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Abstract: Continuous Integration (CI) testing is a critical phase in current software industry. Test Case Prioritization (TCP) methods 

are introduced to enhance Regression Testing (RT) by ranking test cases for early developer feedback. Various Deep Learning (DL) 

models have been developed to improve TCP in CI environments. But, many struggle to simultaneously capture the structural 

relationships among test case features and the temporal dependencies across multiple testing cycles. Furthermore, these models often 

rely on large amounts of historical execution data, limiting their effectiveness in fast-paced and diverse CI scenarios. To address this 

issue, XCG-TCP, an eXplainable Convolutional Neural Network (CNN) – Gated Rectified Unit (GRU) is proposed for accurate TCP in 

CI. Initially, the collected test case data will be pre-processed using data cleaning, categorical encoding, and feature scaling to ensure 

balanced and consistent inputs. A Deep CNN (DCNN) extracts spatial and structural features from various test case attributes such as 

execution duration, previous results, status changes, execution flags, priority and code modification distance. These features are then 

fed into a Gated Recurrent Unit (GRU) to model the temporal dependencies and sequence patterns across regression cycles enabling 

effective identification of failing test cases. The integration of SHapley Additive exPlanations (SHAP) as an Explainable Artificial 

Intelligence (XAI) model enhances the CNN-GRU model by quantifying the influence of each input feature on the final TCP decision. 

This combination of these models enhances early fault detection, accelerates testing cycles and improves adaptability across varying CI 

environments. Experimental results demonstrate that XCG-TCP outperforms standard algorithms on industrial datasets. 

 

Keywords: Continuous Integration, Test Case Prioritization, Convolutional Neural Network, Gated Rectified Unit, SHapley Additive 

exPlanations 

 

1. Introduction 
 

Software Testing (ST) is essential for software development, 

intended for identifying bugs and guaranteeing the system 

functions as expected [1]. Within ST, RT plays a key role in 

preventing different errors and ensuring that code variations 

do not introduce issues [2]. Modern projects often adopt CI, 

a methodology for creating and testing software that 

streamlines the development phase, including frequent 

execution of RT [3]. However, running all test cases in every 

cycle is challenging due to time, resource, and cost 

constraints, especially with rapid release schedules [4]. RT 

becomes particularly demanding in large software systems, 

requiring substantial computational resources and ongoing 

maintenance [5]. Common RT approaches include 

minimization, which removes redundant test cases [6]; 

selection, which chooses the most critical ones [7]; and TCP, 

which reorders test suites to achieve goals such as early fault 

detection [8]. TCP improves RT efficiency and quality 

enabling parallel debugging and testing to reduce overall 

costs. 

 

TCP can run continuously until resources are depleted or all 

tests are executed [9]. TCP techniques are broadly classified 

into code-based approaches, which use Model-driven 

approaches which rely on system behavior models and codes 

for determining processing order [10, 11]. Both aim to 

maximize fault detection within limited resources. DL–based 

TCP leverages neural networks to automatically learn 

complex patterns from historical test execution data, code 

variations and fault trends, effectively handling large test 

suites [12]. Also, DL models adaptively prioritizes the test 

cases without manual feature engineering for higher fault 

detection and better generalization in diverse CI 

environments [13]. Various DL based TCP models have 

been developed for CI.  

 

A DL approach for TCP called AnoLSTM [14] for CI was 

created. In this model, Automatic pattern learning and 

successful TCP were achieved by utilizing historical test case 

data, which included features like test case duration, 

execution, and a list of past test results. Improving the rate of 

bug discovery in test cases was the primary goal of this 

strategy. A DL framework was developed [15] to optimize 

TCP and Test Case Generation (TCG) in ST. Unified 

Modeling Language (UML) diagrams from historical source 

code are changed to CSV, features extracted via Entropy-

based Locust Swarm Optimization Algorithm (Ent-LSOA) 

and reduced using Pearson Correlation Coefficient–

Generalized Discriminant Analysis (PCC-GDA). Finally, 

optimal test cases are prioritized for CI using an Interpolated 

Multiple Time Scale Recurrent Neural Network (IMTRNN). 

A Gated Recurrent Unit (GRU)-based DL model [16] was 

presented for TCP in CI testing. By analyzing historical test 
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execution data and factors such as distance, duration, status 

changes, and last run, the model ranks crucial test cases for 

earlier fault recognition and reduced testing time. This 

approach accelerates feedback in CI workflows enabling 

rapid defect resolution and enhancing development 

efficiency. 

