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Abstract: Kubernetes serves as the standard deployment tool for cloud-native applications that include mission-critical services across 

industries such as finance, healthcare, defense, and more. When many organizations start using Kubernetes especially through managed 

services like AKS, EKS, and GKE which brings additional security challenges that need to be carefully addressed. This paper presents a 

secure architecture for managed Kubernetes systems which implements defense-in-depth methodology based on the cloud-native security 

4C's: Cloud, Cluster, Container, and Code. The paper analyzes each component of managed Kubernetes systems to demonstrate how 

cloud-native security mechanisms combine to protect against insider threats and software supply chain attacks and escape runtime exploits 

through cloud-level policy enforcement and cluster hardening and secure containerization and secure development practices. The paper 

proposes a security architecture delivers operational security controls through admission controllers and role-based access controls 

(RBAC) and seccomp and runtime detection tools and secure image registries by utilizing AKS, EKS and GKE cloud-native features and 

integrations. The paper includes concrete execution examples demonstrating how a defense-in-depth security architecture built on 

Kubernetes technology implements comprehensive security measures at each layer, ensuring robust protection without slowing down 

development speed or reducing operational capabilities. 
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1. Introduction 
 

Kubernetes has been foundational to modern cloud-native 

infrastructure that enables organizations to deploy and scale 

containerized workloads with a high degree of availability 

and automation. Managed Kubernetes services such as Azure 

Kubernetes Service (AKS), Amazon Elastic Kubernetes 

Service (EKS), and Google Kubernetes Engine (GKE) 

provide operational simplicity by abstracting control plane 

management, allowing teams to focus on workload 

orchestration. Nevertheless, this convenience introduces 

additional challenges in ensuring the security of mission-

critical services.  

 

Mission-critical services have rapidly emerged as some of the 

most common distributed microservices deployed within 

managed Kubernetes clusters across industries. These 

services often consume sensitive metadata, cryptographic 

materials, or business-critical software which in turn provides 

an attractive target footprint for adversaries. Providing 

security to such services in managed Kubernetes 

environments requires thinking holistically about how to 

support workload isolation, runtime protection, and policy 

enforcement across cloud infrastructure and containerized 

applications.  

 

This paper proposes a cloud-native security architecture to 

safely secure mission-critical services in managed Kubernetes 

environments by employing a defense-in-depth model. Our 

architecture is built around the 4C's of cloud-native security 

systems such as Cloud, Cluster, Container, and Code which 

together illustrate the layered control surfaces in the 

Kubernetes stack. By looking at all the relevant threats and 

controls for each layer, this paper presents a systematic 

approach for addressing common risk scenarios, such as 

lateral movement, privilege escalation, insecure 

configurations, and secret/workload access by unauthorized 

entities.  

At the heart of the proposal is the use of confidential 

containers, which leverage hardware-backed Trusted 

Execution Environments (TEEs) to ensure sensitive 

workloads are protected not just at rest or in transit, but also 

while executing. Confidential containers allow a critical set of 

supply chain functions to be executed in an isolated space 

with encrypted memory even from a compromised kernel or 

a compromised administrator running on an underlying host. 

Confidential containers are intended to bring strong 

assurances against insider threats and advanced persistent 

threats.  

 

The proposed architecture comes with the built-in capabilities 

of managed Kubernetes platforms but also leverages a wide 

set of open-source tools and standards. Some examples of 

open-source security tools that we will consider are seccomp 

profiles, RBAC and Network Policies, admission control 

mechanisms (e. g., OPA/Gatekeeper), and runtime threat 

detection (e. g., Falco). By using practical deployment 

patterns and real-world implications of secure supply chain 

services in managed Kubernetes, it will demonstrate how the 

defense-in-depth model can be applied to secure supply chain 

services without negatively impacting operational efficiency 

or scalability.  

 

2. What is Mission-Critical services? 
 

Mission-critical services are software programs or systems 

that are critical to an organization’s core business operations, 

where failure or downtime could equate to financial loss or 

compromised safety, regulatory compliance or reputational 

risks or damage. Mission-critical services usually deal with 

sensitive or regulated data and require high security, 

reliability and resiliency in terms of being unscathed from 

attacks, failures, and outages. Mission-critical services are 

foundational across multiple industries, especially finance, 

healthcare, defense and utilities.  
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Some examples of mission-critical services globally are:  

• Finance: Payment processing, fraud detection, and trading 

software.  

• Healthcare: Electronic health record systems, medical 

device monitoring, and tele-health software.  

• Defense: Secure communication, command & control 

systems, intelligence information and analytics.  

• Utilities: Electricity grid management and water treatment 

system.  

• Transportation: Air traffic control and logistics software.  

