (CNNs) can extract features from 

images for item recommendations, while Recurrent 

Neural Networks (RNNs) can be applied to sequence-

based recommendations, such as predicting the next item 

a user will interact with. 

 

1.3 Restricted Boltzman Machines (RBMs): 

 

Restricted Boltzmann Machines (RBMs) are generative 

stochastic neural networks used for dimensionality reduction, 

feature learning, and collaborative filtering in 

recommendation systems. An RBM consists of two layers: a 

visible layer v that represents the observed data, and a hidden 

layer h that represents the latent features. The layers are fully 

connected, but there are no connections within each layer, 

making it "restricted." 

 

The energy function for an RBM is defined as: 

, 

where: 

•  and  represent the visible and hidden layer units, 

•  and  are the biases for the visible and hidden layers, 

•   represents the weights between visible and hidden 

units. 

 

The probability of a visible vector v is given by: 

 
where Z is the partition function that ensures the probabilities 

sum to one. 

 

RBMs are trained using contrastive divergence, which 

approximates the gradients for updating weights. The hidden 

layer learns to capture dependencies between visible 

variables, making RBMs particularly useful in collaborative 

filtering, where the visible layer represents user-item 

interactions, and the hidden layer captures latent features such 

as user preferences. 

 

In recommendation systems, RBMs can be used to model 

user-item interactions and recommend items based on learned 

patterns. They are often used in hybrid systems where their 

generative nature complements other algorithms like matrix 

factorization or collaborative filtering. Some of their notable 

applications in recommendation systems include: 

1) Collaborative Filtering: RBMs have been successfully 

used in collaborative filtering tasks, where the visible 

layer represents user-item interaction matrices, and the 

hidden layer captures latent features. By reconstructing 

the input data, RBMs can predict missing values, such as 

unobserved user ratings. [24] 

2) Hybrid Systems: RBMs are often integrated into hybrid 

recommendation systems to complement other 

algorithms like matrix factorization. Their generative 

nature helps to learn complex distributions in user 

preferences, which can be used alongside discriminative 

methods for better predictions. [25] 

3) Dimensionality Reduction for Sparse Data: RBMs are 

effective for handling sparse and high-dimensional data, 

making them a good fit for recommendation systems 

where user-item interaction matrices are often 

incomplete and sparse. RBMs reduce the dimensionality 

of the data while preserving important patterns, 

improving computational efficiency and accuracy. [26] 

 

1.4 k-Nearest Neighbors (k-NNs) 

 

k-Nearest Neighbors (k-NN) is a simple and intuitive 

algorithm used for classification and regression tasks. In the 

context of recommendation systems, k-NN is used to identify 

items or users that are similar based on a distance metric, 

typically Euclidean distance. The k-NN algorithm works by 

finding the k nearest neighbors to a given data point and using 

the neighbors' characteristics to predict the target value. 

 

The distance between two points x and y in a d-dimensional 

space is computed as: 

, 

where  and  are the features of the points x and y, 

respectively. 

 

In recommendation systems, k-NN can be used for both user-

based and item-based collaborative filtering. In user-based 

filtering, recommendations are made by finding users who are 

similar to the target user and suggesting items that they have 

rated highly. In item-based filtering, recommendations are 

made by finding items similar to the target item and 

suggesting those to the user. 

 

1.5 Hybrid approach 

 

The integration of multiple algorithms into a hybrid system 

has proven effective in overcoming the limitations of 

individual techniques. Hybrid approaches combine different 

algorithms to leverage their complementary strengths. For 

example, combining collaborative filtering with content-

based methods can help address the cold-start problem, where 

there is insufficient user-item interaction data. 

In recommendation systems, hybrid methods can take various 

forms: 

• Weighted Hybrid: Different algorithms are combined by 

giving each one a weight. The final recommendation is 

based on a weighted average of the predictions from each 

algorithm. 

• Switching Hybrid: The system switches between different 

algorithms depending on the context. For example, a 

content-based approach may be used for new items, while 

collaborative filtering is used for mature items with 

sufficient interaction data. 