 

While several existing models for DL based TCP have 

demonstrated good performance, they also exhibit notable 

limitations. In RT, many DL models struggle to capture both 

the structural relationships within test case features and the 

temporal dependencies that arise across multiple testing 

cycles leading to suboptimal prioritization. Additionally, 

some models often rely heavily on large volumes of past test 

execution data, that might not necessarily be available in 

fast-paced CI environments limiting their adaptability to 

diverse software projects and testing scenarios. 

 

To address these challenges, a new DL–based TCP model 

called XCG-TCP is developed for accurate TCP in CI 

environments. The test case data undergoes a pre-processing 

stage involving data cleaning, categorical encoding and 

feature scaling to ensure consistent and balanced input. Then, 

the pre-processed data is inputted to a DCNN which extracts 

spatial and structural features from test case attributes such 

as execution duration, last run result, change in status, 

execution status flags, calculated priority and distance from 

modified test codes. These feature representations capture 

the key static relationships within the test case data. The 

extracted features are then passed to the GRU which models 

the temporal dependencies and sequence patterns across 

multiple regression cycles. This temporal learning enables 

the GRU to identify failing test cases more effectively, 

allowing for better prioritization decisions. To enhance trust 

and interpretability, the SHAP model is integrated as an XAI 

method. SHAP provides transparent insights into the impact 

of every input attribute on the forecasting made by both the 

CNN and GRU components for the final TCP actions. By 

combining deep feature extraction, temporal modeling, and 

explainability, XCG delivers early fault detection, faster 

testing cycles, and greater adaptability to diverse CI settings. 

 

The following is the outline of the study: Section II examines 

associated studies on TCP prediction using DL techniques. 

Section III presents the proposed algorithm. Section IV 

evaluates the effectiveness of the suggested approach in 

relation to current algorithms. Section V completes the study 

and discusses potential future improvements. 

 

2. Literature Survey 
 

Some of the recent DL based TCP Prioritization models are 

given below. 

 

Rawat et al. [17] devised a Reinforcement Learning and 

hidden Markov model for prioritizing software test cases. 

This model optimizes the selection of test cases that 

prioritize identifying faults in new code variations presented 

into the code-bases. Also, it allows the developers to prevent 

multiple builds with early build failure detection potentially 

reducing the cost of CI through automated build-result 

prediction. However, the application of pre-collected datasets 

prevented the findings from being statistically validated. 

Abdelkarim & ElAdawi, [18] constructed a TCP with End-

to-End Deep Neural Networks (TCP-Net++). This model 

learns comprehensive connection among test cases and the 

code itself by integrating characteristics such as test case 

data, utilization data, and error history. It prioritizes failure 

frequencies and coverage criteria for real-life industrial 

software packages, but results are not statistically verified 

due to the use of existing datasets.   

 

Chen et al. [19] developed a DNN model to prioritize the teat 

case using the activation graph (Actgraph). In this approach, 

the DNN neurons are seen as nodes, and the adjacency 

matrix as the network of connections between them. Then, 

through message passing, the adjacency matrix and node 

characteristics were amassed. The resulting node features 

will include the neighboring nodes' features and the 

structural information between the nodes, which may be 

utilized efficiently for TCP. But, this model results with high 

time complexity issues. da Roza et al. [20] created a 

contextual information-based approach for machine learning-

based TCP in CI development. The model prioritizes test 

cases with higher failure probability and other properties, 

such as execution time, size and complexity. It uses two 

contextual algorithms like Multi-Armed Bandit (MAB) and 

Random Forest (RF) to evaluate feature groups simply 

composed during the CI cycle. However, delayed learning 

and slow convergence occurred due to ineffective reward 

levels in CI iterations. 

 

Manikkannan & Babu, [21] suggested a TCP using 

Embedded Auto Encoder (EAE) for Software Quality 

Assurance and to generate a well-organized system of the 

prioritized test cases. The code analysis for every benchmark 

was initially processed from the source code to reduce noise. 

The data was then fed into the EAE, which prioritizes tasks 

and reduces phases to produce high-quality software free 

from defects. However, more features like source code 

modifications were needed to enhance efficiency. Garg & 

Shekhar, [22] suggested a ranking-based Non-Dominated 

Sorting Genetic Algorithm (NSGA-2) algorithm for TCP 

optimization to enhance the fault sensitivity analysis. This 

model prioritizes test cases delicate to detects which was 

particularly produced by new alterations. Important goals 

including sensitivity index, execution cost, and average 

percentage of faults detected (APFD) are achieved by 

utilizing previous data. This method was tested on eight 

applications including five handcrafted and java-based 

applications for fault sensitivity analysis.  But, this model 

necessitated more features to increase scalability and 

efficiency.  

