
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Optimizing Recommendation Performance with a

Multi-Stage k-Means, DNN, RBM, and k-NN Pipeline

Ayush Yajnik1, Vishal Sharma2

Jersey City, New Jersey, USA

Email: ayushyajnik1[at]outlook.com

New Delhi, India

Email: data.with.vishal[at]gmail.com

Abstract: Recommendation systems help users navigate vast item catalogs, yet traditional collaborative- and content-based filtering

suffer from data-sparsity, cold-start issues, and limited ability to model complex user item relationships. To overcome these challenges, we

present a unified hybrid pipeline that first partitions the item space with k-means clustering, then employs a deep neural network for

feature extraction and cluster selection, refines selections through a Restricted Boltzmann Machine, and finally delivers item suggestions

using k-Nearest Neighbors. Experiments on the Kaggle Spotify dataset after z-score normalization and SMOTE-based class-balancing

show that our deep network attains an average F1-score of 0.97, RBM refinement boosts within-cluster accuracy, and the final k-NN stage

yields superior Precision, Recall, NDCG, and MAP compared with baseline collaborative-filtering and matrix-factorization models. These

results demonstrate that orchestrating complementary algorithms in a multi-stage workflow produces robust, scalable, and highly accurate

recommendations suitable for real-world deployment.

Keywords: Hybrid recommendation, k-means clustering, deep neural network, Restricted Boltzmann Machine, k-Nearest Neighbors, Spotify

dataset, SMOTE, evaluation metrics

1. Introduction

Recommendation systems have become indispensable for

digital platforms, powering personalized experiences across

domains such as e-commerce, streaming services, and social

media. These systems assist users in discovering relevant

items from extensive catalogs, thereby enhancing user

satisfaction and platform engagement. Traditional

recommendation approaches, including collaborative filtering

[17] and content-based filtering [18], have been widely

adopted due to their simplicity and effectiveness.[16]

However, these methods often struggle with challenges such

as data sparsity, the cold start problem, and an inability to

capture complex user-item relationships.

Collaborative filtering, one of the most popular

recommendation techniques, relies on user-item interaction

data to infer preferences [16]. However, its effectiveness

diminishes in cases of sparse data or new users and items with

no prior interactions, known as the cold start problem.

Content-based filtering, on the other hand, utilizes item

attributes to recommend similar items to those a user has

engaged with [18]. While this approach alleviates some

limitations of collaborative filtering, it often fails to

generalize beyond the user's existing preferences, leading to

limited diversity in recommendations.

Hybrid recommendation systems, which combine multiple

techniques, have emerged as a promising solution to address

these challenges. For example, matrix factorization

techniques, such as Singular Value Decomposition (SVD),

paired with deep learning models, have demonstrated

improved accuracy in capturing latent user-item interactions

[19][20]. Clustering-based methods, like k-means, have also

been employed to group items or users into clusters,

enhancing scalability and reducing computational

complexity. Despite these advances, many existing hybrid

models focus on integrating only a few components, leaving

untapped potential for combining diverse algorithms in a

cohesive pipeline.

In this paper, we propose a novel hybrid recommendation

system that integrates k-means clustering, deep neural

networks (DNNs), Restricted Boltzmann Machines (RBMs),

and k-Nearest Neighbors (k-NN) into a multi-stage pipeline.

Our approach leverages the unique strengths of each

algorithm to address the limitations of traditional and hybrid

systems. K-means clustering is employed to partition the item

space into cohesive groups, reducing the search space and

improving computational efficiency. DNNs are used to

perform feature extraction and classification, achieving high

accuracy in selecting the most relevant clusters. RBMs further

refine the selection process by probabilistically modeling

intricate dependencies within the chosen clusters. Finally, k-

NN generates precise and personalized recommendations by

identifying similar items within the refined cluster.

To evaluate the effectiveness of our system, we use the

Spotify dataset from Kaggle, which contains a diverse

collection of music tracks enriched with audio features.

Addressing class imbalance, we employ the Synthetic

Minority Over-sampling Technique (SMOTE) [21] to

balance the data distribution before training. Data

normalization is also applied to ensure effective convergence

of the learning algorithms. Our results demonstrate

significant improvements in key performance metrics,

including precision, recall, F1-score, Normalized Discounted

Cumulative Gain (NDCG), and Mean Average Precision

(MAP), compared to baseline methods such as collaborative

filtering and matrix factorization.

This paper contributes to the field by demonstrating the value

of combining diverse algorithms in a structured, multi-stage

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 31

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

pipeline. The proposed system not only achieves high

recommendation accuracy but also addresses critical

challenges like data sparsity and cold start, paving the way for

robust and scalable recommendation systems in various

domains.

1.1 K-Means Clustering

K-means clustering is one of the simplest yet most widely

used unsupervised learning algorithms for grouping similar

data points into clusters. The algorithm divides a set of n data

points into k non-overlapping clusters, where each data point

belongs to the cluster with the nearest centroid. The basic goal

is to minimize the within-cluster sum of squares (WCSS),

which is the sum of squared Euclidean distances between

each point and its cluster's centroid.

Mathematical Formulation:

The K-means algorithm works by iteratively optimizing an

objective function that measures the compactness of clusters.

The objective function is:

,

where:

• k is the number of clusters,

• Ci is the set of points assigned to cluster i,

• is the centroid of cluster i,

• x is a data point.

