
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Cloud-Native Defense-in-Depth Security for

Mission-Critical Services in Managed Kubernetes

Karthikeyan Thirumalaisamy

Independent Researcher, Washington, USA

Corresponding Author Email: kathiru11[at]gmail.com

Abstract: Kubernetes serves as the standard deployment tool for cloud-native applications that include mission-critical services across

industries such as finance, healthcare, defense, and more. When many organizations start using Kubernetes especially through managed

services like AKS, EKS, and GKE which brings additional security challenges that need to be carefully addressed. This paper presents a

secure architecture for managed Kubernetes systems which implements defense-in-depth methodology based on the cloud-native security

4C's: Cloud, Cluster, Container, and Code. The paper analyzes each component of managed Kubernetes systems to demonstrate how

cloud-native security mechanisms combine to protect against insider threats and software supply chain attacks and escape runtime exploits

through cloud-level policy enforcement and cluster hardening and secure containerization and secure development practices. The paper

proposes a security architecture delivers operational security controls through admission controllers and role-based access controls

(RBAC) and seccomp and runtime detection tools and secure image registries by utilizing AKS, EKS and GKE cloud-native features and

integrations. The paper includes concrete execution examples demonstrating how a defense-in-depth security architecture built on

Kubernetes technology implements comprehensive security measures at each layer, ensuring robust protection without slowing down

development speed or reducing operational capabilities.

Keywords: Kubernetes, Supply chain, Cloud-Native architecture, Defense in depth, zero trust architecture

1. Introduction

Kubernetes has been foundational to modern cloud-native

infrastructure that enables organizations to deploy and scale

containerized workloads with a high degree of availability

and automation. Managed Kubernetes services such as Azure

Kubernetes Service (AKS), Amazon Elastic Kubernetes

Service (EKS), and Google Kubernetes Engine (GKE)

provide operational simplicity by abstracting control plane

management, allowing teams to focus on workload

orchestration. Nevertheless, this convenience introduces

additional challenges in ensuring the security of mission-

critical services.

Mission-critical services have rapidly emerged as some of the

most common distributed microservices deployed within

managed Kubernetes clusters across industries. These

services often consume sensitive metadata, cryptographic

materials, or business-critical software which in turn provides

an attractive target footprint for adversaries. Providing

security to such services in managed Kubernetes

environments requires thinking holistically about how to

support workload isolation, runtime protection, and policy

enforcement across cloud infrastructure and containerized

applications.

This paper proposes a cloud-native security architecture to

safely secure mission-critical services in managed Kubernetes

environments by employing a defense-in-depth model. Our

architecture is built around the 4C's of cloud-native security

systems such as Cloud, Cluster, Container, and Code which

together illustrate the layered control surfaces in the

Kubernetes stack. By looking at all the relevant threats and

controls for each layer, this paper presents a systematic

approach for addressing common risk scenarios, such as

lateral movement, privilege escalation, insecure

configurations, and secret/workload access by unauthorized

entities.

At the heart of the proposal is the use of confidential

containers, which leverage hardware-backed Trusted

Execution Environments (TEEs) to ensure sensitive

workloads are protected not just at rest or in transit, but also

while executing. Confidential containers allow a critical set of

supply chain functions to be executed in an isolated space

with encrypted memory even from a compromised kernel or

a compromised administrator running on an underlying host.

Confidential containers are intended to bring strong

assurances against insider threats and advanced persistent

threats.

The proposed architecture comes with the built-in capabilities

of managed Kubernetes platforms but also leverages a wide

set of open-source tools and standards. Some examples of

open-source security tools that we will consider are seccomp

profiles, RBAC and Network Policies, admission control

mechanisms (e. g., OPA/Gatekeeper), and runtime threat

detection (e. g., Falco). By using practical deployment

patterns and real-world implications of secure supply chain

services in managed Kubernetes, it will demonstrate how the

defense-in-depth model can be applied to secure supply chain

services without negatively impacting operational efficiency

or scalability.