• Supply Chain Services: Code Signing, Scanning, 

Packaging 

 

In today’s cloud-native environments, many mission-critical 

services are used as containerized microservices on flexible 

managed Kubernetes services offered by such providers as 

Azure Kubernetes Service (AKS), Amazon Elastic 

Kubernetes Service (EKS), and Google Kubernetes Engine 

(GKE). Managed Kubernetes services provide scalable, 

reliable and secure orchestration to support organizations in 

safely maintaining continuous operations, implementing 

workload isolation capabilities, and maximizing security 

posture requirements for mission-critical workloads. Yet, 

managed Kubernetes services raise several important security 

concerns that organizations should consider, including risks 

of hypervisor or host compromise, virtual machine 

vulnerabilities, potential for API server breaches, threats 

within cloud environments, and misuse of tenant 

administrator access.  

 

3. Security Concerns of Building Services on 

Managed Kubernetes 
 

Security concerns grow in complexity when it comes to 

Kubernetes and container technologies. Two major potential 

threats affecting Kubernetes are:  

• Malicious actors – Once a threat actor breaks into your 

Kubernetes ecosystem, it becomes easy for them to spread 

the malicious actors across the cluster. This is possible 

because containers and pods interact with each other, and 

a corrupted container could cause the collapse of the entire 

application. Attackers are constantly looking for exposed 

containers or portals with either no authentication system 

or a poor one. Such containers often fall into blind spots; 

way too often, the organizations will not even realize the 

exploitation or the breach by compromised or rogue users.  

• Malicious code running inside containers – Attackers 

can exploit the misconfiguration to place malware or 

unknown code inside a container. In 2018, Tesla’s cloud 

infrastructure was breached, and crypto-mining 

malware was placed deep within the environment. The 

investigation revealed that a particular Kubernetes 

administrative portal wasn’t password protected. Another 

violation method is attacker leveraging vulnerabilities in 

container images and image registries.  

 

Below picture illustrates the major security concerns of 

running services in Managed Kubernetes,  

 
 

As shown, actors whose identity might be compromised or 

who might act maliciously include Kubernetes cluster 

admins, Tenant admins and Cloud admins. These are 

represented in red arrows in the picture above. The subject 

pod that is running application code and other pods such as 

system pods might be compromised by running injected 

malicious code by varies means, including contaminated 

container images or code downloaded by containers at run 

time. These threats are represented as red cubes in the above 

picture, indicating containers themselves might be infected 

with malicious code.  

 

To mitigate these threats, it is important to establish zero-trust 

security boundaries around containers running in Kubernetes 

and lock down access to fend off all actors including cloud 

admins, tenant admins and Kubernetes cluster admins. In 

addition, it is important to establish security mechanisms to 

ensure code running inside containers can’t be tempered at 

any time. These include container image integrity and policies 

enforcing running only allow code both at the startup of 

containers and throughout their life cycle at the runtime.  

 

4. Cloud Native Security Principles (4 Cs)  
 

Cloud Native Security Principles think of security in layers. 

The 4Cs of Cloud Native Security Principles are Cloud, 

Clusters, Containers and Code. This layered approach 

augments the defense in depth computing approach to 

security, which is widely regarded as a best practice for 

securing software systems. Each inner layer of the Cloud 

Native security model builds upon next outer layer. The Code 

layer benefits from strong base security layers of Container, 

Cluster and Cloud.  

 

By applying consistent security controls across all four layers, 

organizations can create a resilient and scalable defense 

strategy that aligns with modern cloud-native practices. This 

layered model is particularly effective for securing mission-

critical services, which span across multiple levels of the 

stack and require end-to-end protection.  

 

The consideration of security controls at each of the four Cs 

is described below:  
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• Cloud: Securing cloud involves protecting Cloud 

infrastructure from unauthorized access from actors and 

code. Basic measures include identity and access 

management (IAM), JIT access, and RBAC for cloud 

resources. Additionally, network segmentation and 

firewalls are needed to enforce layers of security 

boundaries the ensure least access privilege to most inner 

and core assets.  

• Cluster: Securing cluster involves securing both cluster 

control plane components like API calls, node access, etcd 

access, and applications running inside the cluster. The 

security measures include security practices like 

encrypted communication and TLS certificate 

authorization, securing Kubernetes API server by 

enforcing API authentication mechanism. Once again, it is 

important to enforce layered security boundaries to protect 

Kubernetes control plane, nodes, pod networks, pod level 

security policies, namespaces, and network segregation.  

• Container: Securing container involves isolating 

containers from outer layers. Any malicious actor that 

breaches the container layer can move within the 

environment, easily communicating with other containers 

and pods. In its default mode, Kubernetes offers minimal 

security guardrails to ensure faster software development. 

One can improve Container level security by hardening 

the security with robust security governance policies and 

controls, but this is not enough to address the inherited 

vulnerability of hypervisor architecture, that is, the guest 

OS can be penetrated via hypervisor from host OS. This 

“open” passage from host to guest can’t be sealed with 

access controls. A complete isolation of containers from 

the outside world is needed to ensure complete security at 

Container level.  