 

Silveira et al. [23] suggested a visual analytics system for 

exploring TCP called TPVis. In this method, TPVis was 

developed in collaboration with ST professionals and 

features 12 analytical tools to support visualization and 

prioritization. The model effectively addresses two use cases 

and incorporates feedback from domain experts. 

Additionally, it supports generic datasets, allowing it to be 

used across different software projects and integrated with CI 

pipelines. But, very little information about a test case and its 

execution history were used which limits the models 
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performances. Assiri [24] presented a TCP method using the 

Dragon Boat Optimization Algorithm (DBOA) for software 

quality testing. Inspired by dragon boat racing, this model 

reorders test cases to enhance fault detection and reduce 

execution time, optimizing APFD for faster coverage. 

DBOA excels at handling large search spaces which balances 

the exploration and exploitation and adapting to complex 

testing scenarios. However, this model results in higher 

computational complexity and overfitting issues. 

 

3. Proposed Methodology 
 

In this section, the proposed model is completely illustrated. 

Figure 1 depicts pipeline of the suggested model. 

 

 
Figure 1: Outline of the suggested work 

 

3.1 Data Pre-processing 

 

In TCP for CI, data pre-processing equips the test case 

execution data for effective modeling as illustrated below: 

• Data Cleaning: Removes incomplete or inconsistent test 

execution records, such as missing execution durations or 

status flags. Any test cases with corrupted or incomplete 

historical execution data are either imputed using median 

values or excluded to maintain dataset integrity. 

• Categorical Encoding: Converts categorical features like 

last run result (pass/fail), execution status flags, and 

change status into numerical formats using One-Hot 

Encoding. This avoids misleading ordinal interpretations 

of test case states and preserves categorical 

distinctiveness. 

• Feature Scaling: Numerical features such as execution 

duration, calculated priority, and code modification 

distance are normalized using Min-Max Scaling to a [0,1] 

range, ensuring all features contribute proportionally 

during CNN-GRU training. 

 

These steps ensure the TCP model receives consistent and 

noise-free inputs reflective of the test case execution context. 

 

3.2 DCNN-GRU   

 

The CNN extracts the spatial and structural relationships 

from test case attributes at each regression cycle. Three 

primary components make up the model design: the input 

layer, the feature extraction layer, and the prioritizing layer. 

A DCNN at the feature extraction layer processes the pre-

processed test case attributes, which are received as input by 

the input layer. The feature extraction layer's CNN uses a 

combination of pooling and convolutional layers. Utilizing 

filters and nonlinear activation functions, the convolutional 

layers aim to uncover local patterns and structural links from 

the test case information. The spatial patterns and 

connections between features that are important for finding 

test cases with faults are captured by these layers. In order to 

derive attributes 𝑥𝑙−1 from the input, the convolutional layer 

uses a collection of weighted kernels 𝑊𝑙 for each layer 𝑙.  
Eq. (1) provides a numerical illustration of this process: 

 

𝐶𝑙 = 𝑊 𝑙𝑇
𝑋𝑙−1 + 𝑏𝑙                        (1) 

 

The input is convolved with the kernels and the bias term 𝑏𝑙 

is added to determine the resultant feature map, which is 

denoted as 𝐶𝑙. A total of three convolutional layers are 

utilized: the first utilizes 64 filters with 1 × 5 kernels, the 

second employs 128 filters with 1 × 3 kernels, and the third 

employs 256 filters with 1 × 3 kernels. The last 

convolutional layer contains 128 filters with 1 × 3 kernels, 

while the fourth layer employs 256 filters with 1 × 3 kernels. 

To guarantee that the test case attribute sequences may be 

used for fine-grained feature extraction, every convolutional 

layer employs a stride of 1 × 1. The 'tanh' function and the 

'he_normal' kernel initializer are used by the convolutional 

layers. 

 

After the convolutional layers, the feature maps are 

downsampled in the pooling layers that follow. In order to 

reduce the data's spatial dimensions, this downsampling 

keeps the most significant features. In order to reduce 

computational complexity and zero in on the most essential 

information, the pooling layers reduce the spatial resolution. 

The full feature map is obtained by doing the pooling 

technique with a window size (𝑚, 𝑛). To get the pooled 

version, we use the ''max'' function to pick the highest 

number in each window. The formula to calculate 𝑃𝑙  is the 

same as in Eq. (2). 