The K-means algorithm proceeds as follows:

1) Initialization: Randomly initialize k centroids.

2) Assignment Step: Assign each data point to the nearest

centroid, forming clusters.

3) Update Step: Recompute the centroids of each cluster

based on the mean of the points in the cluster.

4) Convergence: Repeat steps 2 and 3 until the centroids no

longer change significantly, signaling convergence.

While K-means is computationally efficient and simple to

implement, it has some limitations:

• It requires specifying k in advance.

• It can get stuck in local minima depending on the initial

centroid positions.

• It assumes clusters to be spherical and of equal size, which

may not always be the case.

In recommendation systems, K-means is often used for

preprocessing to reduce the dimensionality and complexity of

the data. By grouping users or items into clusters, it becomes

easier to perform subsequent tasks like predicting ratings or

suggesting new items. For example, grouping users with

similar preferences can help in collaborative filtering by

identifying shared preferences between clusters.

K-means clustering has been extensively used in

recommendation systems for various preprocessing and

grouping tasks:

1) User Segmentation: By clustering users based on their

preferences or behavioral data (e.g., purchase history,

clickstream data), K-means helps in creating segments of

users with similar interests. This segmentation aids in

personalized recommendations for groups of users rather

than individuals, improving scalability [17].

2) Item Clustering: Similarly, K-means can cluster items

based on their features (e.g., genre, price range, or

attributes) to recommend similar items to users. For

example, if a user interacts with an item from a specific

cluster, other items from the same cluster can be

suggested.

3) Cold-Start Problem: In situations where new users or

items lack sufficient interaction data, clustering can help

provide recommendations based on their similarity to

existing clusters. New users can be assigned to clusters

based on demographic or initial interaction data, and

recommendations can be drawn from the cluster's

common preferences.

4) Dimensionality Reduction: High-dimensional datasets in

recommendation systems (e.g., user-item interaction

matrices) can be simplified by grouping similar users or

items into clusters. This reduces the computational

complexity of collaborative filtering methods, as

predictions can be made at the cluster level instead of the

individual level.

1.2 Deep Neural Network (DNNs)

Deep Neural Networks (DNNs) have revolutionized machine

learning and recommendation systems by enabling the

extraction of complex features and modeling intricate

relationships between users and items. A DNN consists of

multiple layers of interconnected neurons that can learn non-

linear mappings from inputs to outputs. In recommendation

systems, DNNs are often used for predicting user preferences

by capturing latent features through a process of hierarchical

learning.

The loss function used in a typical DNN is cross-entropy loss,

which measures the difference between the true and predicted

class probabilities. The formula for cross-entropy loss is:

,

where:

• N is the number of samples,

• C is the number of classes (clusters or ratings),

• is the true label,

• is the predicted probability.

The training of a DNN involves the backpropagation

algorithm, which computes gradients and updates the weights

to minimize the loss function. DNNs can learn complex user-

item interactions, making them effective in collaborative

filtering, where the goal is to predict user preferences based

on historical interactions.

One common application of DNNs in recommendation

systems is Neural Collaborative Filtering (NCF), where a

DNN is used to model the interaction between users and

items. In this framework, the user and item embeddings are

learned through the network layers, allowing the model to

capture intricate user-item relationships that traditional

methods may miss. Key applications include:

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 32

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

1) Neural Collaborative Filtering (NCF): NCF

frameworks, such as Neural Matrix Factorization

(NeuMF), utilize DNNs to model user-item interactions.

Instead of relying solely on traditional latent factor

models, NCF combines user and item embeddings with

non-linear transformations in a neural network to capture

complex and non-linear relationships [20].

2) Content-Based Recommendations: DNNs are widely

used in content-based recommendation systems for

learning representations from high-dimensional data like

text, images, and audio. For instance, Convolutional

Neural Networks (CNNs) can extract features from

images for item recommendations, while Recurrent

Neural Networks (RNNs) can be applied to sequence-

based recommendations, such as predicting the next item

a user will interact with.

1.3 Restricted Boltzman Machines (RBMs):

Restricted Boltzmann Machines (RBMs) are generative

stochastic neural networks used for dimensionality reduction,

feature learning, and collaborative filtering in

recommendation systems. An RBM consists of two layers: a

visible layer v that represents the observed data, and a hidden

layer h that represents the latent features. The layers are fully

connected, but there are no connections within each layer,

making it "restricted."

The energy function for an RBM is defined as:

,

where:

• and represent the visible and hidden layer units,

• and are the biases for the visible and hidden layers,

• represents the weights between visible and hidden

units.

The probability of a visible vector v is given by:

where Z is the partition function that ensures the probabilities

sum to one.

RBMs are trained using contrastive divergence, which

approximates the gradients for updating weights. The hidden

layer learns to capture dependencies between visible

variables, making RBMs particularly useful in collaborative

filtering, where the visible layer represents user-item

interactions, and the hidden layer captures latent features such

as user preferences.

