
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

An Explainable Deep Learning Model in Improving

Test Case Prioritization for Continuous Integration

Testing

Shankar Ramakrishnan1, E. K Girisan2

1Research Scholar, Department of Computer Science, Sri Krishna Adithya College of Arts and Science,

Assistant Professor in Department of Computer Technology and Data Science, Sri Krishna Arts and Science College, Coimbatore, Tamil

Nadu, India

Email: shankar.ramakrishnanphd17[at]gmail.com

2Associate Professor, Department of Computer Science, Sri Krishna Adithya College of Arts and Science, Coimbatore,

Tamil Nadu, India

Email: ekgirisan[at]gmail.com

Abstract: Continuous Integration (CI) testing is a critical phase in current software industry. Test Case Prioritization (TCP) methods

are introduced to enhance Regression Testing (RT) by ranking test cases for early developer feedback. Various Deep Learning (DL)

models have been developed to improve TCP in CI environments. But, many struggle to simultaneously capture the structural

relationships among test case features and the temporal dependencies across multiple testing cycles. Furthermore, these models often

rely on large amounts of historical execution data, limiting their effectiveness in fast-paced and diverse CI scenarios. To address this

issue, XCG-TCP, an eXplainable Convolutional Neural Network (CNN) – Gated Rectified Unit (GRU) is proposed for accurate TCP in

CI. Initially, the collected test case data will be pre-processed using data cleaning, categorical encoding, and feature scaling to ensure

balanced and consistent inputs. A Deep CNN (DCNN) extracts spatial and structural features from various test case attributes such as

execution duration, previous results, status changes, execution flags, priority and code modification distance. These features are then

fed into a Gated Recurrent Unit (GRU) to model the temporal dependencies and sequence patterns across regression cycles enabling

effective identification of failing test cases. The integration of SHapley Additive exPlanations (SHAP) as an Explainable Artificial

Intelligence (XAI) model enhances the CNN-GRU model by quantifying the influence of each input feature on the final TCP decision.

This combination of these models enhances early fault detection, accelerates testing cycles and improves adaptability across varying CI

environments. Experimental results demonstrate that XCG-TCP outperforms standard algorithms on industrial datasets.

Keywords: Continuous Integration, Test Case Prioritization, Convolutional Neural Network, Gated Rectified Unit, SHapley Additive

exPlanations

1. Introduction

Software Testing (ST) is essential for software development,

intended for identifying bugs and guaranteeing the system

functions as expected [1]. Within ST, RT plays a key role in

preventing different errors and ensuring that code variations

do not introduce issues [2]. Modern projects often adopt CI,

a methodology for creating and testing software that

streamlines the development phase, including frequent

execution of RT [3]. However, running all test cases in every

cycle is challenging due to time, resource, and cost

constraints, especially with rapid release schedules [4]. RT

becomes particularly demanding in large software systems,

requiring substantial computational resources and ongoing

maintenance [5]. Common RT approaches include

minimization, which removes redundant test cases [6];

selection, which chooses the most critical ones [7]; and TCP,

which reorders test suites to achieve goals such as early fault

detection [8]. TCP improves RT efficiency and quality

enabling parallel debugging and testing to reduce overall

costs.

TCP can run continuously until resources are depleted or all

tests are executed [9]. TCP techniques are broadly classified

into code-based approaches, which use Model-driven

approaches which rely on system behavior models and codes

for determining processing order [10, 11]. Both aim to

maximize fault detection within limited resources. DL–based

TCP leverages neural networks to automatically learn

complex patterns from historical test execution data, code

variations and fault trends, effectively handling large test

suites [12]. Also, DL models adaptively prioritizes the test

cases without manual feature engineering for higher fault

detection and better generalization in diverse CI

environments [13]. Various DL based TCP models have

been developed for CI.

A DL approach for TCP called AnoLSTM [14] for CI was

created. In this model, Automatic pattern learning and

successful TCP were achieved by utilizing historical test case

data, which included features like test case duration,

execution, and a list of past test results. Improving the rate of

bug discovery in test cases was the primary goal of this

strategy. A DL framework was developed [15] to optimize

TCP and Test Case Generation (TCG) in ST. Unified

Modeling Language (UML) diagrams from historical source

code are changed to CSV, features extracted via Entropy-

based Locust Swarm Optimization Algorithm (Ent-LSOA)

and reduced using Pearson Correlation Coefficient–

Generalized Discriminant Analysis (PCC-GDA). Finally,

optimal test cases are prioritized for CI using an Interpolated

Multiple Time Scale Recurrent Neural Network (IMTRNN).