2. What is Mission-Critical services?

Mission-critical services are software programs or systems

that are critical to an organization’s core business operations,

where failure or downtime could equate to financial loss or

compromised safety, regulatory compliance or reputational

risks or damage. Mission-critical services usually deal with

sensitive or regulated data and require high security,

reliability and resiliency in terms of being unscathed from

attacks, failures, and outages. Mission-critical services are

foundational across multiple industries, especially finance,

healthcare, defense and utilities.

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 669

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Some examples of mission-critical services globally are:

• Finance: Payment processing, fraud detection, and trading

software.

• Healthcare: Electronic health record systems, medical

device monitoring, and tele-health software.

• Defense: Secure communication, command & control

systems, intelligence information and analytics.

• Utilities: Electricity grid management and water treatment

system.

• Transportation: Air traffic control and logistics software.

• Supply Chain Services: Code Signing, Scanning,

Packaging

In today’s cloud-native environments, many mission-critical

services are used as containerized microservices on flexible

managed Kubernetes services offered by such providers as

Azure Kubernetes Service (AKS), Amazon Elastic

Kubernetes Service (EKS), and Google Kubernetes Engine

(GKE). Managed Kubernetes services provide scalable,

reliable and secure orchestration to support organizations in

safely maintaining continuous operations, implementing

workload isolation capabilities, and maximizing security

posture requirements for mission-critical workloads. Yet,

managed Kubernetes services raise several important security

concerns that organizations should consider, including risks

of hypervisor or host compromise, virtual machine

vulnerabilities, potential for API server breaches, threats

within cloud environments, and misuse of tenant

administrator access.

3. Security Concerns of Building Services on

Managed Kubernetes

Security concerns grow in complexity when it comes to

Kubernetes and container technologies. Two major potential

threats affecting Kubernetes are:

• Malicious actors – Once a threat actor breaks into your

Kubernetes ecosystem, it becomes easy for them to spread

the malicious actors across the cluster. This is possible

because containers and pods interact with each other, and

a corrupted container could cause the collapse of the entire

application. Attackers are constantly looking for exposed

containers or portals with either no authentication system

or a poor one. Such containers often fall into blind spots;

way too often, the organizations will not even realize the

exploitation or the breach by compromised or rogue users.

• Malicious code running inside containers – Attackers

can exploit the misconfiguration to place malware or

unknown code inside a container. In 2018, Tesla’s cloud

infrastructure was breached, and crypto-mining

malware was placed deep within the environment. The

investigation revealed that a particular Kubernetes

administrative portal wasn’t password protected. Another

violation method is attacker leveraging vulnerabilities in

container images and image registries.

Below picture illustrates the major security concerns of

running services in Managed Kubernetes,

As shown, actors whose identity might be compromised or

who might act maliciously include Kubernetes cluster

admins, Tenant admins and Cloud admins. These are

represented in red arrows in the picture above. The subject

pod that is running application code and other pods such as

system pods might be compromised by running injected

malicious code by varies means, including contaminated

container images or code downloaded by containers at run

time. These threats are represented as red cubes in the above

picture, indicating containers themselves might be infected

with malicious code.

To mitigate these threats, it is important to establish zero-trust

security boundaries around containers running in Kubernetes

and lock down access to fend off all actors including cloud

admins, tenant admins and Kubernetes cluster admins. In

addition, it is important to establish security mechanisms to

ensure code running inside containers can’t be tempered at

any time. These include container image integrity and policies

enforcing running only allow code both at the startup of

containers and throughout their life cycle at the runtime.

4. Cloud Native Security Principles (4 Cs)

Cloud Native Security Principles think of security in layers.

The 4Cs of Cloud Native Security Principles are Cloud,

Clusters, Containers and Code. This layered approach

augments the defense in depth computing approach to

security, which is widely regarded as a best practice for

securing software systems. Each inner layer of the Cloud

Native security model builds upon next outer layer. The Code

layer benefits from strong base security layers of Container,

Cluster and Cloud.