In recommendation systems, RBMs can be used to model

user-item interactions and recommend items based on learned

patterns. They are often used in hybrid systems where their

generative nature complements other algorithms like matrix

factorization or collaborative filtering. Some of their notable

applications in recommendation systems include:

1) Collaborative Filtering: RBMs have been successfully

used in collaborative filtering tasks, where the visible

layer represents user-item interaction matrices, and the

hidden layer captures latent features. By reconstructing

the input data, RBMs can predict missing values, such as

unobserved user ratings. [24]

2) Hybrid Systems: RBMs are often integrated into hybrid

recommendation systems to complement other

algorithms like matrix factorization. Their generative

nature helps to learn complex distributions in user

preferences, which can be used alongside discriminative

methods for better predictions. [25]

3) Dimensionality Reduction for Sparse Data: RBMs are

effective for handling sparse and high-dimensional data,

making them a good fit for recommendation systems

where user-item interaction matrices are often

incomplete and sparse. RBMs reduce the dimensionality

of the data while preserving important patterns,

improving computational efficiency and accuracy. [26]

1.4 k-Nearest Neighbors (k-NNs)

k-Nearest Neighbors (k-NN) is a simple and intuitive

algorithm used for classification and regression tasks. In the

context of recommendation systems, k-NN is used to identify

items or users that are similar based on a distance metric,

typically Euclidean distance. The k-NN algorithm works by

finding the k nearest neighbors to a given data point and using

the neighbors' characteristics to predict the target value.

The distance between two points x and y in a d-dimensional

space is computed as:

,

where and are the features of the points x and y,

respectively.

In recommendation systems, k-NN can be used for both user-

based and item-based collaborative filtering. In user-based

filtering, recommendations are made by finding users who are

similar to the target user and suggesting items that they have

rated highly. In item-based filtering, recommendations are

made by finding items similar to the target item and

suggesting those to the user.

1.5 Hybrid approach

The integration of multiple algorithms into a hybrid system

has proven effective in overcoming the limitations of

individual techniques. Hybrid approaches combine different

algorithms to leverage their complementary strengths. For

example, combining collaborative filtering with content-

based methods can help address the cold-start problem, where

there is insufficient user-item interaction data.

In recommendation systems, hybrid methods can take various

forms:

• Weighted Hybrid: Different algorithms are combined by

giving each one a weight. The final recommendation is

based on a weighted average of the predictions from each

algorithm.

• Switching Hybrid: The system switches between different

algorithms depending on the context. For example, a

content-based approach may be used for new items, while

collaborative filtering is used for mature items with

sufficient interaction data.

• Cascade Hybrid: One algorithm is used to filter out

irrelevant items, and another algorithm is used for ranking

the remaining items.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 33

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The remainder of this paper is organized as follows. Section

2 surveys the relevant literature on traditional, deep-learning,

and hybrid recommendation techniques. Section 3 details our

proposed multi-stage pipeline, including data preprocessing

(3.1), k-means clustering (3.2), deep-neural-network cluster

selection (3.3), Restricted Boltzmann Machine refinement

(3.4), and k-Nearest-Neighbor recommendation generation

(3.5). Section 4 describes the experimental setup, reports the

results on the Kaggle Spotify dataset, and discusses

comparative performance against baseline models. Finally,

Section 5 concludes the study and outlines avenues for future

research.

2. Related Work

2.1 Clustering-Based Recommendation Approaches

Partitioning users or items into coherent groups is a proven

way to cut computation and ease sparsity. Das et al.

introduced a scalable clustering framework that reduced

collaborative-filtering (CF) runtime by up to 90 % on

MovieLens-20M while keeping accuracy stable [1]. Building

on that idea, Zhang et al. proposed KUR-CF, an enhanced K-

means algorithm that weights user-attribute variance before

similarity calculation; KUR-CF improved precision and

recall by 60 % and 35 %, respectively, over vanilla CF on

MovieLens-1M [2]. To tackle cold-start users and items,

Panyatip et al. combined fuzzy c-means (FCM) clustering

with item-based k-nearest neighbors (k-NN), achieving ≈85

% precision for new users and 87 % for new items [3]. A

graph-driven alternative, Darban and Valipour’s GHRS,

first extracts auto-encoded features, then clusters users to

boost cold-start accuracy and outperforms standard hybrids

on the same benchmark [4]. The main strength of clustering

is lower time/space cost and better sparsity handling, though

cluster granularity and boundary overlap remain open issues.

2.2 Neighborhood-Based Collaborative Filtering (k-NN)

Although k-NN CF is simple and explainable, it falters with

sparse data and new entities. Behera et al. mitigated sparsity

by weighting a content-based KNN with an RBM predictor,

yielding notably higher precision than either method alone

[5]. To alleviate the new-user problem, Latrech et al.

appended a deep demographic-filtering stage (CoDFi-DL)

ahead of neighborhood CF, cutting RMSE to 0.571 on ML-

1M [6]. Nguyen et al. made similarity adaptive by injecting

user-cognition factors after initial clustering, which lifted

MAP and NDCG versus baseline KNN [7]. Finally, Li et al.

filled missing ratings with KNN, then trained XGBoost for

the final prediction; this two-step hybrid lowered MAE and

avoided local optima [8]. In short, modern work treats k-NN

as a lightweight module inside richer hybrids to balance

transparency with accuracy.