A Gated Recurrent Unit (GRU)-based DL model [16] was

presented for TCP in CI testing. By analyzing historical test

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 703

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

execution data and factors such as distance, duration, status

changes, and last run, the model ranks crucial test cases for

earlier fault recognition and reduced testing time. This

approach accelerates feedback in CI workflows enabling

rapid defect resolution and enhancing development

efficiency.

While several existing models for DL based TCP have

demonstrated good performance, they also exhibit notable

limitations. In RT, many DL models struggle to capture both

the structural relationships within test case features and the

temporal dependencies that arise across multiple testing

cycles leading to suboptimal prioritization. Additionally,

some models often rely heavily on large volumes of past test

execution data, that might not necessarily be available in

fast-paced CI environments limiting their adaptability to

diverse software projects and testing scenarios.

To address these challenges, a new DL–based TCP model

called XCG-TCP is developed for accurate TCP in CI

environments. The test case data undergoes a pre-processing

stage involving data cleaning, categorical encoding and

feature scaling to ensure consistent and balanced input. Then,

the pre-processed data is inputted to a DCNN which extracts

spatial and structural features from test case attributes such

as execution duration, last run result, change in status,

execution status flags, calculated priority and distance from

modified test codes. These feature representations capture

the key static relationships within the test case data. The

extracted features are then passed to the GRU which models

the temporal dependencies and sequence patterns across

multiple regression cycles. This temporal learning enables

the GRU to identify failing test cases more effectively,

allowing for better prioritization decisions. To enhance trust

and interpretability, the SHAP model is integrated as an XAI

method. SHAP provides transparent insights into the impact

of every input attribute on the forecasting made by both the

CNN and GRU components for the final TCP actions. By

combining deep feature extraction, temporal modeling, and

explainability, XCG delivers early fault detection, faster

testing cycles, and greater adaptability to diverse CI settings.

The following is the outline of the study: Section II examines

associated studies on TCP prediction using DL techniques.

Section III presents the proposed algorithm. Section IV

evaluates the effectiveness of the suggested approach in

relation to current algorithms. Section V completes the study

and discusses potential future improvements.

2. Literature Survey

Some of the recent DL based TCP Prioritization models are

given below.

Rawat et al. [17] devised a Reinforcement Learning and

hidden Markov model for prioritizing software test cases.

This model optimizes the selection of test cases that

prioritize identifying faults in new code variations presented

into the code-bases. Also, it allows the developers to prevent

multiple builds with early build failure detection potentially

reducing the cost of CI through automated build-result

prediction. However, the application of pre-collected datasets

prevented the findings from being statistically validated.

Abdelkarim & ElAdawi, [18] constructed a TCP with End-

to-End Deep Neural Networks (TCP-Net++). This model

learns comprehensive connection among test cases and the

code itself by integrating characteristics such as test case

data, utilization data, and error history. It prioritizes failure

frequencies and coverage criteria for real-life industrial

software packages, but results are not statistically verified

due to the use of existing datasets.

Chen et al. [19] developed a DNN model to prioritize the teat

case using the activation graph (Actgraph). In this approach,

the DNN neurons are seen as nodes, and the adjacency

matrix as the network of connections between them. Then,

through message passing, the adjacency matrix and node

characteristics were amassed. The resulting node features

will include the neighboring nodes' features and the

structural information between the nodes, which may be

utilized efficiently for TCP. But, this model results with high

time complexity issues. da Roza et al. [20] created a

contextual information-based approach for machine learning-

based TCP in CI development. The model prioritizes test

cases with higher failure probability and other properties,

such as execution time, size and complexity. It uses two

contextual algorithms like Multi-Armed Bandit (MAB) and

Random Forest (RF) to evaluate feature groups simply

composed during the CI cycle. However, delayed learning

and slow convergence occurred due to ineffective reward

levels in CI iterations.

Manikkannan & Babu, [21] suggested a TCP using

Embedded Auto Encoder (EAE) for Software Quality

Assurance and to generate a well-organized system of the

prioritized test cases. The code analysis for every benchmark

was initially processed from the source code to reduce noise.