By applying consistent security controls across all four layers,

organizations can create a resilient and scalable defense

strategy that aligns with modern cloud-native practices. This

layered model is particularly effective for securing mission-

critical services, which span across multiple levels of the

stack and require end-to-end protection.

The consideration of security controls at each of the four Cs

is described below:

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 670

http://www.ijsr.net/
https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/
https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Cloud: Securing cloud involves protecting Cloud

infrastructure from unauthorized access from actors and

code. Basic measures include identity and access

management (IAM), JIT access, and RBAC for cloud

resources. Additionally, network segmentation and

firewalls are needed to enforce layers of security

boundaries the ensure least access privilege to most inner

and core assets.

• Cluster: Securing cluster involves securing both cluster

control plane components like API calls, node access, etcd

access, and applications running inside the cluster. The

security measures include security practices like

encrypted communication and TLS certificate

authorization, securing Kubernetes API server by

enforcing API authentication mechanism. Once again, it is

important to enforce layered security boundaries to protect

Kubernetes control plane, nodes, pod networks, pod level

security policies, namespaces, and network segregation.

• Container: Securing container involves isolating

containers from outer layers. Any malicious actor that

breaches the container layer can move within the

environment, easily communicating with other containers

and pods. In its default mode, Kubernetes offers minimal

security guardrails to ensure faster software development.

One can improve Container level security by hardening

the security with robust security governance policies and

controls, but this is not enough to address the inherited

vulnerability of hypervisor architecture, that is, the guest

OS can be penetrated via hypervisor from host OS. This

“open” passage from host to guest can’t be sealed with

access controls. A complete isolation of containers from

the outside world is needed to ensure complete security at

Container level.

• Code: Securing Code involves preventing malicious code

running inside containers. This is one of the most targeted

attack surfaces for any computing environment. Security

measures to secure Code include ensuring container

images are created and stored in trusted image registries,

container images are malware free, and container images

are verified before being deployed. In addition, it is critical

that containers cannot be tempered at runtime to run any

malicious code.

5. Designing Defense-in Depth Security

architecture for Managed Kubernetes

Managed Kubernetes refers to cloud-native Kubernetes

solutions like Azure Kubernetes Service (AKS), Amazon

Elastic Kubernetes Service (EKS), or Google Kubernetes

Engine (GKE). Essentially, the cloud provider takes

responsibility for provisioning, operations, and maintenance

of the Kubernetes control plane. The hybrid cloud managed

services also abstract many of the operational burden of

running Kubernetes at scale in terms of managing the control

plane upgrades, availability, and even scalability of the

control plane.

To put it another way, managed Kubernetes simplifies the

operation of running Kubernetes but with a trade-off of a

shared responsibility model. The managed service provides

security on their infrastructure and control plane layer while

the consumer is responsible for securing their workloads

running in Kubernetes, configurations, network policies, and

runtime behavior. This makes it simple for teams to adopt

cloud native architectures quickly but a good security

architecture and process at the cluster and application layer is

paramount to keep pace with the evolving threat landscape as

threat actors continue to evolve their behavior and

motivations.

Security is defined as the actions, processes and principles

that should be followed to ensure security in your Kubernetes

deployments. This includes securing code, configurations,

containers, Kubernetes Cluster, Kubernetes network, and

Cloud infrastructure.

5.1 Securing Cloud Boundary for Managed Kubernetes

The process of securing the cloud boundary for managed

Kubernetes starts with establishing strong network-level

protections. Although the Kubernetes control plane is

managed by a cloud provider, it is ultimately the users

responsibility to provide workload isolation and secure

communication paths. This section discusses network

security approaches private cluster configurations, virtual

network integration, restricted API server access, and firewall

rules that can help to create a secure perimeter around

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 671

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

managed Kubernetes clusters. Proper network segmentation

ensures that only authorized and trusted entities can interact

with the cluster, thereby minimizing lateral movement and

reducing exposure to external traffic.