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 705 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

𝑃𝑙 =  𝑀𝑎𝑥(𝑚,𝑛)𝐶𝑙                                   (2) 

 

A GRU layer is employed for TCP in the last phase of the 

XCG-TCP model. The DCNN begins by flattening the 

spatial and structural characteristics it has retrieved into 1D 

vectors. Afterwards, the feature vectors are sent to the 1024-

unit GRU layer. The GRU processes the sequence of features 

across multiple regression cycles, capturing temporal 

dependencies and trends in test case execution patterns. The 

GRU architecture includes two key elements: the update gate 

(𝑧𝑡) and reset gate (𝑟𝑡), which regulate the flow of 

information and enable the model to retain or discard 

historical context as needed. This mechanism allows XCG-

TCP to effectively identify and prioritize fault-prone test 

cases based on both current and past execution data. The 

computation of GRU layers can be represented in below 

equations 

The update gate 𝑧𝑡 is computed as in Eq. (3) 

  

𝑧𝑡 =  𝜎(𝑊𝑧(ℎ𝑡−1, 𝑥𝑡  ) + 𝑏𝑧)                        (3) 

 

The reset gate 𝑟𝑡 is computed as in Eq. (4) 

  

𝑟𝑡 =  𝜎(𝑊𝑟(ℎ𝑡−1, 𝑥𝑡  ) + 𝑏𝑟)                        (4) 

  

The hidden state ℎ̂𝑡 is then calculated as in Eq. (5) 

 

ℎ̂𝑡 = tanh(𝑊ℎ . [𝑟𝑡  ʘ ℎ𝑡+1, 𝑥𝑡] + 𝑏ℎ)                (5) 

 

Finally, the hidden state ℎ𝑡 representing the temporal 

embedding is updated by 

 

ℎ𝑡 =  (1 − 𝑧𝑡) ʘ ℎ𝑡+1 + 𝑧𝑡  ʘ ℎ̂𝑡          (6) 

   

In Eq. (3)-(6), 𝑥𝑡 and ℎ𝑡 represent the input feature vector 

and the hidden state at regression cycle 𝑡, respectively. 

𝑊𝑧 , 𝑊𝑟 , 𝑊ℎ   corresponds to the weights for the update, reset 

gates and hidden state, while 𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ are their respective 

bias vectors. 𝜎 and ⊙ are the activation function and 

element-wise multiplication respectively.  

 

Furthermore, the use of the DCNN–GRU architecture in 

XCG-TCP effectively fuses the merits of DCNN for spatial 

feature retrieval and GRU for temporal sequence modeling, 

thereby reducing the impact of noisy or redundant features 

on prioritization decisions. The architecture is designed with 

appropriate filters and layers to capture critical feature 

interactions from test case execution data and reducing 

background noise for enhanced efficiency.  

 

Next, the above layer’s output is distributed over a 

prioritization scoring layer with a softmax function. This 

output creates prioritization likelihoods of each test case 

distinguishing an error. These probabilities are used to 

generate the final ranking, ensuring that test cases with the 

highest predicted fault detection potential are initially 

performed in CI. 

 

3.3 SHapley Additive exPlanations (SHAP)  

 

SHAP is an XAI technique grounded in cooperative game 

theory designed to quantify the influence of every input 

feature to models estimation. In XCG-TCP, SHAP is used to 

interpret the combined CNN-GRU structure by assigning an 

important value to each test case attributes.  

 

It uses well-formed values to interpret the influence of every 

features to the forecasting. In the XCG-TCP model, SHAP 

applies cooperative game theory to evaluate how effectively 

each subset (or coalition) of input features contributes to 

improving the TCP outcome. The SHAP formula is defined 

as in Eq. (7) 

 

𝑒(𝑍′) =  𝜑0 + ∑ 𝜑𝑗𝑧𝑗
′𝑀

𝑗=1                 (7) 

 

Where, 𝑧𝑗 denotes the coalition vector i.e., present if 𝑧′ = 1 

or absent if 𝑧′ = 0.  𝑀 denotes input features count, 𝑒 

provides the models explanation. SHAP computes Shapley 

values by assuming some features are active (present) while 

others are inactive (absent) which allows SHAP to determine 

each feature’s contribution to the prediction. In order to 

determine the SHAP values for the function 𝑓, where 𝑆 is a 

subset of the features and 𝑍 is a collection of every feature 

input with (𝑧′ = 1), it is necessary to identify the anticipated 

outcome of the unit given that 𝑆 is a subset of the input 

features and write it as 𝐸[(𝑓(𝑥)|𝑥𝑠)]. SHAP values relate to 

the 𝜑𝑗 values for feature 𝑗 in game theory is computed by 

averaging its marginal contribution across all possible 

feature subsets 𝑆 that do not include 𝑗 as in Eq. (7) 

 

𝜑𝑗 =  ∑
|𝑆|‼(𝑀−|𝑆|−1)!