• Cascade Hybrid: One algorithm is used to filter out 

irrelevant items, and another algorithm is used for ranking 

the remaining items. 
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The remainder of this paper is organized as follows. Section 

2 surveys the relevant literature on traditional, deep-learning, 

and hybrid recommendation techniques. Section 3 details our 

proposed multi-stage pipeline, including data preprocessing 

(3.1), k-means clustering (3.2), deep-neural-network cluster 

selection (3.3), Restricted Boltzmann Machine refinement 

(3.4), and k-Nearest-Neighbor recommendation generation 

(3.5). Section 4 describes the experimental setup, reports the 

results on the Kaggle Spotify dataset, and discusses 

comparative performance against baseline models. Finally, 

Section 5 concludes the study and outlines avenues for future 

research. 
 

2. Related Work 
 

2.1 Clustering-Based Recommendation Approaches 

 

Partitioning users or items into coherent groups is a proven 

way to cut computation and ease sparsity. Das et al. 

introduced a scalable clustering framework that reduced 

collaborative-filtering (CF) runtime by up to 90 % on 

MovieLens-20M while keeping accuracy stable [1]. Building 

on that idea, Zhang et al. proposed KUR-CF, an enhanced K-

means algorithm that weights user-attribute variance before 

similarity calculation; KUR-CF improved precision and 

recall by 60 % and 35 %, respectively, over vanilla CF on 

MovieLens-1M [2]. To tackle cold-start users and items, 

Panyatip et al. combined fuzzy c-means (FCM) clustering 

with item-based k-nearest neighbors (k-NN), achieving ≈85 

% precision for new users and 87 % for new items [3]. A 

graph-driven alternative, Darban and Valipour’s GHRS, 

first extracts auto-encoded features, then clusters users to 

boost cold-start accuracy and outperforms standard hybrids 

on the same benchmark [4]. The main strength of clustering 

is lower time/space cost and better sparsity handling, though 

cluster granularity and boundary overlap remain open issues. 
 

2.2 Neighborhood-Based Collaborative Filtering (k-NN) 

 

Although k-NN CF is simple and explainable, it falters with 

sparse data and new entities. Behera et al. mitigated sparsity 

by weighting a content-based KNN with an RBM predictor, 

yielding notably higher precision than either method alone 

[5]. To alleviate the new-user problem, Latrech et al. 

appended a deep demographic-filtering stage (CoDFi-DL) 

ahead of neighborhood CF, cutting RMSE to 0.571 on ML-

1M [6]. Nguyen et al. made similarity adaptive by injecting 

user-cognition factors after initial clustering, which lifted 

MAP and NDCG versus baseline KNN [7]. Finally, Li et al. 

filled missing ratings with KNN, then trained XGBoost for 

the final prediction; this two-step hybrid lowered MAE and 

avoided local optima [8]. In short, modern work treats k-NN 

as a lightweight module inside richer hybrids to balance 

transparency with accuracy. 
 

2.2 Deep-Learning and Hybrid Models 

 

Deep neural networks (DNNs) learn non-linear interactions 

and latent factors that classic CF cannot capture. A recent 

survey by Gheewala et al. confirms that DNNs now dominate 

state-of-the-art ranking and prediction tasks, especially when 

fused with other techniques [9]. Sami et al. embedded a 

multilayer NCF block, a sequence-aware RNN, and content-

based filtering into a single hybrid (HRS-IU-DL); it achieved 

the best RMSE and F1 on MovieLens-100K among all 

contenders [10]. Addressing sparsity and cold start, Heidari 

et al. introduced ADLRS, an attention-based model that 

merges review-text embeddings with matrix factorization, 

outperforming MF on sparse sets [11]. For rich content 

scenarios, Chetana et al. used an improved DenseNet to mine 

movie metadata; their class-balanced loss trimmed RMSE by 

5–10 % and raised F1 by ~2 % [12]. A neural-plus-traditional 

blend by Sharma and Shakya combined SVD++, self-

organizing clustering, and an ANN, yielding higher recall 

than single-model baselines [13]. These studies prove that 

deep components boost accuracy and diversity, but introduce 

training cost and interpretability hurdles. 
 

2.3 RBM-Based Collaborative Filtering 

 

Restricted Boltzmann Machines (RBMs) still attract interest 

when enriched with side information. The hybrid of Behera 

et al. (content-KNN + RBM) illustrates how probabilistic 

modeling plus content features beat pure RBM or KNN [5]. 

Wu et al. coupled a Gaussian RBM with a CNN that embeds 

review text; the merged visible layer improved rating-

prediction accuracy and demonstrated feasibility for text-

aware CF [14]. While RBMs capture binary/implicit feedback 

well, they are training-intensive and sensitive to hyper-

parameters; therefore, most recent systems deploy them only 

as sub-modules inside broader hybrids. 
 