5.1.1 Securing Network using Hub Spoke Network

Architecture

Network security is the protection of the underlying

networking infrastructure from unauthorized access, misuse,

or theft. It involves creating a secure infrastructure for

devices, users, and applications to work securely. Network

security combines multiple layers of defenses at the edge and

in the network. The following diagram illustrates the sample

deployment of managed Kubernetes cluster in Hub spoke

architecture pattern behind firewall.

Each network security layer implements policies and controls.

Authorized users gain access to network resources, but

malicious actors are blocked from carrying out exploits and

threats. Hub-spoke network pattern where the hub virtual

network (VNet) acts as a central point of connectivity to many

spoke virtual networks. The spoke virtual networks (VNet)

connect with the hub and can be used to isolate workloads.

A hub is a centralized network location that controls, inspects,

and routes the pathways on traffic traversing a number of

different connected environments, such as the internet, on-

premises data centers, and spoke virtual networks. In the hub-

and-spoke topology, the hub serves as the single control point

to manage inbound and outbound traffic for all associated

spoke networks, commonly referred to as virtual networks or

VNets. Inbound rules manage and control ingress traffic

arriving from external sources, either from the internet or on-

premises networks, before it reaches a spoke VNet running

sensitive workloads, such as managed Kubernetes clusters.

Outbound rules manage and control egress traffic leaving

from spoke VNets, permitting egress only to approved

destinations, while preventing unauthorized communication

to an untrusted or external network. This architecture

promotes enforcing centralized security policies, unified

logging, and deep packet monitoring while minimizing the

number of points of external access at the edge of the network,

consequently shrinking the attack surface. Collectively

managing network controls, such as Azure Firewall, AWS

Network Firewall, Network Security Groups (NSGs), and

intrusion detection within the hub, allows organizations to

maintain a consistent security posture across different spokes,

lower the risk of misconfiguration and keep visibility into all

communications between VNets or networks. The role of

each spoke is to host different types of workloads. The spokes

also provide a modular approach for repeatable deployments

of the same workloads. It is needed to provision a Kubernetes

cluster in the Spoke workload virtual network (VNet) and also

provision a second spoke VNT for Jump Box Virtual

Machines (VMs). These Jump Boxes will provide developers

and administrators with secure access to the Kubernetes

cluster, which adds another layer of protection from external

threats.

5.1.2 What security gap still exists after the first C?

Securing the network is part of the first ‘C’ (Cloud) in Cloud

Native security model that only protects from internet threats,

and it ensures that all the inbound and outbound connectivity

is monitored and validated using Firewall rules. Additionally,

the actors of admins are enforced with access controls

(RBAC). But we still need to secure inner components (the

remaining 3C’s Cluster, Container and Code) using different

approaches which will be discussed further in detail.

5.2 Securing Cluster Boundary for Managed Kubernetes

In managed Kubernetes (AKS, EKS, GKE, etc.) establishing

defenses to protect the cluster boundaries is vital to ensuring

workloads do not pose undesired access, risk of data

exfiltration, and malicious changes to configuration. For this

purpose, the boundaries of the cluster can be defined as the

control plane and any resources that need to be isolated from

anything beyond untrusted (unverified) networks while still

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 672

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

allowing for securely logged, auditable, and policy compliant

operations within the cluster.

5.2.1 Private Cluster

By default, managed cluster uses a public IP address for

accessing the Control Plane. However, using a public IP

address will expose the control plane traffic to Internet

threats. Hence, by creating a private Kubernetes cluster with

a private control plane IP address, we can ensure network

traffic between your API server and your node pools remains

on the private network so that the cluster is protected from

internet security threats. However, the absence of a public IP

address prevents you from directly connecting to a private

AKS cluster from your computer. In this case, developers and

administrators use jump box from Spoke VNet to connect to

managed Kubernetes cluster using a private endpoint.