The data was then fed into the EAE, which prioritizes tasks

and reduces phases to produce high-quality software free

from defects. However, more features like source code

modifications were needed to enhance efficiency. Garg &

Shekhar, [22] suggested a ranking-based Non-Dominated

Sorting Genetic Algorithm (NSGA-2) algorithm for TCP

optimization to enhance the fault sensitivity analysis. This

model prioritizes test cases delicate to detects which was

particularly produced by new alterations. Important goals

including sensitivity index, execution cost, and average

percentage of faults detected (APFD) are achieved by

utilizing previous data. This method was tested on eight

applications including five handcrafted and java-based

applications for fault sensitivity analysis. But, this model

necessitated more features to increase scalability and

efficiency.

Silveira et al. [23] suggested a visual analytics system for

exploring TCP called TPVis. In this method, TPVis was

developed in collaboration with ST professionals and

features 12 analytical tools to support visualization and

prioritization. The model effectively addresses two use cases

and incorporates feedback from domain experts.

Additionally, it supports generic datasets, allowing it to be

used across different software projects and integrated with CI

pipelines. But, very little information about a test case and its

execution history were used which limits the models

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 704

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

performances. Assiri [24] presented a TCP method using the

Dragon Boat Optimization Algorithm (DBOA) for software

quality testing. Inspired by dragon boat racing, this model

reorders test cases to enhance fault detection and reduce

execution time, optimizing APFD for faster coverage.

DBOA excels at handling large search spaces which balances

the exploration and exploitation and adapting to complex

testing scenarios. However, this model results in higher

computational complexity and overfitting issues.

3. Proposed Methodology

In this section, the proposed model is completely illustrated.

Figure 1 depicts pipeline of the suggested model.

Figure 1: Outline of the suggested work

3.1 Data Pre-processing

In TCP for CI, data pre-processing equips the test case

execution data for effective modeling as illustrated below:

• Data Cleaning: Removes incomplete or inconsistent test

execution records, such as missing execution durations or

status flags. Any test cases with corrupted or incomplete

historical execution data are either imputed using median

values or excluded to maintain dataset integrity.

• Categorical Encoding: Converts categorical features like

last run result (pass/fail), execution status flags, and

change status into numerical formats using One-Hot

Encoding. This avoids misleading ordinal interpretations

of test case states and preserves categorical

distinctiveness.

• Feature Scaling: Numerical features such as execution

duration, calculated priority, and code modification

distance are normalized using Min-Max Scaling to a [0,1]

range, ensuring all features contribute proportionally

during CNN-GRU training.

These steps ensure the TCP model receives consistent and

noise-free inputs reflective of the test case execution context.

3.2 DCNN-GRU

The CNN extracts the spatial and structural relationships

from test case attributes at each regression cycle. Three

primary components make up the model design: the input

layer, the feature extraction layer, and the prioritizing layer.

A DCNN at the feature extraction layer processes the pre-

processed test case attributes, which are received as input by

the input layer. The feature extraction layer's CNN uses a

combination of pooling and convolutional layers. Utilizing

filters and nonlinear activation functions, the convolutional

layers aim to uncover local patterns and structural links from

the test case information. The spatial patterns and

connections between features that are important for finding

test cases with faults are captured by these layers. In order to

derive attributes 𝑥𝑙−1 from the input, the convolutional layer

uses a collection of weighted kernels 𝑊𝑙 for each layer 𝑙.
Eq. (1) provides a numerical illustration of this process:

𝐶𝑙 = 𝑊 𝑙𝑇
𝑋𝑙−1 + 𝑏𝑙 (1)

The input is convolved with the kernels and the bias term 𝑏𝑙

is added to determine the resultant feature map, which is

denoted as 𝐶𝑙. A total of three convolutional layers are

utilized: the first utilizes 64 filters with 1 × 5 kernels, the

second employs 128 filters with 1 × 3 kernels, and the third

employs 256 filters with 1 × 3 kernels. The last

convolutional layer contains 128 filters with 1 × 3 kernels,

while the fourth layer employs 256 filters with 1 × 3 kernels.

To guarantee that the test case attribute sequences may be

used for fine-grained feature extraction, every convolutional

layer employs a stride of 1 × 1. The 'tanh' function and the

'he_normal' kernel initializer are used by the convolutional

layers.

After the convolutional layers, the feature maps are

downsampled in the pooling layers that follow. In order to

reduce the data's spatial dimensions, this downsampling

keeps the most significant features. In order to reduce

computational complexity and zero in on the most essential

information, the pooling layers reduce the spatial resolution.