2.4 Summary and Challenges 

 

Recent literature (2021–2025) converges on hybrid 

recommender systems that orchestrate clustering, 

neighborhood CF, deep learning, and probabilistic models to 

tackle data sparsity, cold start, scalability, and accuracy in 

unison. Clustering cuts complexity; k-NN offers 

transparency; DNNs and RBMs learn rich latent factors; their 

combination consistently outperforms individual methods. 

Remaining issues include model interpretability, hyper-

parameter tuning, and the engineering overhead of 

maintaining multi-component pipelines. Nevertheless, 

systematic reviews confirm hybrids as the most promising 

path forward [15]. 

 

3. Methodology 
 

This section elaborates on the proposed hybrid model, the 

data preprocessing steps, the architecture of the pipeline, and 

the mathematical formulations underpinning the 

methodology. The hybrid approach integrates k-Means 

clustering, Deep Neural Networks (DNNs), Restricted 

Boltzmann Machines (RBMs), and k-Nearest Neighbors (k-

NN) into a cohesive framework to enhance recommendation 

accuracy and scalability. 

 

3.1 Hybrid Model Architecture 

 

The proposed hybrid recommendation system leverages the 

strengths of multiple algorithms to enhance both the accuracy 

and scalability of the recommendations. The approach 

follows a multi-step pipeline, beginning with k-Means 

clustering, which segments the dataset into clusters of similar 

user-item interactions. This clustering step reduces 
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complexity by allowing the model to apply tailored 

techniques to each distinct group. 
 

After clustering, Deep Neural Networks (DNNs) are 

employed to model the non-linear relationships between users 

and items within each cluster. The DNN is trained on the 

cluster-specific data, enabling the system to capture complex 

patterns and provide personalized recommendations based on 

the unique characteristics of each cluster. 
 

Next, Restricted Boltzmann Machines (RBMs) are utilized 

to identify latent factors and learn probabilistic dependencies 

between users and items. The RBM provides a powerful 

method for discovering hidden structures in the data, allowing 

the system to generalize better to unseen interactions. This 

step enhances the model’s ability to capture joint distributions 

of user and item features, further improving recommendation 

quality. 

Finally, the system employs k-Nearest Neighbors (k-NN) to 

refine the recommendations. k-NN is used to identify the most 

similar users or items based on their learned feature 

representations. By measuring the proximity of feature 

vectors in the learned space, the k-NN algorithm ensures that 

the most relevant items are recommended, leveraging the 

similarities between users and items within the feature space. 
 

This hybrid approach, combining k-Means clustering, DNNs, 

RBMs, and k-NN, ensures that the recommendation system is 

both scalable and accurate, capturing complex relationships 

within the data while providing personalized, high-quality 

recommendations. 
 
Pseudo-code for the proposed algorithm: 
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Explanation: 

• Step 1: The dataset is clustered using k-means, and the 

cluster labels are stored. 

• Step 2: A DNN is used for content-based 

recommendations by predicting clusters with a softmax 

activation function. 

• Step 3: An RBM is used to predict clusters based on 

collaborative filtering (user behavior). 

• Step 4: The common clusters from both DNN and RBM 

predictions are removed. 

• Step 5: Data related to the remaining clusters is filtered. 

• Step 6: A k-NN model is trained on the filtered data, and 

the most relevant record is returned as the 

recommendation. 

 

3.2 Data Preprocessing and Pipeline Architecture 

 

Data preprocessing begins with encoding categorical features. 

LabelEncoder from scikit-learn is employed to encode user, 

artist, track, and playlist identifiers into numerical values, as 

these columns are critical for building user-item interactions. 

The transformed features are stored in new columns, ensuring 

that all categorical variables are appropriately represented for 

model training. 

 
Once the data is encoded, it undergoes normalization using 

MinMaxScaler and StandardScaler. The MinMaxScaler 

normalizes the encoded values of categorical features to a 

range between 0 and 1, which is critical for machine learning 

models to function optimally. The StandardScaler is then used 

to standardize continuous features to have zero mean and unit 

variance, ensuring that the models do not bias toward 

variables with higher magnitudes. 
After preprocessing, the dataset is split into training and 

testing sets using an 80-20 ratio. The features used for 

training are the normalized and encoded columns, while the 

target variable is the cluster label. To ensure balanced class 

distribution, the split uses stratification. 