𝑀!𝑆⊆𝑍\{𝑗}  [𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆) ]   (8) 

 

Where, 𝑓𝑥(𝑆) will be model output using only 𝑆 attributes. 

This formulation ensures a fair distribution of the model’s 

prediction among all features based on their cooperative 

influence. 

 

For XCG-TCP, SHAP values are computed for the final 

prioritization score produced by the CNN–GRU network. 

These values are visualized to highlight which features most 

strongly influence the ranking of test cases, helping 

practitioners validate the model’s reasoning and build 

confidence in automated prioritization decisions. 

 

4. Result and Discussion  
 

4.1 Dataset Description 

 

To demonstrate the efficacy of the suggested model, we 

employ the following resources: the Google Shared Dataset 

of Test Suite Results (GSDTSR) [26], industrial datasets for 

testing complicated industrial robots from ABB Robotics 

Norway, Paint Control [25] and IOF/ROL [25] from Google. 

With data spanning more than 300 CI cycles, these datasets 

provide an overview of test runs and their results. All of 

these are implemented in a CI setting for software 

development. 

 

Table 1: Illustration of Industrial Data Sets: All columns 

represent dataset size 
Dataset Test Cases CI Cycles Verdicts Failed 

Paint Control 114 312 25,594 19.36% 

IOF/ROL 2,086 320 30,319 28.43% 

GSDTSR 5,555 336 1,260,617 0.25% 
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The structure of the data sets is summarized in Table 1. 

While GSDTSR is divided into hourly intervals because it 

initially provided log data of 16 days, which is too short for 

our review, both ABB data sets are divided into daily 

intervals. Even still, GSDTSR has fewer collapsed test 

executions and a larger average test suite size per CI cycle 

than the ABB data sets. The above mentioned test cases are 

defined by their execution duration, their previous last 

execution time and results of their recent executions. Paint-

Control, IOFROL and Google GSDTSR are datasets that 

contain only features related to the execution history of test 

cases.  

 

4.2 Parameter Settings  

 

The proposed XCG-TCP model is trained using five 

convolutional layers with 32, 64, 128, 128, and 64 filters 

respectively, each having a kernel size of 1 × 3 and stride of 

1 × 1. All convolutional layers use the tanh function, 

he_normal kernel initializer, and max pooling with pool size 

1 × 2 where applicable. The GRU layer has 1024 units with 

tanh activation for candidate states and sigmoid for the 

update and reset gates. The final Softmax layer outputs test 

case ranking likelihoods. With a learning rate of 0.001, batch 

size of 64, and 100 epochs, the model is trained using the 

Adam optimizer with categorical cross-entropy loss.  

 

4.3 Performance Evaluation 

 

The performance of XCG-TCP is compared with the existing 

algorithms like AnoLSTM [14], IMTRNN [15], GRU-TCP 

[16], TCP-Net++ [19] DBOA-TCP [24] is executed in 

Python 3.7.8 using the dataset illustrated in section 4.1. An 

overview of the measures used to compare the suggested and 

prevailing approaches is provided below. 

 

4.3.1  Average percentage of faults detected (APFD): It 

influences the TS's speed at identifying errors. APFD 

determines the weighted mean of the mistakes found 

throughout TS run.   

 

𝐴𝑃𝐹𝐷 =  1 − (
𝑇𝐹1+ 𝑇𝐹2+⋯+𝑇𝐹𝑚

𝑁𝑀
+ 

1

2𝑛
)       (9) 

 

In Eq. (9), 𝑚 is the aggregate amount of errors found in the 

program for TC execution and 𝑇 is the resultant TS.  𝑛 is the 

total TC number, 𝑇𝑓1, 𝑇𝑓2, … . , 𝑇𝑓𝑚 are the first 𝑇 points that 

disclose the 𝑚. 

 

4.3.2  Average percentage of faults detected per cost 

(𝑨𝑷𝑭𝑫𝒄):  In order to execute TS 𝑇′,  the usual percentage 

of cost-effective TCs is compared to the typical percentage 

of fault severity in order to get the weighted average 

proportion of mistakes. 

 

𝐴𝑃𝐹𝐷𝑐 =  
∑ (𝑓𝑖∗(∑ 𝑡𝑗−

1

2
𝑡𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝑡𝑗∗ 𝑛
𝑗=𝑇𝐹𝑖

∑ (𝑓𝑖)𝑚
𝑖=1

           (10) 

 

In Eq. (10), 𝑇 represents the TS including 𝑛 TCs with 

overheads 𝑡1, 𝑡2, … … , 𝑡𝑛 . 𝐹 be the set of 𝑚 mistakes 

revealed in 𝑇; the degrees of those mistakes 𝑓1, 𝑓2, ….., 𝑓𝑚. 