The full feature map is obtained by doing the pooling

technique with a window size (𝑚, 𝑛). To get the pooled

version, we use the ''max'' function to pick the highest

number in each window. The formula to calculate 𝑃𝑙 is the

same as in Eq. (2).

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 705

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

𝑃𝑙 = 𝑀𝑎𝑥(𝑚,𝑛)𝐶𝑙 (2)

A GRU layer is employed for TCP in the last phase of the

XCG-TCP model. The DCNN begins by flattening the

spatial and structural characteristics it has retrieved into 1D

vectors. Afterwards, the feature vectors are sent to the 1024-

unit GRU layer. The GRU processes the sequence of features

across multiple regression cycles, capturing temporal

dependencies and trends in test case execution patterns. The

GRU architecture includes two key elements: the update gate

(𝑧𝑡) and reset gate (𝑟𝑡), which regulate the flow of

information and enable the model to retain or discard

historical context as needed. This mechanism allows XCG-

TCP to effectively identify and prioritize fault-prone test

cases based on both current and past execution data. The

computation of GRU layers can be represented in below

equations

The update gate 𝑧𝑡 is computed as in Eq. (3)

𝑧𝑡 = 𝜎(𝑊𝑧(ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑧) (3)

The reset gate 𝑟𝑡 is computed as in Eq. (4)

𝑟𝑡 = 𝜎(𝑊𝑟(ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑟) (4)

The hidden state ℎ̂𝑡 is then calculated as in Eq. (5)

ℎ̂𝑡 = tanh(𝑊ℎ . [𝑟𝑡 ʘ ℎ𝑡+1, 𝑥𝑡] + 𝑏ℎ) (5)

Finally, the hidden state ℎ𝑡 representing the temporal

embedding is updated by

ℎ𝑡 = (1 − 𝑧𝑡) ʘ ℎ𝑡+1 + 𝑧𝑡 ʘ ℎ̂𝑡 (6)

In Eq. (3)-(6), 𝑥𝑡 and ℎ𝑡 represent the input feature vector

and the hidden state at regression cycle 𝑡, respectively.

𝑊𝑧 , 𝑊𝑟 , 𝑊ℎ corresponds to the weights for the update, reset

gates and hidden state, while 𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ are their respective

bias vectors. 𝜎 and ⊙ are the activation function and

element-wise multiplication respectively.

Furthermore, the use of the DCNN–GRU architecture in

XCG-TCP effectively fuses the merits of DCNN for spatial

feature retrieval and GRU for temporal sequence modeling,

thereby reducing the impact of noisy or redundant features

on prioritization decisions. The architecture is designed with

appropriate filters and layers to capture critical feature

interactions from test case execution data and reducing

background noise for enhanced efficiency.

Next, the above layer’s output is distributed over a

prioritization scoring layer with a softmax function. This

output creates prioritization likelihoods of each test case

distinguishing an error. These probabilities are used to

generate the final ranking, ensuring that test cases with the

highest predicted fault detection potential are initially

performed in CI.

3.3 SHapley Additive exPlanations (SHAP)

SHAP is an XAI technique grounded in cooperative game

theory designed to quantify the influence of every input

feature to models estimation. In XCG-TCP, SHAP is used to

interpret the combined CNN-GRU structure by assigning an

important value to each test case attributes.

It uses well-formed values to interpret the influence of every

features to the forecasting. In the XCG-TCP model, SHAP

applies cooperative game theory to evaluate how effectively

each subset (or coalition) of input features contributes to

improving the TCP outcome. The SHAP formula is defined

as in Eq. (7)

𝑒(𝑍′) = 𝜑0 + ∑ 𝜑𝑗𝑧𝑗
′𝑀

𝑗=1 (7)

Where, 𝑧𝑗 denotes the coalition vector i.e., present if 𝑧′ = 1

or absent if 𝑧′ = 0. 𝑀 denotes input features count, 𝑒

provides the models explanation. SHAP computes Shapley

values by assuming some features are active (present) while

others are inactive (absent) which allows SHAP to determine

each feature’s contribution to the prediction. In order to

determine the SHAP values for the function 𝑓, where 𝑆 is a

subset of the features and 𝑍 is a collection of every feature

input with (𝑧′ = 1), it is necessary to identify the anticipated

outcome of the unit given that 𝑆 is a subset of the input

features and write it as 𝐸[(𝑓(𝑥)|𝑥𝑠)]. SHAP values relate to

the 𝜑𝑗 values for feature 𝑗 in game theory is computed by

averaging its marginal contribution across all possible

feature subsets 𝑆 that do not include 𝑗 as in Eq. (7)

𝜑𝑗 = ∑
|𝑆|‼(𝑀−|𝑆|−1)!