• Code: Securing Code involves preventing malicious code 

running inside containers. This is one of the most targeted 

attack surfaces for any computing environment. Security 

measures to secure Code include ensuring container 

images are created and stored in trusted image registries, 

container images are malware free, and container images 

are verified before being deployed. In addition, it is critical 

that containers cannot be tempered at runtime to run any 

malicious code.  

 

5. Designing Defense-in Depth Security 

architecture for Managed Kubernetes 
 

Managed Kubernetes refers to cloud-native Kubernetes 

solutions like Azure Kubernetes Service (AKS), Amazon 

Elastic Kubernetes Service (EKS), or Google Kubernetes 

Engine (GKE). Essentially, the cloud provider takes 

responsibility for provisioning, operations, and maintenance 

of the Kubernetes control plane. The hybrid cloud managed 

services also abstract many of the operational burden of 

running Kubernetes at scale in terms of managing the control 

plane upgrades, availability, and even scalability of the 

control plane.  

 

To put it another way, managed Kubernetes simplifies the 

operation of running Kubernetes but with a trade-off of a 

shared responsibility model. The managed service provides 

security on their infrastructure and control plane layer while 

the consumer is responsible for securing their workloads 

running in Kubernetes, configurations, network policies, and 

runtime behavior. This makes it simple for teams to adopt 

cloud native architectures quickly but a good security 

architecture and process at the cluster and application layer is 

paramount to keep pace with the evolving threat landscape as 

threat actors continue to evolve their behavior and 

motivations.  

 

Security is defined as the actions, processes and principles 

that should be followed to ensure security in your Kubernetes 

deployments. This includes securing code, configurations, 

containers, Kubernetes Cluster, Kubernetes network, and 

Cloud infrastructure.  

 

5.1 Securing Cloud Boundary for Managed Kubernetes 

 

The process of securing the cloud boundary for managed 

Kubernetes starts with establishing strong network-level 

protections. Although the Kubernetes control plane is 

managed by a cloud provider, it is ultimately the users 

responsibility to provide workload isolation and secure 

communication paths. This section discusses network 

security approaches private cluster configurations, virtual 

network integration, restricted API server access, and firewall 

rules that can help to create a secure perimeter around 
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managed Kubernetes clusters. Proper network segmentation 

ensures that only authorized and trusted entities can interact 

with the cluster, thereby minimizing lateral movement and 

reducing exposure to external traffic.  

 

5.1.1 Securing Network using Hub Spoke Network 

Architecture 

Network security is the protection of the underlying 

networking infrastructure from unauthorized access, misuse, 

or theft. It involves creating a secure infrastructure for 

devices, users, and applications to work securely. Network 

security combines multiple layers of defenses at the edge and 

in the network. The following diagram illustrates the sample 

deployment of managed Kubernetes cluster in Hub spoke 

architecture pattern behind firewall.  

 

 
 

Each network security layer implements policies and controls. 

Authorized users gain access to network resources, but 

malicious actors are blocked from carrying out exploits and 

threats. Hub-spoke network pattern where the hub virtual 

network (VNet) acts as a central point of connectivity to many 

spoke virtual networks. The spoke virtual networks (VNet) 

connect with the hub and can be used to isolate workloads.  

 

A hub is a centralized network location that controls, inspects, 

and routes the pathways on traffic traversing a number of 

different connected environments, such as the internet, on-

premises data centers, and spoke virtual networks. In the hub-

and-spoke topology, the hub serves as the single control point 

to manage inbound and outbound traffic for all associated 

spoke networks, commonly referred to as virtual networks or 

VNets. Inbound rules manage and control ingress traffic 

arriving from external sources, either from the internet or on-

premises networks, before it reaches a spoke VNet running 

sensitive workloads, such as managed Kubernetes clusters. 

Outbound rules manage and control egress traffic leaving 

from spoke VNets, permitting egress only to approved 

destinations, while preventing unauthorized communication 

to an untrusted or external network. This architecture 

promotes enforcing centralized security policies, unified 

logging, and deep packet monitoring while minimizing the 

number of points of external access at the edge of the network, 

consequently shrinking the attack surface. Collectively 

managing network controls, such as Azure Firewall, AWS 

Network Firewall, Network Security Groups (NSGs), and 

intrusion detection within the hub, allows organizations to 

maintain a consistent security posture across different spokes, 

lower the risk of misconfiguration and keep visibility into all 

communications between VNets or networks. The role of 

each spoke is to host different types of workloads. The spokes 

also provide a modular approach for repeatable deployments 

of the same workloads. It is needed to provision a Kubernetes 

cluster in the Spoke workload virtual network (VNet) and also 

provision a second spoke VNT for Jump Box Virtual 

Machines (VMs). These Jump Boxes will provide developers 

and administrators with secure access to the Kubernetes 

cluster, which adds another layer of protection from external 

threats.  