5.2.2 Private Container Registry

In a Managed Kubernetes environment, a container registry is

the primary repository for all container images. The registry

should be private to reduce the risk of exposing over internet

and unauthorized access, as well as supply chain risks. Private

registries are incredibly important, as authenticating the

registry will allow the only namespaced access for trusted

entities to pull or push images. In addition, the registry should

only accept approved and cryptographically signed images, to

eliminate the possibility of Images that are vulnerable or

malicious entering the environment. The Kubernetes cluster

and nodes should also connect to the private registry using

private, secure endpoints, as the traffic of image-pulling and

pushing requests would be private in transit from the external

internet.

5.2.3 Other Cloud Resources

Application runs in managed Kubernetes cluster need to talk

to other Cloud resources such as Vault, Storage Cosmosdb,

SQS, Service Bus, etc. By default, cloud resources are

accessible over the internet so we should use private endpoint

to connect to these resources and disable the public access. A

private endpoint is a network interface that uses a private IP

address from your virtual network. This network interface

connects you privately and securely to a resource that's

powered by Private Link. By enabling a private endpoint,

you're bringing the resource into your virtual network (VNet)

and protecting it from external malicious users directly

accessing the cloud resources over the internet.

5.2.4 Securing API Server

The Kubernetes API is the front end of the Kubernetes control

plane and is how users interact with their Kubernetes cluster.

The API server determines if a request is valid before

processing it. In essence, the API is the interface used to

manage, create, and configure Kubernetes clusters. It's how

the users, external components, and parts of your cluster all

communicate with each other. So, If an API server is

compromised then the entire cluster is compromised. The

following sections discuss certain steps that we need to

perform to ensure the API server is secured.

5.2.4.1 Authentication and Role Based Access Control

(RBAC)

Weak authentication and authorization controls can enable an

adversary to break into the Kubernetes API server, modify or

delete resources, or use other commandeering actions to

disrupt the entire cluster. To mitigate these risks, the API

server should connect to a strong centralized identity provider

for user authentication. When using an identity provider,

users authenticate to the cluster using short-lived

authentication tokens that are issued by the provider, so the

risk of credential theft or misuse is eliminated. Upon

authentication, role-based access control (RBAC) must be

enforced to maintain the principle of least privilege; most

managed Kubernetes services provide native integrations e. g.

Azure Kubernetes Service (AKS) has Azure RBAC that can

be connected to Microsoft Entra ID, and Amazon Elastic

Kubernetes Service (EKS) provides AWS IAM integration

for RBAC mappings. Kubernetes-native RBAC, if needed,

can then provide more granular control at the namespace or

cluster level based on individual or group memberships. Even

where an external identity provider is used, local Kubernetes

administrative accounts should be disabled unless required,

because leaving them enabled allows access while bypassing

centralized authentication controls.

5.2.4.2 Adhere to least privilege principle

If we need to create custom roles in Kubernetes RBAC for

access control and management then use the following

recommendations for permissions and role assignments:

• Avoid wildcard permissions, especially to all resources.

• Use RoleBinding instead of ClusterAdminBinding to give

access within a namespace.

• Avoid adding users to the system: master group as it

bypasses RBAC.

• Use impersonation rights for admins instead of adding to

the cluster admin role. Audit and monitor when

impersonation is being done.

• Avoid granting the escalate or bind permissions to roles

when not needed, audit and monitor when escalation is

being made.

• Avoid adding users to the system: unauthenticated group.

• Limit permissions to issue CSR and certificate.

• Avoid granting users with create rights on service

accounts/token, which could be exploited to create

TokenRequests and issue tokens for existing service

accounts.

• Users with control over validating web hook

configurations or mutating webhook configurations can

control webhooks that can read any object admitted to the

cluster, and in the case of mutating webhooks, also mutate

admitted objects.