𝑀!𝑆⊆𝑍\{𝑗} [𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆)] (8)

Where, 𝑓𝑥(𝑆) will be model output using only 𝑆 attributes.

This formulation ensures a fair distribution of the model’s

prediction among all features based on their cooperative

influence.

For XCG-TCP, SHAP values are computed for the final

prioritization score produced by the CNN–GRU network.

These values are visualized to highlight which features most

strongly influence the ranking of test cases, helping

practitioners validate the model’s reasoning and build

confidence in automated prioritization decisions.

4. Result and Discussion

4.1 Dataset Description

To demonstrate the efficacy of the suggested model, we

employ the following resources: the Google Shared Dataset

of Test Suite Results (GSDTSR) [26], industrial datasets for

testing complicated industrial robots from ABB Robotics

Norway, Paint Control [25] and IOF/ROL [25] from Google.

With data spanning more than 300 CI cycles, these datasets

provide an overview of test runs and their results. All of

these are implemented in a CI setting for software

development.

Table 1: Illustration of Industrial Data Sets: All columns

represent dataset size
Dataset Test Cases CI Cycles Verdicts Failed

Paint Control 114 312 25,594 19.36%

IOF/ROL 2,086 320 30,319 28.43%

GSDTSR 5,555 336 1,260,617 0.25%

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 706

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The structure of the data sets is summarized in Table 1.

While GSDTSR is divided into hourly intervals because it

initially provided log data of 16 days, which is too short for

our review, both ABB data sets are divided into daily

intervals. Even still, GSDTSR has fewer collapsed test

executions and a larger average test suite size per CI cycle

than the ABB data sets. The above mentioned test cases are

defined by their execution duration, their previous last

execution time and results of their recent executions. Paint-

Control, IOFROL and Google GSDTSR are datasets that

contain only features related to the execution history of test

cases.

4.2 Parameter Settings

The proposed XCG-TCP model is trained using five

convolutional layers with 32, 64, 128, 128, and 64 filters

respectively, each having a kernel size of 1 × 3 and stride of

1 × 1. All convolutional layers use the tanh function,

he_normal kernel initializer, and max pooling with pool size

1 × 2 where applicable. The GRU layer has 1024 units with

tanh activation for candidate states and sigmoid for the

update and reset gates. The final Softmax layer outputs test

case ranking likelihoods. With a learning rate of 0.001, batch

size of 64, and 100 epochs, the model is trained using the

Adam optimizer with categorical cross-entropy loss.

4.3 Performance Evaluation

The performance of XCG-TCP is compared with the existing

algorithms like AnoLSTM [14], IMTRNN [15], GRU-TCP

[16], TCP-Net++ [19] DBOA-TCP [24] is executed in

Python 3.7.8 using the dataset illustrated in section 4.1. An

overview of the measures used to compare the suggested and

prevailing approaches is provided below.

4.3.1 Average percentage of faults detected (APFD): It

influences the TS's speed at identifying errors. APFD

determines the weighted mean of the mistakes found

throughout TS run.

𝐴𝑃𝐹𝐷 = 1 − (
𝑇𝐹1+ 𝑇𝐹2+⋯+𝑇𝐹𝑚

𝑁𝑀
+

1

2𝑛
) (9)

In Eq. (9), 𝑚 is the aggregate amount of errors found in the

program for TC execution and 𝑇 is the resultant TS. 𝑛 is the

total TC number, 𝑇𝑓1, 𝑇𝑓2, … . , 𝑇𝑓𝑚 are the first 𝑇 points that

disclose the 𝑚.

4.3.2 Average percentage of faults detected per cost

(𝑨𝑷𝑭𝑫𝒄): In order to execute TS 𝑇′, the usual percentage

of cost-effective TCs is compared to the typical percentage

of fault severity in order to get the weighted average

proportion of mistakes.