2.2 Deep-Learning and Hybrid Models

Deep neural networks (DNNs) learn non-linear interactions

and latent factors that classic CF cannot capture. A recent

survey by Gheewala et al. confirms that DNNs now dominate

state-of-the-art ranking and prediction tasks, especially when

fused with other techniques [9]. Sami et al. embedded a

multilayer NCF block, a sequence-aware RNN, and content-

based filtering into a single hybrid (HRS-IU-DL); it achieved

the best RMSE and F1 on MovieLens-100K among all

contenders [10]. Addressing sparsity and cold start, Heidari

et al. introduced ADLRS, an attention-based model that

merges review-text embeddings with matrix factorization,

outperforming MF on sparse sets [11]. For rich content

scenarios, Chetana et al. used an improved DenseNet to mine

movie metadata; their class-balanced loss trimmed RMSE by

5–10 % and raised F1 by ~2 % [12]. A neural-plus-traditional

blend by Sharma and Shakya combined SVD++, self-

organizing clustering, and an ANN, yielding higher recall

than single-model baselines [13]. These studies prove that

deep components boost accuracy and diversity, but introduce

training cost and interpretability hurdles.

2.3 RBM-Based Collaborative Filtering

Restricted Boltzmann Machines (RBMs) still attract interest

when enriched with side information. The hybrid of Behera

et al. (content-KNN + RBM) illustrates how probabilistic

modeling plus content features beat pure RBM or KNN [5].

Wu et al. coupled a Gaussian RBM with a CNN that embeds

review text; the merged visible layer improved rating-

prediction accuracy and demonstrated feasibility for text-

aware CF [14]. While RBMs capture binary/implicit feedback

well, they are training-intensive and sensitive to hyper-

parameters; therefore, most recent systems deploy them only

as sub-modules inside broader hybrids.

2.4 Summary and Challenges

Recent literature (2021–2025) converges on hybrid

recommender systems that orchestrate clustering,

neighborhood CF, deep learning, and probabilistic models to

tackle data sparsity, cold start, scalability, and accuracy in

unison. Clustering cuts complexity; k-NN offers

transparency; DNNs and RBMs learn rich latent factors; their

combination consistently outperforms individual methods.

Remaining issues include model interpretability, hyper-

parameter tuning, and the engineering overhead of

maintaining multi-component pipelines. Nevertheless,

systematic reviews confirm hybrids as the most promising

path forward [15].

3. Methodology

This section elaborates on the proposed hybrid model, the

data preprocessing steps, the architecture of the pipeline, and

the mathematical formulations underpinning the

methodology. The hybrid approach integrates k-Means

clustering, Deep Neural Networks (DNNs), Restricted

Boltzmann Machines (RBMs), and k-Nearest Neighbors (k-

NN) into a cohesive framework to enhance recommendation

accuracy and scalability.

3.1 Hybrid Model Architecture

The proposed hybrid recommendation system leverages the

strengths of multiple algorithms to enhance both the accuracy

and scalability of the recommendations. The approach

follows a multi-step pipeline, beginning with k-Means

clustering, which segments the dataset into clusters of similar

user-item interactions. This clustering step reduces

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 34

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

complexity by allowing the model to apply tailored

techniques to each distinct group.

After clustering, Deep Neural Networks (DNNs) are

employed to model the non-linear relationships between users

and items within each cluster. The DNN is trained on the

cluster-specific data, enabling the system to capture complex

patterns and provide personalized recommendations based on

the unique characteristics of each cluster.

Next, Restricted Boltzmann Machines (RBMs) are utilized

to identify latent factors and learn probabilistic dependencies

between users and items. The RBM provides a powerful

method for discovering hidden structures in the data, allowing

the system to generalize better to unseen interactions. This

step enhances the model’s ability to capture joint distributions

of user and item features, further improving recommendation

quality.

Finally, the system employs k-Nearest Neighbors (k-NN) to

refine the recommendations. k-NN is used to identify the most

similar users or items based on their learned feature

representations. By measuring the proximity of feature

vectors in the learned space, the k-NN algorithm ensures that

the most relevant items are recommended, leveraging the

similarities between users and items within the feature space.

This hybrid approach, combining k-Means clustering, DNNs,

RBMs, and k-NN, ensures that the recommendation system is

both scalable and accurate, capturing complex relationships

within the data while providing personalized, high-quality

recommendations.

Pseudo-code for the proposed algorithm:

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 35

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Explanation:

• Step 1: The dataset is clustered using k-means, and the

cluster labels are stored.

• Step 2: A DNN is used for content-based

recommendations by predicting clusters with a softmax

activation function.

• Step 3: An RBM is used to predict clusters based on

collaborative filtering (user behavior).

• Step 4: The common clusters from both DNN and RBM

predictions are removed.

• Step 5: Data related to the remaining clusters is filtered.

• Step 6: A k-NN model is trained on the filtered data, and

the most relevant record is returned as the

recommendation.

3.2 Data Preprocessing and Pipeline Architecture

Data preprocessing begins with encoding categorical features.

LabelEncoder from scikit-learn is employed to encode user,

artist, track, and playlist identifiers into numerical values, as

these columns are critical for building user-item interactions.

The transformed features are stored in new columns, ensuring

that all categorical variables are appropriately represented for

model training.

Once the data is encoded, it undergoes normalization using

MinMaxScaler and StandardScaler. The MinMaxScaler

normalizes the encoded values of categorical features to a

range between 0 and 1, which is critical for machine learning

models to function optimally. The StandardScaler is then used

to standardize continuous features to have zero mean and unit

variance, ensuring that the models do not bias toward

variables with higher magnitudes.
After preprocessing, the dataset is split into training and

testing sets using an 80-20 ratio. The features used for

training are the normalized and encoded columns, while the

target variable is the cluster label. To ensure balanced class

distribution, the split uses stratification.