  

5.1.2 What security gap still exists after the first C? 

Securing the network is part of the first ‘C’ (Cloud) in Cloud 

Native security model that only protects from internet threats, 

and it ensures that all the inbound and outbound connectivity 

is monitored and validated using Firewall rules. Additionally, 

the actors of admins are enforced with access controls 

(RBAC). But we still need to secure inner components (the 

remaining 3C’s Cluster, Container and Code) using different 

approaches which will be discussed further in detail.  

 

5.2 Securing Cluster Boundary for Managed Kubernetes 

 

In managed Kubernetes (AKS, EKS, GKE, etc.) establishing 

defenses to protect the cluster boundaries is vital to ensuring 

workloads do not pose undesired access, risk of data 

exfiltration, and malicious changes to configuration. For this 

purpose, the boundaries of the cluster can be defined as the 

control plane and any resources that need to be isolated from 

anything beyond untrusted (unverified) networks while still 

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 672 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

allowing for securely logged, auditable, and policy compliant 

operations within the cluster.  

 

5.2.1 Private Cluster 

By default, managed cluster uses a public IP address for 

accessing the Control Plane. However, using a public IP 

address will expose the control plane traffic to Internet 

threats. Hence, by creating a private Kubernetes cluster with 

a private control plane IP address, we can ensure network 

traffic between your API server and your node pools remains 

on the private network so that the cluster is protected from 

internet security threats. However, the absence of a public IP 

address prevents you from directly connecting to a private 

AKS cluster from your computer. In this case, developers and 

administrators use jump box from Spoke VNet to connect to 

managed Kubernetes cluster using a private endpoint.  

 

5.2.2 Private Container Registry 

In a Managed Kubernetes environment, a container registry is 

the primary repository for all container images. The registry 

should be private to reduce the risk of exposing over internet 

and unauthorized access, as well as supply chain risks. Private 

registries are incredibly important, as authenticating the 

registry will allow the only namespaced access for trusted 

entities to pull or push images. In addition, the registry should 

only accept approved and cryptographically signed images, to 

eliminate the possibility of Images that are vulnerable or 

malicious entering the environment. The Kubernetes cluster 

and nodes should also connect to the private registry using 

private, secure endpoints, as the traffic of image-pulling and 

pushing requests would be private in transit from the external 

internet.  

 

5.2.3 Other Cloud Resources 

Application runs in managed Kubernetes cluster need to talk 

to other Cloud resources such as Vault, Storage Cosmosdb, 

SQS, Service Bus, etc. By default, cloud resources are 

accessible over the internet so we should use private endpoint 

to connect to these resources and disable the public access. A 

private endpoint is a network interface that uses a private IP 

address from your virtual network. This network interface 

connects you privately and securely to a resource that's 

powered by Private Link. By enabling a private endpoint, 

you're bringing the resource into your virtual network (VNet) 

and protecting it from external malicious users directly 

accessing the cloud resources over the internet.  

 

5.2.4 Securing API Server 

The Kubernetes API is the front end of the Kubernetes control 

plane and is how users interact with their Kubernetes cluster. 

The API server determines if a request is valid before 

processing it. In essence, the API is the interface used to 

manage, create, and configure Kubernetes clusters. It's how 

the users, external components, and parts of your cluster all 

communicate with each other. So, If an API server is 

compromised then the entire cluster is compromised. The 

following sections discuss certain steps that we need to 

perform to ensure the API server is secured.  

 

5.2.4.1 Authentication and Role Based Access Control 

(RBAC)  

Weak authentication and authorization controls can enable an 

adversary to break into the Kubernetes API server, modify or 

delete resources, or use other commandeering actions to 

disrupt the entire cluster. To mitigate these risks, the API 

server should connect to a strong centralized identity provider 

for user authentication. When using an identity provider, 

users authenticate to the cluster using short-lived 

authentication tokens that are issued by the provider, so the 

risk of credential theft or misuse is eliminated. Upon 

authentication, role-based access control (RBAC) must be 

enforced to maintain the principle of least privilege; most 

managed Kubernetes services provide native integrations e. g. 

Azure Kubernetes Service (AKS) has Azure RBAC that can 

be connected to Microsoft Entra ID, and Amazon Elastic 

Kubernetes Service (EKS) provides AWS IAM integration 

for RBAC mappings. Kubernetes-native RBAC, if needed, 

can then provide more granular control at the namespace or 

cluster level based on individual or group memberships. Even 

where an external identity provider is used, local Kubernetes 

administrative accounts should be disabled unless required, 

because leaving them enabled allows access while bypassing 

centralized authentication controls.  

 

5.2.4.2 Adhere to least privilege principle 

If we need to create custom roles in Kubernetes RBAC for 

access control and management then use the following 

recommendations for permissions and role assignments:  

• Avoid wildcard permissions, especially to all resources.  

• Use RoleBinding instead of ClusterAdminBinding to give 

access within a namespace.  