𝐴𝑃𝐹𝐷𝑐 =
∑ (𝑓𝑖∗(∑ 𝑡𝑗−

1

2
𝑡𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝑡𝑗∗ 𝑛
𝑗=𝑇𝐹𝑖

∑ (𝑓𝑖)𝑚
𝑖=1

 (10)

In Eq. (10), 𝑇 represents the TS including 𝑛 TCs with

overheads 𝑡1, 𝑡2, … … , 𝑡𝑛 . 𝐹 be the set of 𝑚 mistakes

revealed in 𝑇; the degrees of those mistakes 𝑓1, 𝑓2, ….., 𝑓𝑚.

𝑇𝐹𝑖 as the initial TC that identifies the issue 𝑖 is 𝑇𝐹𝑖.

4.3.3 Normalized Average Percentage of Faults Detected

(NAPFD): It integrates both the fault data and time detection

to calculate TCP performance. It is signified in Eq. (11),

𝑁𝐴𝑃𝐹𝐷 = 𝑝 − (
𝑇𝐹1+ 𝑇𝐹2+⋯+𝑇𝐹𝑚)

𝑚∗𝑛
+

𝑝

2𝑛
) (11)

In Eq. (11), 𝑝 is calculated by dividing the identified faults to

the prioritized TS of aggregate number of detected error. 𝑇𝐹𝑖

is the number of the TC in which fault 𝑖 is determined by

testing the significance order. When no error is determined,

𝑇𝐹𝑖 is set to 0.

4.3.4 Average Percentage of Faults Detected (𝑨𝑷𝑭𝑫𝒂):

𝐴𝑃𝐹𝐷𝑎 is an enhanced version of 𝐴𝑃𝐹𝐷𝑐 which constitutes

TC process for the testing task. The 𝐴𝑃𝐹𝐷𝑎 notation is

provided in Eq. (12),

𝐴𝑃𝐹𝐷𝑎 = (1 − ∑
∑ 𝐶𝑗

𝑇𝐹𝑖
𝑗=1

𝑚 ∑ 𝐶𝑗
𝑛
𝑗=1

𝑚
𝑖=1) ∗ 100% (12)

In above Eq. (12), 𝐶𝑗 is the cost obtained in the 𝑗𝑡ℎ TC.

4.3.5 Time-aware average percent of faults detected

(𝑨𝑷𝑭𝑫𝑻𝑨): This is the specific instance of 〖APFD』_c for

cases where the test costs and mistake challenges are the

same.

𝐴𝑃𝐹𝐷𝑇𝐴 =
∑ (∑ 𝐶𝑗−

1

2
𝐶𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝐶𝑗∗ 𝑛
𝑗=1 |𝜎|

 (13)

In Eq. (13), 𝜎 denotes constant among the primary and latter

TCs in the whole TS.

4.3.6 Root mean square error (RMSE): It determines the

difference amongst the observed and estimated NAPFD

values. Using the dissimilar value intended for 𝑇′ in a CI

repetition specified by learning model (𝑢̂𝐶), the adjoint

estimated value 𝑇′ is used by RL model.

𝑅𝑀𝑆𝐸 (𝛹) = √
∑ (𝑢𝑞−𝑢𝑞)𝐶𝐼

𝑞

𝐶𝐼
 (14)

In Eq. (14), 𝐶𝐼 is the total system cycles. Lesser RMSE

determines more precise results. 𝑢̂𝑞 defines the best

prioritizing identified by RL for an ideal priority task.

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 707

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 2: APFD Evaluation for Proposed and Existing Models

Figure 2 demonstrates the APFD analysis for suggested and

existing models on different test cases dataset. In figure 3,

XCG-TCP model clearly show more efficiency than

conventional models for TCP on collected industrial dataset.

For instance, APFD value of XCG-TCP is 39.13%, 28%,

18.52%, 12.94% and 6.67% higher than the AnoLSTM,

IMTRNN, GRU-TCP, TCP-Net++ and DBOA-TCP on Paint

Control dataset. Likewise, Figure 3 shows that the suggested

model attained higher 𝐴𝑃𝐹𝐷𝑐 than other methods. For

example, 𝐴𝑃𝐹𝐷𝑐 value of XCG-TCP is 44.78%, 31.08%,

22.78%, 11.49% and 3.19% greater than the AnoLSTM,

IMTRNN, GRU-TCP, TCP-Net++ and DBOA-TCP models

respectively on IOF\ROL dataset.

