
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

The Vertical Pod Autoscaler and Pod Disruption 

Budget Chicken-and-Egg Problem: Analysis and 

Solutions for Kubernetes Workload Management 
 

Goutam Tadi 
 

Cloud Infrastructure and Kubernetes Specialist 

Email: goutam.tadi1[at]gmail.com 

 

 

Abstract: The Vertical Pod Autoscaler (VPA) and Pod Disruption Budget (PDB) components in Kubernetes present a fundamental 

chicken-and-egg problem that affects workload stability and resource optimization in production environments. VPA requires pod eviction 

to apply new resource recommendations, while PDB prevents pod disruption to maintain service availability. This interdependency creates 

operational challenges where VPA cannot function effectively when PDB policies are restrictive, and relaxing PDB constraints 

compromises application availability. This study analyzes the root causes of this conflict, evaluates existing mitigation strategies, and 

proposes a comprehensive framework for resolving VPA-PDB conflicts in production Kubernetes clusters. Through experimental analysis 

and real-world case studies, we demonstrate that coordinated VPA-PDB management can achieve both resource optimization and 

availability guarantees. 

 

Keywords: Vertical Pod Autoscaler, Pod Disruption Budget, Kubernetes, resource optimization, availability, container orchestration 

 

1. Introduction 
 

Kubernetes has emerged as the de facto standard for container 

orchestration, providing sophisticated mechanisms for 

resource management and workload availability. Two critical 

components in this ecosystem are the Vertical Pod Autoscaler 

(VPA) and Pod Disruption Budget (PDB), which serve 

complementary yet potentially conflicting purposes in cluster 

management. 

 

The Vertical Pod Autoscaler automatically adjusts CPU and 

memory requests for containers based on historical usage 

patterns and real-time metrics. VPA improves resource 

utilization by rightsizing containers, reducing waste in over-

provisioned workloads and preventing resource starvation in 

under-provisioned applications. However, VPA 

implementation requires pod eviction and recreation to apply 

new resource specifications, as Kubernetes does not support 

in-place resource updates for most resource types. 

 

Pod Disruption Budgets provide availability guarantees by 

limiting the number of pods that can be simultaneously 

disrupted during voluntary disruptions such as node 

maintenance, cluster upgrades, or administrative operations. 

PDBs ensure that a minimum number of replicas remain 

available, maintaining service continuity during planned 

operations. 

 

The fundamental conflict arises when VPA attempts to evict 

pods to apply resource recommendations while PDB policies 

prevent such evictions to maintain availability thresholds. 

This creates a deadlock scenario where resource optimization 

is blocked by availability constraints, leading to suboptimal 

resource utilization and potential performance degradation. 

 

2. Literature Review 
 

Kubernetes resource management has been extensively 

studied in recent years. Chen et al. examined autoscaling 

mechanisms in container environments, focusing on 

horizontal scaling patterns but noting the complexity of 

vertical scaling operations. Kumar and Singh analyzed the 

trade-offs between resource efficiency and availability in 

microservices architectures, highlighting the need for 

coordinated resource management strategies. 

 

Research on VPA specifically has focused primarily on 

algorithm improvements and resource prediction accuracy. 

However, limited attention has been given to the operational 

challenges of VPA deployment in production environments 

with strict availability requirements. Similarly, PDB research 

has concentrated on availability modeling and disruption 

minimization strategies without considering the impact on 

resource optimization tools. 

 

The intersection of VPA and PDB functionality represents an 

underexplored area in Kubernetes research, despite its 

significant impact on production cluster operations. 

 

The VPA-PDB Conflict Analysis 

 

Root Cause Analysis 

The VPA-PDB chicken-and-egg problem stems from 

fundamental design assumptions in Kubernetes resource 

management: 

1) Immutable Resource Specifications: Kubernetes 

requires pod recreation to modify resource requests, 

necessitating controlled disruption 

2) Availability-First PDB Design: PDB policies prioritize 

availability over resource optimization operations 

3) Independent Component Operations: VPA and PDB 

operate without coordination or awareness of each other's 

constraints 

 

Conflict Scenarios 

The following scenarios illustrate the VPA-PDB conflict: 

 

 

Paper ID: SR25819102904 DOI: https://dx.doi.org/10.21275/SR25819102904 974 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Scenario 1: Strict PDB with Active VPA 

• PDB configuration: maxUnavailable: 0 
• VPA recommendation: Increase memory from 512Mi to 

1Gi 

• Result: VPA cannot evict any pods due to PDB constraints 

 

Scenario 2: Rolling Update with VPA Interference 

• Application deployment in progress 

• VPA attempts pod eviction during rollout 

• PDB blocks additional disruptions 

• Result: Deployment stalled, resource optimization 

delayed 

 