 
Since the target is a cluster label, one-hot encoding is applied 

to both the training and testing labels, converting them into 

categorical vectors suitable for training neural networks. 
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3.3 Experiments and Implementation Details 

 

This section presents the experiments conducted to evaluate 

the performance of the proposed hybrid recommendation 

model. We describe the datasets used, the evaluation metrics 

for measuring success, the baseline models chosen for 

comparison, and the environment in which the experiments 

were implemented. 

 

3.3.1 Dataset 

The dataset used in this study is the Spotify dataset from 

Kaggle. The dataset contains four key features: user_id, 

artist_name, track_name, and playlist_name. These 

features represent the user-item interactions, where each entry 

corresponds to a specific user’s interaction with an artist, 

track, or playlist. The dataset was selected due to its rich 

representation of user preferences and the variety of 

interactions between users and music tracks. It is a widely 

used dataset in recommendation system research and provides 

an excellent basis for evaluating the effectiveness of 

collaborative filtering techniques. 

 

The chosen dataset is ideal for evaluating the proposed hybrid 

recommendation model because of its complexity and 

relevance to real-world recommendation systems, where user 

preferences and item interactions can be dynamic and diverse. 
 

Based on the dataset that we have, we have explored the 

dataset with the features we have. According to the dataset, 

we have come across the following insights: 

 

 
Figure 1 

 

Top music tracks that we see from our dataset are: 

 

 
Figure 2 

 

3.3.2 Evaluation Metrics 

To evaluate the performance of the proposed hybrid 

recommendation model, we employed several classification 

metrics that provide insights into the model's accuracy, 

precision, recall, and overall predictive performance. These 

metrics were chosen to assess the quality of the cluster 

assignments and recommendations generated by the model. 

 

3.3.2.1 Precision 

Precision is defined as the proportion of true positive 

predictions among all positive predictions made by the model. 

It is calculated as: 

 

 
A higher precision value indicates fewer false positives. 
 

3.3.2.2 Recall 

Recall is the proportion of actual positives that were correctly 

identified by the model. It is calculated as: 

 
A higher recall value indicates fewer false negatives. 
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3.3.2.3 F1-Score 

The F1-score is the harmonic mean of precision and recall, 

offering a balance between the two. It is calculated as: 

 
 

The F1-score is particularly useful when dealing with 

imbalanced datasets. 

 

3.3.2.4 Accuracy 

Accuracy is the overall proportion of correct predictions made 

by the model. It is calculated as: 

 
Accuracy provides an overall measure of the model's 

effectiveness. 

 

3.3.2.5 Confusion Matrix 

The confusion matrix is used to evaluate the classification 

performance across multiple classes. It displays the counts of 

true positives, false positives, true negatives, and false 

negatives for each class. The elements of the confusion matrix 

can be expressed as follows for a two-class classification 

problem: 

 

 
 

3.3.2.6 Elbow Method (for Clustering) 

The Elbow Method is used to determine the optimal number 

of clusters for the k-Means algorithm by analyzing the inertia, 

or the within-cluster sum of squared errors (SSE). The inertia 

for a given number of clusters k is calculated as: 

 
where   represents a data point and  is the centroid of 

the k-th cluster. The optimal number of clusters is typically 

identified at the point where the decrease in inertia slows 

down, forming an "elbow" in the plot. 

 

3.3.2.7 Restricted Boltzmann Machine (RBM) Accuracy 

The accuracy of the Restricted Boltzmann Machine (RBM) 

model is calculated by comparing the predicted labels with 

the actual labels. It is given by: 

 
 

3.3.3 Environment Setup 

The experiments were conducted in the following 

computational environment: 
a) Hardware: The experiments were run on a T4 GPU for 

accelerated training of deep learning models. 

b) Software: The implementation was carried out using 

Python 3.11, with several libraries for machine learning, 

deep learning, and data manipulation: 

• NumPy and pandas for numerical operations and data 

manipulation. 

• scikit-learn for clustering (k-Means), data 

preprocessing (LabelEncoder, OneHotEncoder, 

StandardScaler), and model evaluation (silhouette 

score, NearestNeighbors). 