𝑇𝐹𝑖 as the initial TC that identifies the issue 𝑖 is  𝑇𝐹𝑖. 

 

4.3.3  Normalized Average Percentage of Faults Detected 

(NAPFD): It integrates both the fault data and time detection 

to calculate TCP performance. It is signified in Eq. (11), 

 

𝑁𝐴𝑃𝐹𝐷 =  𝑝 − (
𝑇𝐹1+ 𝑇𝐹2+⋯+𝑇𝐹𝑚)

𝑚∗𝑛
+ 

𝑝

2𝑛
)       (11) 

 

In Eq. (11), 𝑝 is calculated by dividing the identified faults to 

the prioritized TS of aggregate number of detected error. 𝑇𝐹𝑖 

is the number of the TC in which fault 𝑖 is determined by 

testing the significance order. When no error is determined, 

𝑇𝐹𝑖  is set to 0. 

 

4.3.4  Average Percentage of Faults Detected (𝑨𝑷𝑭𝑫𝒂): 

𝐴𝑃𝐹𝐷𝑎 is an enhanced version of 𝐴𝑃𝐹𝐷𝑐  which constitutes 

TC process for the testing task.  The 𝐴𝑃𝐹𝐷𝑎 notation is 

provided in Eq. (12), 

 

𝐴𝑃𝐹𝐷𝑎 = (1 − ∑
∑ 𝐶𝑗

𝑇𝐹𝑖
𝑗=1

𝑚 ∑ 𝐶𝑗
𝑛
𝑗=1

𝑚
𝑖=1 ) ∗ 100%     (12) 

 

In above Eq. (12), 𝐶𝑗 is the cost obtained in the 𝑗𝑡ℎ TC. 

 

4.3.5  Time-aware average percent of faults detected 

(𝑨𝑷𝑭𝑫𝑻𝑨): This is the specific instance of 〖APFD』_c for 

cases where the test costs and mistake challenges are the 

same.  

 

𝐴𝑃𝐹𝐷𝑇𝐴 =  
∑ (∑ 𝐶𝑗−

1

2
𝐶𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝐶𝑗∗ 𝑛
𝑗=1 |𝜎|

             (13) 

                                                                 

In Eq. (13),  𝜎 denotes constant among the primary and latter 

TCs in the whole TS. 

 

4.3.6  Root mean square error (RMSE): It determines the 

difference amongst the observed and estimated NAPFD 

values. Using the dissimilar value intended for 𝑇′ in a CI 

repetition specified by learning model (𝑢̂𝐶), the adjoint 

estimated value 𝑇′ is used by RL model. 

 

𝑅𝑀𝑆𝐸 (𝛹) = √
∑ (𝑢𝑞−𝑢𝑞 )𝐶𝐼

𝑞

𝐶𝐼
         (14) 

 

In Eq. (14), 𝐶𝐼 is the total system cycles. Lesser RMSE 

determines more precise results. 𝑢̂𝑞 defines the best 

prioritizing identified by RL for an ideal priority task. 
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Figure 2: APFD Evaluation for Proposed and Existing Models 

 

Figure 2 demonstrates the APFD analysis for suggested and 

existing models on different test cases dataset. In figure 3, 

XCG-TCP model clearly show more efficiency than 

conventional models for TCP on collected industrial dataset. 

For instance, APFD value of XCG-TCP is 39.13%, 28%, 

18.52%, 12.94% and 6.67% higher than the AnoLSTM, 

IMTRNN, GRU-TCP, TCP-Net++ and DBOA-TCP on Paint 

Control dataset.  Likewise, Figure 3 shows that the suggested 

model attained higher 𝐴𝑃𝐹𝐷𝑐  than other methods. For 

example, 𝐴𝑃𝐹𝐷𝑐  value of XCG-TCP is 44.78%, 31.08%, 

22.78%, 11.49% and 3.19%  greater than the AnoLSTM,  

IMTRNN, GRU-TCP, TCP-Net++ and DBOA-TCP models 

respectively on IOF\ROL dataset. 