5.2.4.3 Disable API Server access from Application Pods

By default, all pods running in a cluster can access API server

using auth token that is mounted automatically, due to that, if

an application pod is compromised then malicious users can

take full control of the cluster by compromising the API

server. Additionally, every Kubernetes namespace contains at

least one default service account. An application running

inside a pod can access the Kubernetes API using

automatically mounted service account credentials to access

Kubernetes API, its level of access depends on the

authorization plugin and policy in use. Therefore, we should

remove Auth token mounting on the application pod and

disable this capability in Kubernetes to automatically mount

Service Account's API credentials for namespaces. In

addition, we should configure network policies to restrict

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 673

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

access to the API server from application pods. This topic will

be covered in more detail in the Network Segmentation

section.

5.2.4.4 Securing etcd

etcd is the key-value store used by Kubernetes to persist the

cluster’s state, configuration, and secrets. This includes

highly sensitive data such as authentication tokens, TLS

certificates, and other credentials stored as Kubernetes

Secrets. If etcd is compromised, an attacker could gain full

control over the cluster, making its protection critical.

Security for etcd should be implemented at two levels:

1) Access Control-Only the Kubernetes API server should

have direct access to etcd. All other access should be

blocked at the network and firewall level. This prevents

unauthorized components or users from querying or

modifying etcd data.

2) Encryption at Rest-All secrets in etcd should be

encrypted using strong keys managed by a secure Key

Management Service (KMS). This ensures that even

infrastructure administrators with storage access cannot

read sensitive data without proper decryption keys.

Managed Kubernetes platforms AKS and EKS provides built-

in support for this using KMS plugin.

5.2.4.5 Securing Kubelet

The kubelet is an integral component of Kubernetes that runs

on each node and communicates with the API server to

manage the lifecycle of pods and containers. The kubelet

exposes a kubelet API that if misconfigured, or compromised,

can allow an adversary to execute arbitrary commands, pull

down logs, or gain access to sensitive pod information.

Managed Kubernetes solutions such as Azure Kubernetes

Service (AKS) and Amazon Elastic Kubernetes Service

(EKS) have default kubelet security configurations. Both

AKS and EKS disable anonymous authentication to the

kubelet, and use authorization through the Webhook mode,

they also pass authorization info to Kubernetes Role-Based

Access Control (RBAC). However, additional controls are

always necessary to secure the kubelet in production.

Kubernetes Network Policies and equivalent clouds network

controls should be used to restrict kubelet (API) ports 10250

and 10255 to workloads that need it. With Pod Security

Standards (PSS) or Open Policy Agent (OPA) policies, if

kubelet were compromised, the actor would be limited in the

impact that could be taken. For example, in AKS,

administrators can deploy Azure Network Policies to allow

for network segmentation. In EKS, AWS Security Groups can

be configured to restrict node-level API permissions such as

the kubelet API. When using managed services that have

built-in protection to mitigate kubelet risk, we can layer and

add additional controls to limit risk as part of the overall risk

management strategy in multi-cloud Kubernetes.

5.2.5 Securing Network Segmentation

By default, all pods in any Kubernetes cluster (whether AKS,

EKS, GKE, or others) can communicate with each other

freely. In an open communication model, if one pod becomes

compromised, it has the ability to try to communicate, and

potentially compromise, other pods. Therefore, organizations

should attempt to put rules in place to restrict traffic flows.

For example, backend services should only be accessible by

selected front-end components, and database tiers should only

be accessible by the application layer that require them.

Network Policies in Kubernetes allow you to define access

control for how communication takes place between pods

(within a namespace), between namespaces, and between

pods and external endpoints. Network Policies use label

selectors to select specific pods to enforce ordered sets of

ingress and egress rules. Network policies are defined using

YAML manifests, and they can be deployed separately, or as

a single package with other Kubernetes resources like

Deployments or Services. Most managed Kubernetes

platforms enable multiple network policy providers (e. g.

Calico, Cilium, even native cloud network policies) that

enforce the rules defined in network policies using the

iptables mechanism (Linux), eBPF (Linux), or Windows Host

Network Service (HNS) ACLs (Windows). The

implementation of network policies will help you block any

unexpected pod-to-pod traffic so that only authorized client

applications can communicate with server applications.