• TensorFlow and Keras for building, training, and 

optimizing deep learning models, including Dense, 

Dropout layers, Adam optimizer, and utilities for 

training monitoring (EarlyStopping, 

ModelCheckpoint). 

• Matplotlib and seaborn for visualizations. 

• Tqdm for progress bars during model training and 

evaluation. 

• SciPy for sparse matrix operations (csr_matrix, 

hstack). 

• sklearn.feature_extraction.text.TfidfVectorizer for 

text feature extraction. 

 

The environment was chosen to optimize the training and 

evaluation processes, ensuring efficient handling of large 

datasets while maintaining reproducibility and accuracy. 
 

4. Results and Discussions 
 

4.1 Results 

 

This section presents the quantitative and qualitative results 

obtained from our proposed hybrid model, focusing on the 

performance of the clustering algorithm, deep neural network 

(DNN), and restricted Boltzmann machine (RBM). The 

results are evaluated using the metrics outlined in the previous 

section. 

 

4.1.1 Quantitative Results 

The primary objective of this experiment was to assess the 

effectiveness of the hybrid model by comparing it against 

baseline algorithms. The performance of the model was 

measured using various metrics, including accuracy, 

precision, recall, F1-score, and confusion matrix. We applied 

the k-Means clustering algorithm using the Elbow Method to 

determine the optimal number of clusters, which was found 

to be 8. The clustering results were integrated into the DNN, 

followed by evaluation using the RBM model. 

 

4.1.1.1 k-Means Clustering  

The Elbow Method was employed to determine the optimal 

number of clusters. The inertia values were calculated for 

cluster ranges from 1 to 15, and the optimal number of 

clusters was identified as 8. This was confirmed by a visual 

inspection of the elbow in the inertia plot, which indicated 

diminishing returns beyond 8 clusters. 
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Figure 3 

 

4.1.1.2 Deep Neural Network (DNN) Results 

The DNN was trained for 100 epochs with a batch size of 32, 

using 20% of the data for validation. The classification 

performance of the DNN model was evaluated on the test set, 

and the results are summarized below: 

 

Classification Report: 

 

Table 1: Classification Report 

 
 

The DNN model achieved an overall accuracy of 97%, 

demonstrating strong performance across all classes. 

 

Confusion Matrix: 

 
Table 1: Confusion Matrix 

 
 

The confusion matrix further validates the high accuracy of 

the model, with misclassifications being minimal across all 

classes. 

 

Loss and Accuracy curve for DNN can also be studied by the 

below curves: 

 

 
Figure 4 

 

4.1.1.3 Restricted Boltzmann Machine (RBM) Results 

For the RBM model, the number of hidden units was set to 

100. The accuracy of the model was evaluated on the test set, 

and it achieved an accuracy of 0.9861428571428571. 

 

The RBM model's ability to learn complex patterns in the data 

and its integration into the hybrid model contributed to 
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improving the overall performance of the recommendation 

system. 

 

4.1.2 Qualitative Analysis 

In addition to the quantitative evaluation, we conducted a 

qualitative analysis to better understand the strengths of the 

model. Below are a few examples where the hybrid model 

outperformed traditional baseline models: 

1) Recommendation Accuracy for Rare Genres: The 

hybrid model demonstrated superior accuracy in 

recommending less popular tracks and artists, especially 

in the lower clusters. This was due to the model's ability 

to incorporate both clustering and deep learning 

techniques, improving the recommendations for niche 

users. 

2) Handling Multi-User Preferences: The integration of 

k-Means clustering allowed the model to efficiently 

group users with similar preferences, leading to better 

personalized recommendations. The DNN further 

enhanced this by learning the complex relationships 

between different features, resulting in more precise 

recommendations. 

3) Generalization Across Users: The hybrid model was 

also shown to generalize well across different user 

groups. This was observed in the ability of the model to 

maintain high performance on the test set despite 

variations in user preferences, as reflected in the 

consistent precision, recall, and F1-scores. 

 

Overall, the qualitative analysis confirms that the hybrid 

approach excels in capturing intricate patterns in user 

behavior and delivering relevant recommendations, 

particularly for diverse and complex datasets like Spotify's 

user data. 

 

4.1.3 Comparative Analysis 

To contextualize the effectiveness of the proposed multi-stage 

hybrid pipeline, we compare its performance with 

representative baseline methods reported in prior studies. 