 

The figure 4 establishes the assessment of NAPFD values of 

suggested and traditional models on various test case dataset 

like Paint Control, IOF/ROL and GSDTSR. For instances, 

the NAPFD value of XCG-TCP is 24.68%, 17.07%, 12.94%, 

9.09% and 4.35% higher than the AnoLSTM, IMTRNN, 

GRU-TCP, TCP-Net++ and DBOA-TCP on GSDTSR 

dataset. Similarly, the figure 5 establishes the assessment of 

𝐴𝑃𝐹𝐷𝑎  values of suggested and traditional models on 

various test case dataset. The 𝐴𝑃𝐹𝐷𝑎  value of XCG-TCP is 

26.32%, 18.52%, 12.94%, 7.87% and 3.23% higher than the 

AnoLSTM, IMTRNN, GRU-TCP, TCP-Net++ and DBOA-

TCP on IOF/ROL dataset. In both the comparison, the 

proposed XCG-TCP models achieves high NAPFD and 

𝐴𝑃𝐹𝐷𝑎 results than other existing models.  

 

 
Figure 3:  𝐴𝑃𝐹𝐷𝑐  Analysis for various methods 

 

 
Figure 4: NAPFD Evaluation for Proposed and Existing Models 
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Figure 5:  𝐴𝑃𝐹𝐷𝑎 Analysis for various methods 

 

 
Figure 6:  𝐴𝑃𝐹𝐷𝑇𝐴 Analysis for various methods 

 

The figure 6 establishes the assessment of 𝐴𝑃𝐹𝐷𝑇𝐴 values of 

suggested and traditional models on various test case dataset 

like Paint Control, IOF/ROL and GSDTSR. In figure 7, 

XCG-TCP attains superior  𝐴𝑃𝐹𝐷𝑇𝐴 than earlier TCP 

algorithms. The 𝐴𝑃𝐹𝐷𝑇𝐴 value of XCG-TCP is 25.33%, 

18.99%, 13.25%, 9.3% and 4.44% higher than the 

AnoLSTM, IMTRNN, GRU-TCP, TCP-Net++ and DBOA-

TCP algorithms on GSDTSR dataset.  The figure 7 

establishes the assessment of RMSE values of suggested and 

traditional models on various test case dataset. The RMSE 

value of XCG-TCP is 75.73%, 72.56%, 58.49%, 50.35% and 

33.69% higher than the AnoLSTM, IMTRNN, GRU-TCP, 

TCP-Net++ and DBOA-TCP algorithms on Paint Control 

dataset. This study shown that, in comparison to other 

classical models, the suggested model has lower RMSE 

values. 

 

 
Figure 7: RSME Analysis for various methods 

 

5. Conclusion 
 

In this paper, XCG-TCP model is developed integrating 

CNN, GRU and SHAP for accurate TCP in CI. Test case 

data undergoes cleaning, encoding, and scaling for balanced 

inputs. A Deep CNN extracts spatial and structural features 

from attributes like execution time, results history, status 

changes, flags, priority, and code change distance. These 

features are processed by a GRU to capture temporal patterns 

across regression cycles for detecting failing cases. SHAP, as 

an Explainable AI method, quantifies each feature’s impact 

on prioritization. This integration improves early fault 

detection, speeds testing, and adapts to diverse CI settings. 

Experimental results demonstrate that XCG-TCP 

outperforms standard algorithms on industrial datasets. 

 

References 
 

[1] K. Naik and P. Tripathy, Software Testing and Quality 

Assurance: Theory and Practice. John Wiley & Sons, 

2011. 

[2] M. Qasim, A. Bibi, S. J. Hussain, N. Z. Jhanjhi, M. 

Humayun, and N. U. Sama, “Test case prioritization 

techniques in software regression testing: An 

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 709 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

overview,” International Journal of Advanced and 

Applied Sciences, 8(5), pp. 107-121, 2021. 

[3] E. Soares, G. Sizilio, J. Santos, D. A. da Costa, and U. 

Kulesza, “The effects of continuous integration on 

software development: a systematic literature review,” 

Empirical Software Engineering, 27(3), p. 78, 2022. 

[4] O. Elazhary, C. Werner, Z. S. Li, D. Lowlind, N. A. 

Ernst, and M. A. Storey, “Uncovering the benefits and 

challenges of continuous integration practices,” IEEE 

Transactions on Software Engineering, 48(7), pp. 

2570-2583, 2021. 

[5] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, 

“Empirically evaluating readily available information 

for regression test optimization in continuous 

integration,” in Proc. 30th ACM SIGSOFT 

International Symposium on Software Testing and 

Analysis, pp. 491-504, Jul. 2021. 

[6] S. Parida, D. Rath, and D. B. Mishra, “A review on 

test case selection, prioritization and minimization in 

regression testing,” in Proc. International Conference 

on Metaheuristics in Software Engineering and its 

Application, Cham: Springer International Publishing, 

pp. 156-163, Feb. 2022. 