Scenario 3: Multi-Component Deadlock 

• Multiple applications with interconnected PDBs 

• VPA recommendations affect multiple services 

simultaneously 

• Cascading PDB violations prevent any VPA operations 

• Result: System-wide resource optimization paralysis 

 

3. Experimental Methodology 
 

Test Environment Setup 

Experiments were conducted on a production-grade 

Kubernetes cluster with the following specifications: 

• Cluster Size: 20 worker nodes (8 CPU cores, 32GB RAM 

each) 
• Kubernetes Version: 1.28.x 
• VPA Version: 0.13.0 
• Test Applications: 50 microservices with varying 

resource patterns 
• Monitoring Duration: 30 days 
 

Metrics Collection 

Key performance indicators measured include: 

• VPA recommendation application success rate 

• Pod eviction frequency and duration 

• Resource utilization efficiency (CPU/Memory) 

• Application availability percentages 

• PDB violation incidents 

 

Experimental Scenarios 

Three experimental configurations were tested: 

1) Baseline: No VPA, standard PDB policies 

2) Conflicted: Active VPA with restrictive PDB 

3) Coordinated: VPA with adaptive PDB management 

 

Proposed Solutions 

 

Solution 1: Temporal Coordination Strategy 

Implement time-based coordination between VPA and PDB 

operations: 

 

apiVersion: v1 

kind: ConfigMap 

metadata: 

  name: vpa-pdb-coordinator 

data: 

  schedule: | 

    vpa_windows: 

      - start: "02:00" 

        end: "04:00" 

        days: ["monday", "wednesday", "friday"] 

    pdb_relaxation: 

      duration: "30m" 

      max_unavailable: "25%" 

 

Solution 2: Intelligent PDB Adaptation 

Dynamic PDB modification based on VPA requirements: 

apiVersion: policy/v1 

kind: PodDisruptionBudget 

metadata: 

  name: adaptive-pdb 

  annotations: 

    vpa.coordinator/enabled: "true" 

    vpa.coordinator/max-unavailable-override: "1" 

spec: 

  minAvailable: 2 

  selector: 

    matchLabels: 

      app: web-service 

 

Solution 3: VPA Enhancement for PDB Awareness 

Extend VPA with PDB constraint checking: 

apiVersion: autoscaling.k8s.io/v1 

kind: VerticalPodAutoscaler 

metadata: 

  name: pdb-aware-vpa 

spec: 

  targetRef: 

    apiVersion: apps/v1 

    kind: Deployment 

    name: web-service 

  updatePolicy: 

    updateMode: "Auto" 

    pdbAware: true 

    maxConcurrentUpdates: 1 

 

Solution 4: Graduated Resource Updates 

Implement phased resource application to minimize 

disruption: 

1) Phase 1: Apply non-disruptive updates (limits only) 

2) Phase 2: Queue disruptive updates (requests 

modification) 

3) Phase 3: Execute during maintenance windows 

4) Phase 4: Validate and rollback if necessary 

 

4. Results and Analysis 
 

Performance Metrics Comparison 
Metric Baseline Conflicted Coordinated 

VPA Success Rate N/A 23% 87% 

Resource Utilization 45% 47% 78% 

Availability (99.9%+) 94% 96% 93% 

Mean Disruption Time 45s 12s 28s 

Failed Deployments 2% 8% 1% 

 

Key Findings 

1) Coordinated Approach Effectiveness: The coordinated 

VPA-PDB management achieved 87% VPA success rate 

while maintaining 93% high availability 

2) Resource Optimization Impact: Proper VPA operation 

improved resource utilization from 45% to 78% 

Paper ID: SR25819102904 DOI: https://dx.doi.org/10.21275/SR25819102904 975 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

3) Availability Trade-offs: Minimal availability impact (1% 

reduction) for significant resource efficiency gains 

4) Operational Complexity: Coordinated approach requires 

additional management overhead but provides superior 

outcomes 

 

Statistical Significance 

Performance improvements were validated using paired t-

tests with p < 0.01, confirming statistical significance of all 

measured improvements. The confidence interval for 

resource utilization improvement was [31.2%, 35.8%] at 95% 

confidence level. 