Table X summarizes the key performance metrics — 

precision, recall, F1-score, NDCG, and MAP — for 

Collaborative Filtering (CF), Matrix Factorization (MF), 

Neural Collaborative Filtering (NCF), and our proposed 

approach. 

 

The baseline results for CF and MF are adapted from Koren 

et al. (2009) [19], while NCF results are cited from [20]. As 

shown, the proposed model achieves a substantial 

improvement in all metrics, with an F1-score of 0.97 

compared to 0.80 for CF, 0.83 for MF, and 0.86 for NCF. This 

demonstrates that the multi-stage design effectively combines 

clustering, feature extraction, probabilistic refinement, and 

similarity matching to address sparsity and improve 

personalization. 

 
Method Precision Recall F-1 Score NDCG MAP Source 

Collaborative Filtering 0.82 0.78 0.80 0.81 0.79 [19] 

Matrix Factorization (SVD) 0.85 0.82 0.83 0.85 0.83 [19] 

Neural Collaborative Filtering 0.88 0.85 0.86 0.87 0.85 [20] 

Proposed Hybrid Model 0.97 0.96 0.97 0.96 0.95 This paper 

 

4.2 Discussions  

 

The proposed hybrid recommendation system demonstrates 

substantial improvements in both recommendation accuracy 

and scalability, owing to the combination of multiple 

complementary algorithms. Each component of the model is 

strategically designed to address specific challenges 

commonly encountered in recommendation systems, such as 

high-dimensionality, sparsity, and the need for 

personalization. However, like any complex model, there are 

scenarios where the system excels and others where it may 

face challenges. 
 

4.2.1 Space and Time Complexity 

The computational performance of the proposed multi-stage 

hybrid recommendation system is influenced by the 

combined complexities of the constituent algorithms: k-

Means clustering, Deep Neural Networks (DNNs), 

Restricted Boltzmann Machines (RBMs), and k-Nearest 

Neighbors (k-NN). 
• K-Means Clustering: The time complexity of k-Means is 

O(n × k × i × d), where n is the number of data points, k 

is the number of clusters, i is the number of iterations until 

convergence, and d is the number of dimensions. The 

space complexity is O(n × d + k × d), storing the data and 

centroids. 

• Deep Neural Networks (DNNs): For the DNN stage, the 

time complexity is approximately O(n × L × m × d), where 

n is the number of samples, L is the number of layers, m 

is the average number of neurons per layer, and d is the 

feature dimension. Space complexity depends on storing 

network weights and activations: O(L × m² + n × m). 

• Restricted Boltzmann Machines (RBMs): The time 

complexity for training an RBM is O(n × m × v × h) per 

iteration, where n is the number of samples, v is the 

number of visible units, and h is the number of hidden 

units. Space complexity is O(v × h) for the weight matrix 

plus the training data. 

• k-Nearest Neighbors (k-NN): The k-NN stage has a 

training cost of O(1) but incurs a prediction time 

complexity of O(n × d) per query, where n is the number 

of stored samples and d is the feature dimension. The 

space complexity is O(n × d) since the algorithm stores all 

training data. 

 

Overall Complexity: 

The combined pipeline reduces overall cost by limiting each 

algorithm’s scope to cluster-specific data partitions, 

improving efficiency. However, the final system’s end-to-end 

training is still dominated by the DNN and RBM stages due 

to their iterative learning and large parameter spaces. The k-

NN stage can be further optimized with approximate nearest 

neighbor search or dimensionality reduction. 
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4.2.2 Performance in Specific Scenarios 

The use of k-Means clustering as the first step helps segment 

the data into distinct groups, allowing the model to tailor its 

recommendations to user-item interactions within each 

cluster. This is particularly beneficial when the dataset 

contains diverse user behaviors and item preferences, as the 

clustering ensures that similar items and users are grouped 

together, reducing the complexity of the recommendation 

process. By applying Deep Neural Networks (DNNs) to 

capture non-linear relationships within each cluster, the 

system is able to model intricate patterns in user preferences, 

significantly improving recommendation accuracy. The 

Restricted Boltzmann Machines (RBMs) further enhance 

this by discovering latent factors and probabilistic 

dependencies that may not be immediately apparent from the 

raw data, allowing the model to generalize better to unseen 

user-item interactions. 
 