The figure 4 establishes the assessment of NAPFD values of

suggested and traditional models on various test case dataset

like Paint Control, IOF/ROL and GSDTSR. For instances,

the NAPFD value of XCG-TCP is 24.68%, 17.07%, 12.94%,

9.09% and 4.35% higher than the AnoLSTM, IMTRNN,

GRU-TCP, TCP-Net++ and DBOA-TCP on GSDTSR

dataset. Similarly, the figure 5 establishes the assessment of

𝐴𝑃𝐹𝐷𝑎 values of suggested and traditional models on

various test case dataset. The 𝐴𝑃𝐹𝐷𝑎 value of XCG-TCP is

26.32%, 18.52%, 12.94%, 7.87% and 3.23% higher than the

AnoLSTM, IMTRNN, GRU-TCP, TCP-Net++ and DBOA-

TCP on IOF/ROL dataset. In both the comparison, the

proposed XCG-TCP models achieves high NAPFD and

𝐴𝑃𝐹𝐷𝑎 results than other existing models.

Figure 3: 𝐴𝑃𝐹𝐷𝑐 Analysis for various methods

Figure 4: NAPFD Evaluation for Proposed and Existing Models

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 708

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 5: 𝐴𝑃𝐹𝐷𝑎 Analysis for various methods

Figure 6: 𝐴𝑃𝐹𝐷𝑇𝐴 Analysis for various methods

The figure 6 establishes the assessment of 𝐴𝑃𝐹𝐷𝑇𝐴 values of

suggested and traditional models on various test case dataset

like Paint Control, IOF/ROL and GSDTSR. In figure 7,

XCG-TCP attains superior 𝐴𝑃𝐹𝐷𝑇𝐴 than earlier TCP

algorithms. The 𝐴𝑃𝐹𝐷𝑇𝐴 value of XCG-TCP is 25.33%,

18.99%, 13.25%, 9.3% and 4.44% higher than the

AnoLSTM, IMTRNN, GRU-TCP, TCP-Net++ and DBOA-

TCP algorithms on GSDTSR dataset. The figure 7

establishes the assessment of RMSE values of suggested and

traditional models on various test case dataset. The RMSE

value of XCG-TCP is 75.73%, 72.56%, 58.49%, 50.35% and

33.69% higher than the AnoLSTM, IMTRNN, GRU-TCP,

TCP-Net++ and DBOA-TCP algorithms on Paint Control

dataset. This study shown that, in comparison to other

classical models, the suggested model has lower RMSE

values.

Figure 7: RSME Analysis for various methods

5. Conclusion

In this paper, XCG-TCP model is developed integrating

CNN, GRU and SHAP for accurate TCP in CI. Test case

data undergoes cleaning, encoding, and scaling for balanced

inputs. A Deep CNN extracts spatial and structural features

from attributes like execution time, results history, status

changes, flags, priority, and code change distance. These

features are processed by a GRU to capture temporal patterns

across regression cycles for detecting failing cases. SHAP, as

an Explainable AI method, quantifies each feature’s impact

on prioritization. This integration improves early fault

detection, speeds testing, and adapts to diverse CI settings.

Experimental results demonstrate that XCG-TCP

outperforms standard algorithms on industrial datasets.

References

[1] K. Naik and P. Tripathy, Software Testing and Quality

Assurance: Theory and Practice. John Wiley & Sons,

2011.

[2] M. Qasim, A. Bibi, S. J. Hussain, N. Z. Jhanjhi, M.

Humayun, and N. U. Sama, “Test case prioritization

techniques in software regression testing: An

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 709

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

overview,” International Journal of Advanced and

Applied Sciences, 8(5), pp. 107-121, 2021.

[3] E. Soares, G. Sizilio, J. Santos, D. A. da Costa, and U.

Kulesza, “The effects of continuous integration on

software development: a systematic literature review,”

Empirical Software Engineering, 27(3), p. 78, 2022.

[4] O. Elazhary, C. Werner, Z. S. Li, D. Lowlind, N. A.

Ernst, and M. A. Storey, “Uncovering the benefits and

challenges of continuous integration practices,” IEEE

Transactions on Software Engineering, 48(7), pp.

2570-2583, 2021.

[5] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer,

“Empirically evaluating readily available information

for regression test optimization in continuous

integration,” in Proc. 30th ACM SIGSOFT

International Symposium on Software Testing and

Analysis, pp. 491-504, Jul. 2021.

[6] S. Parida, D. Rath, and D. B. Mishra, “A review on

test case selection, prioritization and minimization in

regression testing,” in Proc. International Conference

on Metaheuristics in Software Engineering and its

Application, Cham: Springer International Publishing,

pp. 156-163, Feb. 2022.