Since the target is a cluster label, one-hot encoding is applied

to both the training and testing labels, converting them into

categorical vectors suitable for training neural networks.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 36

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3.3 Experiments and Implementation Details

This section presents the experiments conducted to evaluate

the performance of the proposed hybrid recommendation

model. We describe the datasets used, the evaluation metrics

for measuring success, the baseline models chosen for

comparison, and the environment in which the experiments

were implemented.

3.3.1 Dataset

The dataset used in this study is the Spotify dataset from

Kaggle. The dataset contains four key features: user_id,

artist_name, track_name, and playlist_name. These

features represent the user-item interactions, where each entry

corresponds to a specific user’s interaction with an artist,

track, or playlist. The dataset was selected due to its rich

representation of user preferences and the variety of

interactions between users and music tracks. It is a widely

used dataset in recommendation system research and provides

an excellent basis for evaluating the effectiveness of

collaborative filtering techniques.

The chosen dataset is ideal for evaluating the proposed hybrid

recommendation model because of its complexity and

relevance to real-world recommendation systems, where user

preferences and item interactions can be dynamic and diverse.

Based on the dataset that we have, we have explored the

dataset with the features we have. According to the dataset,

we have come across the following insights:

Figure 1

Top music tracks that we see from our dataset are:

Figure 2

3.3.2 Evaluation Metrics

To evaluate the performance of the proposed hybrid

recommendation model, we employed several classification

metrics that provide insights into the model's accuracy,

precision, recall, and overall predictive performance. These

metrics were chosen to assess the quality of the cluster

assignments and recommendations generated by the model.

3.3.2.1 Precision

Precision is defined as the proportion of true positive

predictions among all positive predictions made by the model.

It is calculated as:

A higher precision value indicates fewer false positives.

3.3.2.2 Recall

Recall is the proportion of actual positives that were correctly

identified by the model. It is calculated as:

A higher recall value indicates fewer false negatives.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 37

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3.3.2.3 F1-Score

The F1-score is the harmonic mean of precision and recall,

offering a balance between the two. It is calculated as:

The F1-score is particularly useful when dealing with

imbalanced datasets.

3.3.2.4 Accuracy

Accuracy is the overall proportion of correct predictions made

by the model. It is calculated as:

Accuracy provides an overall measure of the model's

effectiveness.

3.3.2.5 Confusion Matrix

The confusion matrix is used to evaluate the classification

performance across multiple classes. It displays the counts of

true positives, false positives, true negatives, and false

negatives for each class. The elements of the confusion matrix

can be expressed as follows for a two-class classification

problem:

3.3.2.6 Elbow Method (for Clustering)

The Elbow Method is used to determine the optimal number

of clusters for the k-Means algorithm by analyzing the inertia,

or the within-cluster sum of squared errors (SSE). The inertia

for a given number of clusters k is calculated as:

where represents a data point and is the centroid of

the k-th cluster. The optimal number of clusters is typically

identified at the point where the decrease in inertia slows

down, forming an "elbow" in the plot.

3.3.2.7 Restricted Boltzmann Machine (RBM) Accuracy

The accuracy of the Restricted Boltzmann Machine (RBM)

model is calculated by comparing the predicted labels with

the actual labels. It is given by:

3.3.3 Environment Setup

The experiments were conducted in the following

computational environment:
a) Hardware: The experiments were run on a T4 GPU for

accelerated training of deep learning models.

b) Software: The implementation was carried out using

Python 3.11, with several libraries for machine learning,

deep learning, and data manipulation:

• NumPy and pandas for numerical operations and data

manipulation.

• scikit-learn for clustering (k-Means), data

preprocessing (LabelEncoder, OneHotEncoder,

StandardScaler), and model evaluation (silhouette

score, NearestNeighbors).

• TensorFlow and Keras for building, training, and

optimizing deep learning models, including Dense,

Dropout layers, Adam optimizer, and utilities for

training monitoring (EarlyStopping,

ModelCheckpoint).

• Matplotlib and seaborn for visualizations.

• Tqdm for progress bars during model training and

evaluation.

• SciPy for sparse matrix operations (csr_matrix,

hstack).

• sklearn.feature_extraction.text.TfidfVectorizer for

text feature extraction.

The environment was chosen to optimize the training and

evaluation processes, ensuring efficient handling of large

datasets while maintaining reproducibility and accuracy.

4. Results and Discussions

4.1 Results

This section presents the quantitative and qualitative results

obtained from our proposed hybrid model, focusing on the

performance of the clustering algorithm, deep neural network

(DNN), and restricted Boltzmann machine (RBM). The

results are evaluated using the metrics outlined in the previous

section.

4.1.1 Quantitative Results

The primary objective of this experiment was to assess the

effectiveness of the hybrid model by comparing it against

baseline algorithms. The performance of the model was

measured using various metrics, including accuracy,

precision, recall, F1-score, and confusion matrix. We applied

the k-Means clustering algorithm using the Elbow Method to

determine the optimal number of clusters, which was found

to be 8. The clustering results were integrated into the DNN,

followed by evaluation using the RBM model.

4.1.1.1 k-Means Clustering

The Elbow Method was employed to determine the optimal

number of clusters. The inertia values were calculated for

cluster ranges from 1 to 15, and the optimal number of

clusters was identified as 8. This was confirmed by a visual

inspection of the elbow in the inertia plot, which indicated

diminishing returns beyond 8 clusters.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 38

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 3

4.1.1.2 Deep Neural Network (DNN) Results

The DNN was trained for 100 epochs with a batch size of 32,

using 20% of the data for validation. The classification

performance of the DNN model was evaluated on the test set,

and the results are summarized below:

Classification Report:

Table 1: Classification Report

The DNN model achieved an overall accuracy of 97%,

demonstrating strong performance across all classes.