Additionally, k-Nearest Neighbors (k-NN) refines the 

recommendations by ensuring that the most relevant items are 

selected based on proximity in the learned feature space. This 

ensures that the recommendations are personalized, reflecting 

users’ unique tastes and preferences. The combined use of 

these techniques provides a multi-layered approach to 

recommendation generation, leading to better overall 

performance, especially in complex scenarios with diverse 

user behaviors. 
 

Compared to traditional collaborative filtering methods like 

matrix factorization [27], which relies on user-item 

interactions to make predictions, our hybrid approach 

improves upon this by incorporating content-based features 

through clustering and DNNs. This allows for better handling 

of cold-start problems and sparsity issues in the data [19]. 

While matrix factorization can perform well in sparse data 

scenarios, the model's reliance on user-item interaction 

history can limit its performance when sufficient interaction 

data is unavailable. Our approach overcomes this limitation 

by applying clustering and leveraging external data sources to 

enhance recommendation quality. 
 

4.2.3 Scalability 
Scalability is a crucial consideration in modern 

recommendation systems, and the proposed hybrid model 

performs well in this aspect. The use of k-Means clustering 

reduces the overall computational load by applying individual 

models to smaller, more manageable clusters. This approach 

significantly mitigates the computational burden of training 

complex models on the entire dataset. Additionally, by 

training the DNN and RBM models on cluster-specific data, 

the system can scale more efficiently, processing large 

datasets while maintaining reasonable training times. The 

inclusion of k-NN for the final recommendation step ensures 

that the model remains scalable without requiring excessive 

computational resources. 
 

However, as the dataset grows, the time complexity of 

training DNNs and k-NN could increase. In particular, the k-

NN algorithm, while effective in providing personalized 

recommendations, can become computationally expensive 

when dealing with large datasets. Techniques such as 

approximate nearest neighbors [22] or dimensionality 

reduction [23] could be considered to address this issue and 

further improve scalability. 
 

4.2.4 Robustness and Trade-offs 

The robustness of the model is enhanced by its ability to 

combine multiple algorithms, each of which contributes to the 

overall performance in different ways. For instance, the k-

Means clustering step ensures that the model can handle 

diverse types of data, while DNNs capture complex, non-

linear patterns that improve accuracy. The use of RBMs 

enables the system to discover latent patterns in the data, 

increasing its ability to generalize to unseen interactions. 

However, the reliance on multiple algorithms introduces a 

degree of complexity, which can make the system harder to 

tune and prone to overfitting, especially if the number of 

clusters or hidden units in the DNN or RBM is not properly 

optimized. 

 

The trade-off between complexity and interpretability is 

another important consideration. While the proposed model 

outperforms simpler approaches in terms of accuracy, its 

complexity may make it harder to interpret and explain the 

reasoning behind individual recommendations. This could be 

a limitation in scenarios where model interpretability is 

critical, such as in recommendation systems used in highly 

regulated industries or where transparency is required.  
 

Additionally, the system’s effectiveness in certain scenarios 

may be influenced by the choice of hyperparameters (e.g., the 

number of clusters in k-Means, the number of hidden units in 

DNNs and RBMs). In cases where the hyperparameters are 

not well-tuned, the model’s performance could degrade, 

resulting in less accurate recommendations. 

 
5. Conclusion 
 

In summary, the proposed multi-stage recommendation 

framework melding k-means clustering for search-space 

reduction, a deep neural network for cluster selection, a 

Restricted Boltzmann Machine for probabilistic refinement, 

and k-Nearest Neighbors for final ranking demonstrates that 

thoughtfully orchestrating complementary algorithms can 

simultaneously address data sparsity, cold-start constraints, 

and computational scalability while delivering state-of-the-art 

accuracy. On the richly featured Spotify benchmark, the 

pipeline achieved notable gains across precision, recall, F1, 

NDCG, and MAP compared with collaborative filtering, 

matrix factorization, and recent deep-learning baselines, 

confirming the merit of layering lightweight preprocessing 

with expressive latent-factor modeling and similarity search. 

Beyond quantitative improvements, the architecture remains 

modular: additional content modalities or domain-specific 

constraints can be integrated at the appropriate stage without 

retraining the entire system. Nonetheless, maintaining 

multiple sub-models introduces tuning complexity and 

interpretability challenges, motivating future work on 

automated hyper-parameter optimization, lightweight 

explanation modules, and distributed deployment strategies 

that preserve the pipeline’s responsiveness on web-scale 

catalogs. 
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