• Avoid adding users to the system: master group as it 

bypasses RBAC.  

• Use impersonation rights for admins instead of adding to 

the cluster admin role. Audit and monitor when 

impersonation is being done.  

• Avoid granting the escalate or bind permissions to roles 

when not needed, audit and monitor when escalation is 

being made.  

• Avoid adding users to the system: unauthenticated group.  

• Limit permissions to issue CSR and certificate.  

• Avoid granting users with create rights on service 

accounts/token, which could be exploited to create 

TokenRequests and issue tokens for existing service 

accounts.  

• Users with control over validating web hook 

configurations or mutating webhook configurations can 

control webhooks that can read any object admitted to the 

cluster, and in the case of mutating webhooks, also mutate 

admitted objects.  

 

5.2.4.3 Disable API Server access from Application Pods 

By default, all pods running in a cluster can access API server 

using auth token that is mounted automatically, due to that, if 

an application pod is compromised then malicious users can 

take full control of the cluster by compromising the API 

server. Additionally, every Kubernetes namespace contains at 

least one default service account. An application running 

inside a pod can access the Kubernetes API using 

automatically mounted service account credentials to access 

Kubernetes API, its level of access depends on the 

authorization plugin and policy in use. Therefore, we should 

remove Auth token mounting on the application pod and 

disable this capability in Kubernetes to automatically mount 

Service Account's API credentials for namespaces. In 

addition, we should configure network policies to restrict 
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access to the API server from application pods. This topic will 

be covered in more detail in the Network Segmentation 

section.  

 

5.2.4.4 Securing etcd 

etcd is the key-value store used by Kubernetes to persist the 

cluster’s state, configuration, and secrets. This includes 

highly sensitive data such as authentication tokens, TLS 

certificates, and other credentials stored as Kubernetes 

Secrets. If etcd is compromised, an attacker could gain full 

control over the cluster, making its protection critical.  

Security for etcd should be implemented at two levels:  

1) Access Control-Only the Kubernetes API server should 

have direct access to etcd. All other access should be 

blocked at the network and firewall level. This prevents 

unauthorized components or users from querying or 

modifying etcd data.  

2) Encryption at Rest-All secrets in etcd should be 

encrypted using strong keys managed by a secure Key 

Management Service (KMS). This ensures that even 

infrastructure administrators with storage access cannot 

read sensitive data without proper decryption keys.  

 

Managed Kubernetes platforms AKS and EKS provides built-

in support for this using KMS plugin.  

 

5.2.4.5 Securing Kubelet 

The kubelet is an integral component of Kubernetes that runs 

on each node and communicates with the API server to 

manage the lifecycle of pods and containers. The kubelet 

exposes a kubelet API that if misconfigured, or compromised, 

can allow an adversary to execute arbitrary commands, pull 

down logs, or gain access to sensitive pod information. 

Managed Kubernetes solutions such as Azure Kubernetes 

Service (AKS) and Amazon Elastic Kubernetes Service 

(EKS) have default kubelet security configurations. Both 

AKS and EKS disable anonymous authentication to the 

kubelet, and use authorization through the Webhook mode, 

they also pass authorization info to Kubernetes Role-Based 

Access Control (RBAC). However, additional controls are 

always necessary to secure the kubelet in production. 

Kubernetes Network Policies and equivalent clouds network 

controls should be used to restrict kubelet (API) ports 10250 

and 10255 to workloads that need it. With Pod Security 

Standards (PSS) or Open Policy Agent (OPA) policies, if 

kubelet were compromised, the actor would be limited in the 

impact that could be taken. For example, in AKS, 

administrators can deploy Azure Network Policies to allow 

for network segmentation. In EKS, AWS Security Groups can 

be configured to restrict node-level API permissions such as 

the kubelet API. When using managed services that have 

built-in protection to mitigate kubelet risk, we can layer and 

add additional controls to limit risk as part of the overall risk 

management strategy in multi-cloud Kubernetes.  

 

5.2.5 Securing Network Segmentation 

By default, all pods in any Kubernetes cluster (whether AKS, 

EKS, GKE, or others) can communicate with each other 

freely. In an open communication model, if one pod becomes 

compromised, it has the ability to try to communicate, and 

potentially compromise, other pods. Therefore, organizations 

should attempt to put rules in place to restrict traffic flows. 

For example, backend services should only be accessible by 

selected front-end components, and database tiers should only 

be accessible by the application layer that require them.  

 

Network Policies in Kubernetes allow you to define access 

control for how communication takes place between pods 

(within a namespace), between namespaces, and between 

pods and external endpoints. Network Policies use label 

selectors to select specific pods to enforce ordered sets of 

ingress and egress rules. Network policies are defined using 

YAML manifests, and they can be deployed separately, or as 

a single package with other Kubernetes resources like 

Deployments or Services. Most managed Kubernetes 

platforms enable multiple network policy providers (e. g. 