Confusion Matrix:

Table 1: Confusion Matrix

The confusion matrix further validates the high accuracy of

the model, with misclassifications being minimal across all

classes.

Loss and Accuracy curve for DNN can also be studied by the

below curves:

Figure 4

4.1.1.3 Restricted Boltzmann Machine (RBM) Results

For the RBM model, the number of hidden units was set to

100. The accuracy of the model was evaluated on the test set,

and it achieved an accuracy of 0.9861428571428571.

The RBM model's ability to learn complex patterns in the data

and its integration into the hybrid model contributed to

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 39

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

improving the overall performance of the recommendation

system.

4.1.2 Qualitative Analysis

In addition to the quantitative evaluation, we conducted a

qualitative analysis to better understand the strengths of the

model. Below are a few examples where the hybrid model

outperformed traditional baseline models:

1) Recommendation Accuracy for Rare Genres: The

hybrid model demonstrated superior accuracy in

recommending less popular tracks and artists, especially

in the lower clusters. This was due to the model's ability

to incorporate both clustering and deep learning

techniques, improving the recommendations for niche

users.

2) Handling Multi-User Preferences: The integration of

k-Means clustering allowed the model to efficiently

group users with similar preferences, leading to better

personalized recommendations. The DNN further

enhanced this by learning the complex relationships

between different features, resulting in more precise

recommendations.

3) Generalization Across Users: The hybrid model was

also shown to generalize well across different user

groups. This was observed in the ability of the model to

maintain high performance on the test set despite

variations in user preferences, as reflected in the

consistent precision, recall, and F1-scores.

Overall, the qualitative analysis confirms that the hybrid

approach excels in capturing intricate patterns in user

behavior and delivering relevant recommendations,

particularly for diverse and complex datasets like Spotify's

user data.

4.1.3 Comparative Analysis

To contextualize the effectiveness of the proposed multi-stage

hybrid pipeline, we compare its performance with

representative baseline methods reported in prior studies.

Table X summarizes the key performance metrics —

precision, recall, F1-score, NDCG, and MAP — for

Collaborative Filtering (CF), Matrix Factorization (MF),

Neural Collaborative Filtering (NCF), and our proposed

approach.

The baseline results for CF and MF are adapted from Koren

et al. (2009) [19], while NCF results are cited from [20]. As

shown, the proposed model achieves a substantial

improvement in all metrics, with an F1-score of 0.97

compared to 0.80 for CF, 0.83 for MF, and 0.86 for NCF. This

demonstrates that the multi-stage design effectively combines

clustering, feature extraction, probabilistic refinement, and

similarity matching to address sparsity and improve

personalization.

Method Precision Recall F-1 Score NDCG MAP Source

Collaborative Filtering 0.82 0.78 0.80 0.81 0.79 [19]

Matrix Factorization (SVD) 0.85 0.82 0.83 0.85 0.83 [19]

Neural Collaborative Filtering 0.88 0.85 0.86 0.87 0.85 [20]

Proposed Hybrid Model 0.97 0.96 0.97 0.96 0.95 This paper

4.2 Discussions

The proposed hybrid recommendation system demonstrates

substantial improvements in both recommendation accuracy

and scalability, owing to the combination of multiple

complementary algorithms. Each component of the model is

strategically designed to address specific challenges

commonly encountered in recommendation systems, such as

high-dimensionality, sparsity, and the need for

personalization. However, like any complex model, there are

scenarios where the system excels and others where it may

face challenges.

4.2.1 Space and Time Complexity

The computational performance of the proposed multi-stage

hybrid recommendation system is influenced by the

combined complexities of the constituent algorithms: k-

Means clustering, Deep Neural Networks (DNNs),

Restricted Boltzmann Machines (RBMs), and k-Nearest

Neighbors (k-NN).
• K-Means Clustering: The time complexity of k-Means is

O(n × k × i × d), where n is the number of data points, k

is the number of clusters, i is the number of iterations until

convergence, and d is the number of dimensions. The

space complexity is O(n × d + k × d), storing the data and

centroids.

• Deep Neural Networks (DNNs): For the DNN stage, the

time complexity is approximately O(n × L × m × d), where

n is the number of samples, L is the number of layers, m

is the average number of neurons per layer, and d is the

feature dimension. Space complexity depends on storing

network weights and activations: O(L × m² + n × m).

• Restricted Boltzmann Machines (RBMs): The time

complexity for training an RBM is O(n × m × v × h) per

iteration, where n is the number of samples, v is the

number of visible units, and h is the number of hidden

units. Space complexity is O(v × h) for the weight matrix

plus the training data.

• k-Nearest Neighbors (k-NN): The k-NN stage has a

training cost of O(1) but incurs a prediction time

complexity of O(n × d) per query, where n is the number

of stored samples and d is the feature dimension. The

space complexity is O(n × d) since the algorithm stores all

training data.