[7] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand,

“Test case selection and prioritization using machine

learning: a systematic literature review,” Empirical

Software Engineering, 27(2), p. 29, 2022.

[8] A. Samad, H. Mahdin, R. Kazmi, and R. Ibrahim,

“Regression test case prioritization: a systematic

literature review,” International Journal of Advanced

Computer Science and Applications, 12(2), 2021.

[9] R. Mukherjee and K. S. Patnaik, “A survey on

different approaches for software test case

prioritization,” Journal of King Saud University –

Computer and Information Sciences, 33(9), pp. 1041-

1054, 2021.

[10] N. Gokilavani and B. Bharathi, “Test case

prioritization to examine software for fault detection

using PCA extraction and K-means clustering with

ranking,” Soft Computing – A Fusion of Foundations,

Methodologies & Applications, 25(7), 2021.

[11] C. Birchler, S. Khatiri, P. Derakhshanfar, S.

Panichella, and A. Panichella, “Single and multi-

objective test cases prioritization for self-driving cars

in virtual environments,” ACM Transactions on

Software Engineering and Methodology, 32(2), pp. 1-

30, 2023.

[12] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder:

Deep learning for test case prioritization in continuous

integration testing,” in Proc. 2021 IEEE International

Conference on Software Maintenance and Evolution

(ICSME), pp. 525-534, Sept. 2021.

[13] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z.

Chen, “Deepgini: prioritizing massive tests to enhance

the robustness of deep neural networks,” in Proc. 29th

International Symposium on Software Testing and

Analysis, pp. 177-188, 2020.

[14] A. Tamizharasi and P. Ezhumalai, “A novel

framework for optimal test case generation and

prioritization using Ent-LSOA and IMTRNN

techniques,” Journal of Electronic Testing, pp. 1-24,

2024.

[15] T. K. Choudhury, M. Behera, S. K. Dash, S. K. Pani,

and J. Mishra, “AnoLSTM – A deep learning

approach for test cases prioritization,” Procedia

Computer Science, 258, pp. 1793-1803, 2025.

[16] A. Behera and A. A. Acharya, “An effective GRU-

based deep learning method for test case prioritization

in continuous integration testing,” Procedia Computer

Science, 258, pp. 4070-4083, 2025.

[17] N. Rawat, V. Somani, and A. K. Tripathi, “Prioritizing

software regression testing using reinforcement

learning and hidden Markov model,” International

Journal of Computers and Applications, 45(12), pp.

748-754, 2023.

[18] M. Abdelkarim and R. ElAdawi, “TCP-Net++: Test

case prioritization using end-to-end deep neural

networks – deployment analysis and enhancements,”

in Proc. 2023 IEEE International Conference On

Artificial Intelligence Testing (AITest), pp. 99-106,

Jul. 2023.

[19] J. Chen, J. Ge, and H. Zheng, “Actgraph: Prioritization

of test cases based on deep neural network activation

graph,” Automated Software Engineering, 30(2), p.

28, 2023.

[20] E. A. da Roza, J. A. do Prado Lima, and S. R.

Vergilio, “On the use of contextual information for

machine learning-based test case prioritization in

continuous integration development,” Information and

Software Technology, 171, p. 107444, 2024.

[21] D. Manikkannan and S. Babu, “Test case prioritization

via embedded autoencoder model for software quality

assurance,” IETE Journal of Research, pp. 1-11, 2024.

[22] K. Garg and S. Shekhar, “Optimizing test case

prioritization through ranked NSGA-2 for enhanced

fault sensitivity analysis,” Innovations in Systems and

Software Engineering, pp. 1-22, 2024.

[23] J. A. Silveira, L. Vieira, and N. Ferreira, “TPVis: A

visual analytics system for exploring test case

prioritization methods,” Computers & Graphics, 124,

p. 104064, 2024.

[24] M. Assiri, “Test case prioritization using dragon boat

optimization for software quality testing,” Electronics,

14(8), p. 1524, 2025.

[25] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige,

“Reinforcement learning for automatic test case

prioritization and selection in continuous integration,”

in Proc. 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis, pp. 12-

22, Jul. 2017.

[26] S. Elbaum, A. Mclaughlin, and J. Penix, “The Google

dataset of testing results,” 2014.

Paper ID: SR25813194634 DOI: https://dx.doi.org/10.21275/SR25813194634 710

http://www.ijsr.net/