Calico, Cilium, even native cloud network policies) that 

enforce the rules defined in network policies using the 

iptables mechanism (Linux), eBPF (Linux), or Windows Host 

Network Service (HNS) ACLs (Windows). The 

implementation of network policies will help you block any 

unexpected pod-to-pod traffic so that only authorized client 

applications can communicate with server applications.  

 

5.2.6 Open Policy Agent and Kubernetes 

OPA “Open Policy Agent” is General Purpose Policy Engine. 

OPA gives us a higher level and declarative language to 

author our policies and to enforce them within our 

environment, always leaving our cluster compliant with the 

company policies. OPA acts as an admission controller that 

intercepts requests to the Kubernetes API server before an 

object is persisted. For example, if you send a request to the 

API server to create a Deployment resource, the admission 

controller may intercept this request, mutate, or validate it. 

When we use OPA as an admission controller we can enforce 

OPA policies on these requests sent to the API server before 

they are processed by the API server. This gives us many 

benefits like:  

• Disable shell access to across Pods.  

• Make sure our containers do not run in ‘privileged’ mode.  

• Make sure developers can only create internal load 

balancers.  

• Make sure applications cannot use expensive SSDs.  

• Make sure configurations have the proper labels attached.  

• Used Container Registry must be in allowed list, etc.  

• Verify container image signature before allowing it to be 

deployed.  

 

The OPA admission controller serves as a gatekeeper within 

managed Kubernetes services. Gatekeeper, or the “General 

Purpose Policy Engine”, is a first-class Kubernetes citizen. It 

evaluates incoming requests based on Rego policies 

administrator define and answers the API server what to do 

with these requests (deny/allow). In practice it can deny 

requests made to the API server if these requests are not 

compliant with the policies we define. Gatekeeper is a native 

Kubernetes initiative and can be easily installed into any 

managed Kubernetes.  

 

5.2.7 What security gap still exists after the second C?  

This section discussed some of the approaches and techniques 

to secure the managed Kubernetes cluster and its internal 

components. Although both the network (cloud) and cluster 

have been secured, there remain vulnerabilities within 

containers that can still be exploited by attackers. So, let’s 
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discuss some of the approaches to secure the container and 

container images in upcoming sections.  

 

5.3 Securing Containers Boundary for Managed 

Kubernetes 

 

Pods are the smallest deployable units of computing that you 

can create and manage in Kubernetes. A Pod is a group of one 

or more containers, with shared storage and network 

resources, and a specification for how to run the containers. 

A Pod's contents are always co-located and co-scheduled and 

run in a shared context. A Pod models an application-specific 

"logical host": it contains one or more application containers 

which are relatively tightly coupled, and each Pod gets 

dedicated IP address.  

 

Following are the threats if Pod or Container compromised:  

• Get Access to the Host/Nodes by break out Container or 

Kernal vulnerabilities.  

• Attack Api Server and Kubelet  

• Attack other containers running on the same node.  

• Run malicious code inside container.  

 

The security measures applied to the first two C’s (Cloud and 

Cluster) provide protection for containers against 

unauthorized access within the Kubernetes environment. 

However, these measures do not address the risk of malicious 

code affecting pods or containers. Additionally, the inherited 

security vulnerability of hypervisor opens a door to Nodes and 

Pods from host OS. This underlying vulnerability occurs in 

both Windows and Linux platforms, which grants code from 

host to access guest VMs through hypervisor. A common 

mitigation to this fundamental security risk is through 

Confidential Virtual Machines (CVMs) and Confidential 

Containers.  

 

5.3.1 Confidential Virtual Machines (CVMs)  

Confidential VMs leverage hardware-based Trusted 

Execution Environments (TEEs), such as AMD SEV-SNP, 

Intel TDX, or Intel SGX, to encrypt memory and isolate the 

virtual machine at the hypervisor level. This ensures that data 

in use is protected not just from external attackers but also 

from cloud administrators and other workloads running on the 

same physical host. In a Kubernetes context, CVMs can be 

used as secure worker nodes where the kubelet and container 

runtime operate entirely inside a TEE. This protects both the 

workload and the node-level processes from being tampered 

with by anyone without the encryption keys that are generated 

and stored in hardware.  

 

Most major cloud providers support CVMs:  

• AKS – Azure Confidential VMs (AMD SEV-SNP, Intel 

TDX)  

• EKS – AWS Nitro Enclaves / EC2 Confidential 

Computing instances 

• GKE – Confidential VMs powered by AMD SEV-SNP 

 

5.3.2 Confidential Containers 

Confidential containers take the notion of confidential 

computing from the node level down to the workload level on 

an individual container basis, running containers in hardware-

backed enclaves so that both the application code and in-

memory data are encrypted and verifiable at runtime. This 

means that threats from a host kernel, Confidential VM, 

container runtime, or even cluster administrator have been 

protected.  