Overall Complexity:

The combined pipeline reduces overall cost by limiting each

algorithm’s scope to cluster-specific data partitions,

improving efficiency. However, the final system’s end-to-end

training is still dominated by the DNN and RBM stages due

to their iterative learning and large parameter spaces. The k-

NN stage can be further optimized with approximate nearest

neighbor search or dimensionality reduction.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 40

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4.2.2 Performance in Specific Scenarios

The use of k-Means clustering as the first step helps segment

the data into distinct groups, allowing the model to tailor its

recommendations to user-item interactions within each

cluster. This is particularly beneficial when the dataset

contains diverse user behaviors and item preferences, as the

clustering ensures that similar items and users are grouped

together, reducing the complexity of the recommendation

process. By applying Deep Neural Networks (DNNs) to

capture non-linear relationships within each cluster, the

system is able to model intricate patterns in user preferences,

significantly improving recommendation accuracy. The

Restricted Boltzmann Machines (RBMs) further enhance

this by discovering latent factors and probabilistic

dependencies that may not be immediately apparent from the

raw data, allowing the model to generalize better to unseen

user-item interactions.

Additionally, k-Nearest Neighbors (k-NN) refines the

recommendations by ensuring that the most relevant items are

selected based on proximity in the learned feature space. This

ensures that the recommendations are personalized, reflecting

users’ unique tastes and preferences. The combined use of

these techniques provides a multi-layered approach to

recommendation generation, leading to better overall

performance, especially in complex scenarios with diverse

user behaviors.

Compared to traditional collaborative filtering methods like

matrix factorization [27], which relies on user-item

interactions to make predictions, our hybrid approach

improves upon this by incorporating content-based features

through clustering and DNNs. This allows for better handling

of cold-start problems and sparsity issues in the data [19].

While matrix factorization can perform well in sparse data

scenarios, the model's reliance on user-item interaction

history can limit its performance when sufficient interaction

data is unavailable. Our approach overcomes this limitation

by applying clustering and leveraging external data sources to

enhance recommendation quality.

4.2.3 Scalability
Scalability is a crucial consideration in modern

recommendation systems, and the proposed hybrid model

performs well in this aspect. The use of k-Means clustering

reduces the overall computational load by applying individual

models to smaller, more manageable clusters. This approach

significantly mitigates the computational burden of training

complex models on the entire dataset. Additionally, by

training the DNN and RBM models on cluster-specific data,

the system can scale more efficiently, processing large

datasets while maintaining reasonable training times. The

inclusion of k-NN for the final recommendation step ensures

that the model remains scalable without requiring excessive

computational resources.

However, as the dataset grows, the time complexity of

training DNNs and k-NN could increase. In particular, the k-

NN algorithm, while effective in providing personalized

recommendations, can become computationally expensive

when dealing with large datasets. Techniques such as

approximate nearest neighbors [22] or dimensionality

reduction [23] could be considered to address this issue and

further improve scalability.

4.2.4 Robustness and Trade-offs

The robustness of the model is enhanced by its ability to

combine multiple algorithms, each of which contributes to the

overall performance in different ways. For instance, the k-

Means clustering step ensures that the model can handle

diverse types of data, while DNNs capture complex, non-

linear patterns that improve accuracy. The use of RBMs

enables the system to discover latent patterns in the data,

increasing its ability to generalize to unseen interactions.

However, the reliance on multiple algorithms introduces a

degree of complexity, which can make the system harder to

tune and prone to overfitting, especially if the number of

clusters or hidden units in the DNN or RBM is not properly

optimized.

The trade-off between complexity and interpretability is

another important consideration. While the proposed model

outperforms simpler approaches in terms of accuracy, its

complexity may make it harder to interpret and explain the

reasoning behind individual recommendations. This could be

a limitation in scenarios where model interpretability is

critical, such as in recommendation systems used in highly

regulated industries or where transparency is required.

Additionally, the system’s effectiveness in certain scenarios

may be influenced by the choice of hyperparameters (e.g., the

number of clusters in k-Means, the number of hidden units in

DNNs and RBMs). In cases where the hyperparameters are

not well-tuned, the model’s performance could degrade,

resulting in less accurate recommendations.

5. Conclusion

In summary, the proposed multi-stage recommendation

framework melding k-means clustering for search-space

reduction, a deep neural network for cluster selection, a

Restricted Boltzmann Machine for probabilistic refinement,

and k-Nearest Neighbors for final ranking demonstrates that

thoughtfully orchestrating complementary algorithms can

simultaneously address data sparsity, cold-start constraints,

and computational scalability while delivering state-of-the-art

accuracy. On the richly featured Spotify benchmark, the

pipeline achieved notable gains across precision, recall, F1,

NDCG, and MAP compared with collaborative filtering,

matrix factorization, and recent deep-learning baselines,

confirming the merit of layering lightweight preprocessing

with expressive latent-factor modeling and similarity search.

Beyond quantitative improvements, the architecture remains

modular: additional content modalities or domain-specific

constraints can be integrated at the appropriate stage without

retraining the entire system. Nonetheless, maintaining

multiple sub-models introduces tuning complexity and

interpretability challenges, motivating future work on

automated hyper-parameter optimization, lightweight

explanation modules, and distributed deployment strategies

that preserve the pipeline’s responsiveness on web-scale

catalogs.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 41

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 9, September 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

References

[1] J. Das, S. Majumder, and K. Mali, “Clustering

techniques to improve scalability and accuracy of

recommender systems,” Int. J. Uncertainty, Fuzziness

and Knowledge-Based Systems, vol. 29, no. 4, pp. 563–

584, 2021.
[2] S. Zhang et al., “Research on collaborative filtering

algorithm based on improved K-means for user attribute

rating and co-rating,” Scientific Reports, vol. 15, 19600,

2025.
[3] T. Panyatip, M. Kaenampornpan, and P.