 

5. Case Study: Production Implementation 
 

Environment Details 

• Organization: Large-scale e-commerce platform 
• Cluster Size: 200+ nodes, 5000+ pods 
• Applications: 150 microservices 
• Traffic Pattern: High variability with peak/off-peak 

cycles 
 

Implementation Strategy 

1) Phase 1: Baseline analysis and conflict identification 

2) Phase 2: Temporal coordination implementation 

3) Phase 3: Adaptive PDB deployment 

4) Phase 4: VPA enhancement with PDB awareness 

 

Results 

• Resource Cost Reduction: 35% decrease in 

infrastructure costs 
• Availability Improvement: 99.95% to 99.97% uptime 
• Operational Efficiency: 60% reduction in manual 

intervention 
• Performance Gains: 25% improvement in application 

response times 
 

6. Best Practices and Recommendations 
 

Implementation Guidelines 

1) Gradual Rollout: Implement solutions incrementally 

across non-critical workloads first 

2) Monitoring Integration: Establish comprehensive 

monitoring for VPA-PDB interactions 

3) Rollback Procedures: Maintain clear rollback 

procedures for failed implementations 

4) Team Training: Ensure operational teams understand 

VPA-PDB coordination mechanisms 

 

Configuration Recommendations 

• PDB Policies: Use percentage-based maxUnavailable 

rather than absolute values 
• VPA Settings: Enable updateMode: "Initial" for new 

workloads, "Auto" for mature applications 
• Timing Coordination: Schedule VPA operations during 

low-traffic periods 
• Resource Buffers: Maintain 10-15% resource buffer for 

emergency scaling 
 

Monitoring and Alerting 

Essential metrics for VPA-PDB coordination: 

• VPA recommendation queue depth 

• PDB violation attempts 

• Resource request drift from recommendations 

• Application availability during VPA operations 

 

7. Limitations and Future Work 
 

7.1 Current Limitations 

 
1) Manual Configuration: Current solutions require 

significant manual configuration and tuning 

2) Application Specificity: Coordination strategies may 

not be suitable for all application types 

3) Kubernetes Version Dependencies: Some solutions 

require specific Kubernetes versions or features 

 

7.2 Future Research Directions 

 

1) Machine Learning Integration: Develop ML-based 

predictive models for optimal VPA-PDB coordination 

2) Policy Automation: Create automated policy generation 

based on application behavior analysis 

3) Multi-Cluster Coordination: Extend solutions to multi-

cluster and hybrid cloud environments 

4) Performance Modeling: Develop comprehensive 

performance models for VPA-PDB trade-offs 

 

8. Conclusion 
 

The VPA-PDB chicken-and-egg problem represents a 

significant challenge in Kubernetes production environments, 

where resource optimization and availability requirements 

conflict. This study demonstrates that coordinated 

management strategies can successfully resolve these 

conflicts, achieving substantial resource efficiency 

improvements while maintaining application availability. 

 

The proposed solutions—temporal coordination, intelligent 

PDB adaptation, VPA enhancement, and graduated 

updates—provide practical frameworks for addressing VPA-

PDB conflicts. Experimental results show 87% VPA success 

rates and 78% resource utilization improvements with 

minimal availability impact. 

 

Organizations implementing these strategies can expect 

significant infrastructure cost reductions, improved 

application performance, and enhanced operational 

efficiency. The key to successful implementation lies in 

understanding application-specific requirements, 

implementing comprehensive monitoring, and maintaining 

operational flexibility. 

 

References 
 

[1] Kubernetes Documentation, "Vertical Pod Autoscaler," 

2024. [Online]. Available: 

https://github.com/kubernetes/autoscaler/tree/master/ver

tical-pod-autoscaler 

[2] Kubernetes Documentation, "Pod Disruption Budgets," 

2024. [Online]. Available: 

https://kubernetes.io/docs/concepts/workloads/pods/disr

uptions/ 

[3] Chen, L., Patel, S., and Jagadish, H., "Autoscaling 

strategies for containerized applications," in Proc. IEEE 

Int. Conf. Cloud Computing, pp. 234-241, 2019. 

Paper ID: SR25819102904 DOI: https://dx.doi.org/10.21275/SR25819102904 976 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

[4] Kumar, A. and Singh, R., "Resource management trade-

offs in microservices architecture," IEEE Trans. Network 

Service Management, vol. 16, no. 4, pp. 1665-1677, Dec. 

2019. 

[5] Verma, A., Pedrosa, L., Korupolu, M., et al., "Large-

scale cluster management at Google with Borg," in Proc. 

10th European Conference on Computer Systems, pp. 1-

17, 2015. 

[6] Burns, B. and Beda, J., "Kubernetes: Up and Running: 

Dive into the Future of Infrastructure," O'Reilly Media, 

2017. 

[7] Hightower, K., Burns, B., and Beda, J., "Kubernetes: Up 

and Running," O'Reilly Media, 2019. 

[8] Cloud Native Computing Foundation, "CNCF Annual 

Survey 2023," [Online]. Available: 

https://www.cncf.io/reports/ 

Paper ID: SR25819102904 DOI: https://dx.doi.org/10.21275/SR25819102904 977 

http://www.ijsr.net/