 

Confidential Containers (CoCo) based on Kata Containers 

integrated well with Kubernetes, and similar projects, provide 

a consistent way to execute Open Container Initiative (OCI) 

containers inside Trusted Execution Environments (TEEs). 

Confidential containers add a level of security not only 

because of the TEE but also because of underlying hardware 

that reduces the attack surface and provides protection from 

compromised kernel, compromised Confidential Virtual 

Machine (CVM) and container runtimes. This means that 

sensitive workloads, such as those which process financial 

transactions, supply chain services, conduct training on 

proprietary AI models, or involve regulated health data, may 

be operationally run in untrusted cloud environments. 

Therefore, it is essential to operate mission-critical services as 

Confidential Containers. Azure Kubernetes Service (AKS) 

also supports the integration of Azure Container Instances 

(ACI) based confidential containers through Virtual Node.  

 

5.3.3 What security gap still exists after the third C? 

With Confidential virtual machines and containers as a 

security measure for the third C (Container), our security 

posture has improved as described in the diagram below:  

 

 
 

As illustrated, the security vulnerability exposed to actors as 

well as code from hypervisor, host/guest agents, peer 

pods/containers are all mitigated. The remaining security 

vulnerability is within the code running inside the subject 

container. Despite TCB to protect the subject pod, the code 

running inside can still present security risks (such as running 

downloaded code or starting new processes). The final 

vulnerability is addressed by the subject of securing the last 

C, the Code.  

 

5.4 Securing Code Boundary for Managed Kubernetes 

 

As discussed, Confidential Container secures the boundary of 

container by providing a TCB for application code to run 

inside a Trusted Execution Environment, but it does not 

control the runtime behavior of the code running inside the 

container. Windows implements code integrity to control 

runtime code behavior, Linux has a different solution that 

provides a runtime code security as secure as Code Integrity 

in Windows. The below sections discuss security controls at 

various levels to secure the last C, the Code.  

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 675 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 8, August 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

5.4.1 Securing Container Images 

Container images are the foundation of all workloads that run 

in Kubernetes. If a container image is compromised, it is a 

potential gateway for injecting vulnerabilities, malware, or 

backdoors into the cluster. Container images should be 

secured through integrity and authenticity validation and 

compliance validations before deploying to a Kubernetes 

cluster. This will include trusted base images, scanning for 

known vulnerabilities, enforcing signing & verification 

requirements, and securely storing images in registries. 

Security controls need to be in place throughout the image 

build and delivery pipeline, so unverified or malicious code 

cannot be deployed to production in a Kubernetes cluster.  

 

5.4.1.1 Container Image scanning at Build time 

The first security control is to ensure the container image is 

free of malware. Containers with outdated base images or 

unpatched application runtimes introduce security risks and 

possible attack vectors. We can minimize these risks by 

scanning containers at build time. The following are the best 

practices to ensure container images are not vulnerable:  

a) Use distroless images for Linux workloads.  

• Distroless images are secured as it does not have any 

bash/shell and package manager installed and it 

contains only required software for application to run.  

b) Scan your container images for vulnerabilities.  

c) Regularly update the base images and application 

runtime.  

d) Regularly deploy updated containers.  

 

5.4.1.2 Container Image signing and verification 

 

Container images are then signed in CI build pipeline using 

Signing task. It will sign the container image artifacts and 

attach it to the Image and upload it to a private registry that is 

secured as described in securing the Cloud section. Verifying 

container image integrity takes place at various points in 

container’s life cycle: deployment time, startup time and run 

time. At the deployment time, Custom Admission Controller 

verifies the Container image signature (validate the entire 

chain) before it allows the container to be deployed in 

managed Kubernetes cluster. This will protect running 

unsigned or wrongly signed container images into Kubernetes 

cluster.  

  

5.4.1.3 Container Image Re-scanning 

Regularly and consistently scanning container images is 

critical to discover new vulnerabilities that can exist after an 

image is built and then deployed. This applies to images that 

are stored in a container registry (e. g., Azure Container 

Registry, Amazon Elastic Container Registry, Google 

Artifact Registry) and those images running in the workloads 

of Kubernetes clusters. Continuous re-scanning keeps images 

aligned against the most up-to-date vulnerability databases so 

that security drift does not occur over time. Cloud providers 

also have built-in security solutions to achieve this (for 

example, Microsoft Defender for Containers for AKS, 

Amazon Inspector for EKS, Google Cloud Security 

Command Center for GKE) to observe and protect 

containerized assets (Kubernetes clusters, nodes, workloads, 

registries, etc.).  

 

5.4.2 Securing Container at runtime 

Securing the runtime means making the container execution 

environment minimal, immutable, and constrained so that 

even if an attacker gains foothold, they cannot escape, persist, 

or move laterally.  