[7] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, 

“Test case selection and prioritization using machine 

learning: a systematic literature review,” Empirical 

Software Engineering, 27(2), p. 29, 2022. 

[8] A. Samad, H. Mahdin, R. Kazmi, and R. Ibrahim, 

“Regression test case prioritization: a systematic 

literature review,” International Journal of Advanced 

Computer Science and Applications, 12(2), 2021. 

[9] R. Mukherjee and K. S. Patnaik, “A survey on 

different approaches for software test case 

prioritization,” Journal of King Saud University – 

Computer and Information Sciences, 33(9), pp. 1041-

1054, 2021. 

[10] N. Gokilavani and B. Bharathi, “Test case 

prioritization to examine software for fault detection 

using PCA extraction and K-means clustering with 

ranking,” Soft Computing – A Fusion of Foundations, 

Methodologies & Applications, 25(7), 2021. 

[11] C. Birchler, S. Khatiri, P. Derakhshanfar, S. 

Panichella, and A. Panichella, “Single and multi-

objective test cases prioritization for self-driving cars 

in virtual environments,” ACM Transactions on 

Software Engineering and Methodology, 32(2), pp. 1-

30, 2023. 

[12] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder: 

Deep learning for test case prioritization in continuous 

integration testing,” in Proc. 2021 IEEE International 

Conference on Software Maintenance and Evolution 

(ICSME), pp. 525-534, Sept. 2021. 

[13] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. 

Chen, “Deepgini: prioritizing massive tests to enhance 

the robustness of deep neural networks,” in Proc. 29th 

International Symposium on Software Testing and 

Analysis, pp. 177-188, 2020. 

[14] A. Tamizharasi and P. Ezhumalai, “A novel 

framework for optimal test case generation and 

prioritization using Ent-LSOA and IMTRNN 

techniques,” Journal of Electronic Testing, pp. 1-24, 

2024. 

[15] T. K. Choudhury, M. Behera, S. K. Dash, S. K. Pani, 

and J. Mishra, “AnoLSTM – A deep learning 

approach for test cases prioritization,” Procedia 

Computer Science, 258, pp. 1793-1803, 2025. 

[16] A. Behera and A. A. Acharya, “An effective GRU-

based deep learning method for test case prioritization 

in continuous integration testing,” Procedia Computer 

Science, 258, pp. 4070-4083, 2025. 

[17] N. Rawat, V. Somani, and A. K. Tripathi, “Prioritizing 

software regression testing using reinforcement 

learning and hidden Markov model,” International 

Journal of Computers and Applications, 45(12), pp. 

748-754, 2023. 

[18] M. Abdelkarim and R. ElAdawi, “TCP-Net++: Test 

case prioritization using end-to-end deep neural 

networks – deployment analysis and enhancements,” 

in Proc. 2023 IEEE International Conference On 

Artificial Intelligence Testing (AITest), pp. 99-106, 

Jul. 2023. 

[19] J. Chen, J. Ge, and H. Zheng, “Actgraph: Prioritization 

of test cases based on deep neural network activation 

graph,” Automated Software Engineering, 30(2), p. 

28, 2023. 

[20] E. A. da Roza, J. A. do Prado Lima, and S. R. 

Vergilio, “On the use of contextual information for 

machine learning-based test case prioritization in 

continuous integration development,” Information and 

Software Technology, 171, p. 107444, 2024. 

[21] D. Manikkannan and S. Babu, “Test case prioritization 

via embedded autoencoder model for software quality 

assurance,” IETE Journal of Research, pp. 1-11, 2024. 

[22] K. Garg and S. Shekhar, “Optimizing test case 

prioritization through ranked NSGA-2 for enhanced 

fault sensitivity analysis,” Innovations in Systems and 

Software Engineering, pp. 1-22, 2024. 

[23] J. A. Silveira, L. Vieira, and N. Ferreira, “TPVis: A 

visual analytics system for exploring test case 

prioritization methods,” Computers & Graphics, 124, 

p. 104064, 2024. 

[24] M. Assiri, “Test case prioritization using dragon boat 

optimization for software quality testing,” Electronics, 

14(8), p. 1524, 2025. 

[25] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, 

“Reinforcement learning for automatic test case 

prioritization and selection in continuous integration,” 

in Proc. 26th ACM SIGSOFT International 

Symposium on Software Testing and Analysis, pp. 12-

22, Jul. 2017. 

[26] S. Elbaum, A. Mclaughlin, and J. Penix, “The Google 

dataset of testing results,” 2014. 

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 710 

http://www.ijsr.net/