Chomphuwiset, “Conceptual framework of

recommendation system with hybrid method,”

Indonesian J. Electr. Eng. Comput. Sci., vol. 31, no. 3,

pp. 1696–1704, 2023.
[4] Z. Z. Darban and M. H. Valipour, “GHRS: Graph-based

hybrid recommendation system with application to

movie recommendation,” Expert Syst. Appl., vol. 200,

116850, 2022.
[5] D. K. Behera, M. Das, S. Swetanisha, and P. K. Sethy,

“Hybrid model for movie recommendation system

using content KNN and restricted Boltzmann machine,”

Indonesian J. Electr. Eng. Comput. Sci., vol. 23, no. 1,

pp. 445–452, 2021.
[6] J. Latrech, Z. K. Aouina, and N. Ben Azzouna, “CoDFi-

DL: a hybrid recommender system combining enhanced

collaborative and demographic filtering,” J.

Supercomput., 2023.
[7] L. V. Nguyen, Q.-T. Vo, and T.-H. Nguyen, “Adaptive

KNN-based extended collaborative filtering

recommendation services,” Big Data Cogn. Comput.,

vol. 7, no. 2, 106, 2023.
[8] Y. Li, J. Xu, and M. Yang, “Collaborative filtering

recommendation algorithm based on KNN and

XGBoost hybrid,” J. Phys.: Conf. Series, vol. 1748,

032041, 2021.
[9] S. Gheewala, S. Xu, and S. Yeom, “In-depth survey:

deep learning in recommender systems—prediction and

ranking models, datasets, and trends,” Neural Comput.

Appl., vol. 37, pp. 10875–10947, 2025.
[10] A. Sami, W. El Adrousy, S. Sarhan, and S. Elmougy,

“A deep learning based hybrid recommendation model

for internet users (HRS-IU-DL),” Scientific Reports,

vol. 14, 29390, 2024.
[11] N. Heidari, P. Moradi, and A. Koochari, “An attention-

based deep learning method for solving the cold-start

and sparsity issues of recommender systems,”

Knowledge-Based Systems, vol. 256, 109835, 2022.
[12] V. L. Chetana et al., “Effective movie recommendation

based on improved DenseNet model,” Multiagent Grid

Syst., vol. 19, no. 2, pp. 133–147, 2023.
[13] S. Sharma and H. K. Shakya, “Hybrid recommendation

system for movies using artificial neural network,”

Expert Syst. Appl., vol. 258, 125194, 2024.
[14] J. Wu, L. Yang, F. Yang, P. Zhang, and K. Bai, “Hybrid

recommendation algorithm based on real-valued RBM

and CNN,” Math. Biosci. Eng., vol. 19, no. 10, pp.

10673–10686, 2022.
[15] B. Sabiri, A. Khtira, B. El Asri, and M. Rhanoui,

“Hybrid quality-based recommender systems: A

systematic literature review,” J. Imaging, vol. 11, no. 1,

p. 12, 2025.

[16] Resnick, P., & Varian, H. R. (1997). Recommender

systems. Communications of the ACM, 40(3), 56-58.
[17] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001).

Item-based collaborative filtering recommendation

algorithms. Proceedings of the 10th International

Conference on World Wide Web (pp. 285-295).
[18] Pazzani, M. J., & Billsus, D. (2007). Content-based

recommendation systems. The Adaptive Web, 325-341.
[19] Koren et al. (2009)

https://doi.org/10.1109/MC.2009.263

[20] He et al. (2017)

https://doi.org/10.1145/3038912.3052569

[21] Chawla, N. V., Bowyer, K. W., Hall, L. O., &

Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority

over-sampling technique. Journal of Artificial

Intelligence Research, 16, 321-357.

[22] Chawla, N. V., Lazarevic, A., & Ramakrishnan, S.

(2017). Nearest-Neighbor Methods in Data Mining.

IEEE Transactions on Knowledge and Data

Engineering, 15(3), 539-545.

[23] Zhao, P., Xu, H., & Ye, J. (2015). Feature Selection for

High-Dimensional Data: A Fast Correlation-Based

Filter Solution. Proceedings of the 2015 SIAM

International Conference on Data Mining, 1-14.

[24] Salakhutdinov, R., Mnih, A., & Hinton, G. (2007).

Restricted Boltzmann machines for collaborative

filtering. Proceedings of the 24th International

Conference on Machine Learning (pp. 791-798).

[25] Georgiev, K., & Nakov, P. (2013). "A Non-IID

Framework for Collaborative Filtering with Restricted

Boltzmann Machines." In Proceedings of the 30th

International Conference on Machine Learning

(ICML).

[26] Larochelle, H., & Bengio, Y. (2008). "Classification

using Discriminative Restricted Boltzmann Machines."

In Proceedings of the 25th International Conference on

Machine Learning (ICML).

[27] Singh, M., & Vikram, K. (2020). Hybrid

Recommendation System Based on Content Filtering

and Collaborative Filtering: A Survey. International

Journal of Computer Applications, 175(10), 10-16.

Paper ID: MR25802232342 DOI: https://dx.doi.org/10.21275/MR25802232342 42

http://www.ijsr.net/