 

5.4.2.1 Immutable Containers 

Immutable containers maintain their original state after 

deployment because they cannot be altered which protects 

against unauthorized changes and maintains a stable runtime 

environment. The process of updating requires developers to 

build and redeploy a fresh image which strengthens security 

measures for all three platforms including AKS, EKS and 

GKE. Containers can be configured as immutable using 

Security Context of security policy for Confidential 

Containers. Immutability is important as it denies any 

alternation of container images after their deployment. 

Remote access to the container can be blocked by either the 

security context of the pod configuration or by the security 

policy of the confidential containers (the later is the preferred 

approach as it does not reply on the Kubernetes cluster from 

being malicious). No one can “shell” into containers and 

make any changes to the container, including running any 

shell command that might introduce changes to the container 

after its deployment. Immutability guarantees that container 

image remains the same throughout its lifetime.  

  

Note, sometimes, your application needs files access, in those 

scenarios use Kubernetes emptyDir. When we use emptyDir 

as volume, Kubernetes will attach a local folder from 

underlying worker node, which lives as long as the pod. 

Changes are limited to what is on the emptyDir as a local file 

share. However, the emptydir lives inside the UVM and takes 

space away from the root file system of the containers. Once 

emptydir hosted on the node filesystem is enabled, as of now, 

Confidential Containers will not encrypt the contents, so 

anything you write there will be visible outside of your TEE.  

 

5.4.2.2 Controlling container runtime behavior using 

Seccomp 

Seccomp is a Linux kernel feature that can be used to restrict 

the system calls that a process can make. In Kubernetes, 

Seccomp can be used to secure containers by defining profiles 

that restrict the system calls that a container can make. 

Seccomp profiles can be defined for individual containers or 

for entire namespaces. Using the security profile configured 

for individual containers or inherited from the namespaces, 

Seccomp ensures the container can only make the system calls 

allowed by the profile. The default Docker Seccomp profile 

blocks 44 syscalls, including reboot, mount, unmount among 

others. In our implementation, we will add fork and vfork 

syscalls into this list so the container cannot create any new 

process. With this security policy, no code inside container 

can download code from network at the runtime and run 

downloaded code. Combining immutable containers with 

Seccomp security profile, the application container runtime 

behavior is completely controllable.  

 

5.4.2.3 Real Time Security Monitoring at runtime using 

Falco 

Falco is a cloud-native security tool designed for Linux 

systems. It employs custom rules on kernel events, which are 

enriched with containers and Kubernetes metadata, to provide 
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real-time alerts. Falco helps you gain visibility into abnormal 

behavior, potential security threats, and compliance 

violations. With this visibility, Falco allows you to respond to 

security threats using actions. Sysdig built Falco as an Apache 

2.0 Cloud Native Computing Foundation (CNCF) project. It 

provides a continuous runtime security monitoring system on 

Linux operating systems that tackle:  

• Zero-day vulnerabilities  

• Privilege escalation attempts.  

• Bugs that cause erratic behavior or resource leaking  

• Unexpected behavior in the deployed artifacts 

 

5.4.3 What security gap still exists after the last C?  

With a combination of immutable containers and Seccomp 

security policies as a security measure for the fourth and the 

last C (Code), our security posture has improved as described 

in the diagram below:  

 

 
  

As illustrated, the vulnerability of subject pod can be 

completely mitigated in the proposed security architecture.  

 

6. Conclusion 
 

In summary, this paper has advocated for a defense-in-depth 

security architecture design for managed Kubernetes 

environments running mission-critical services across 

industries such as finance, healthcare, defense and supply 

chain (Signing, Scanning, Packaging, etc.). By securing the 

Cloud, Cluster, Container, and Code layers, this architecture 

provides multiple overlapping lines of defense that will 

minimize insider threats, supply chain compromises and 

runtime exploits. The features of this architecture rely heavily 

on security tooling provided by the cloud provider. These 

cloud security features include Hub-Spoke network 

architecture for network segmentation and isolation, 

Confidential Containers to protect sensitive workloads even 

from cloud infrastructure operations, a comprehensive set of 

cluster security controls, multiple admission controllers, 

Role-Based Access Control (RBAC), seccomp profiles, 

runtime detection, and secure image registries to enforce strict 

security policy and harden clusters.  

 

More importantly, this security exists as part of the developer 

workflows and is built in a way that does not affect their 

productivity or operational flexibility while significantly 

lifting the organizations overall security posture. The design 

is also able to protect against more sophisticated attacks by 

isolating workloads critical to the organization's security and 

minimizing the attack surface against privileged access from 

hypervisor or VM or host compromises, cloud administrator 

breaches, and malicious insider activities from admin 

accounts.  

 

The examples provided in this work demonstrate that layered 

security can be applied at all levels and in a scalable and 

flexible manner to managed Kubernetes deployments. This 

work offers organizations valuable lessons on how to 

implement security for cloud-native supply chain activities 

with Kubernetes as the foundation while still addressing an 

increasingly complex and evolving threat landscape.  
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