5.2.6 Open Policy Agent and Kubernetes

OPA “Open Policy Agent” is General Purpose Policy Engine.

OPA gives us a higher level and declarative language to

author our policies and to enforce them within our

environment, always leaving our cluster compliant with the

company policies. OPA acts as an admission controller that

intercepts requests to the Kubernetes API server before an

object is persisted. For example, if you send a request to the

API server to create a Deployment resource, the admission

controller may intercept this request, mutate, or validate it.

When we use OPA as an admission controller we can enforce

OPA policies on these requests sent to the API server before

they are processed by the API server. This gives us many

benefits like:

• Disable shell access to across Pods.

• Make sure our containers do not run in ‘privileged’ mode.

• Make sure developers can only create internal load

balancers.

• Make sure applications cannot use expensive SSDs.

• Make sure configurations have the proper labels attached.

• Used Container Registry must be in allowed list, etc.

• Verify container image signature before allowing it to be

deployed.

The OPA admission controller serves as a gatekeeper within

managed Kubernetes services. Gatekeeper, or the “General

Purpose Policy Engine”, is a first-class Kubernetes citizen. It

evaluates incoming requests based on Rego policies

administrator define and answers the API server what to do

with these requests (deny/allow). In practice it can deny

requests made to the API server if these requests are not

compliant with the policies we define. Gatekeeper is a native

Kubernetes initiative and can be easily installed into any

managed Kubernetes.

5.2.7 What security gap still exists after the second C?

This section discussed some of the approaches and techniques

to secure the managed Kubernetes cluster and its internal

components. Although both the network (cloud) and cluster

have been secured, there remain vulnerabilities within

containers that can still be exploited by attackers. So, let’s

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 674

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

discuss some of the approaches to secure the container and

container images in upcoming sections.

5.3 Securing Containers Boundary for Managed

Kubernetes

Pods are the smallest deployable units of computing that you

can create and manage in Kubernetes. A Pod is a group of one

or more containers, with shared storage and network

resources, and a specification for how to run the containers.

A Pod's contents are always co-located and co-scheduled and

run in a shared context. A Pod models an application-specific

"logical host": it contains one or more application containers

which are relatively tightly coupled, and each Pod gets

dedicated IP address.

Following are the threats if Pod or Container compromised:

• Get Access to the Host/Nodes by break out Container or

Kernal vulnerabilities.

• Attack Api Server and Kubelet

• Attack other containers running on the same node.

• Run malicious code inside container.

The security measures applied to the first two C’s (Cloud and

Cluster) provide protection for containers against

unauthorized access within the Kubernetes environment.

However, these measures do not address the risk of malicious

code affecting pods or containers. Additionally, the inherited

security vulnerability of hypervisor opens a door to Nodes and

Pods from host OS. This underlying vulnerability occurs in

both Windows and Linux platforms, which grants code from

host to access guest VMs through hypervisor. A common

mitigation to this fundamental security risk is through

Confidential Virtual Machines (CVMs) and Confidential

Containers.

5.3.1 Confidential Virtual Machines (CVMs)

Confidential VMs leverage hardware-based Trusted

Execution Environments (TEEs), such as AMD SEV-SNP,

Intel TDX, or Intel SGX, to encrypt memory and isolate the

virtual machine at the hypervisor level. This ensures that data

in use is protected not just from external attackers but also

from cloud administrators and other workloads running on the

same physical host. In a Kubernetes context, CVMs can be

used as secure worker nodes where the kubelet and container

runtime operate entirely inside a TEE. This protects both the

workload and the node-level processes from being tampered

with by anyone without the encryption keys that are generated

and stored in hardware.

Most major cloud providers support CVMs:

• AKS – Azure Confidential VMs (AMD SEV-SNP, Intel

TDX)

• EKS – AWS Nitro Enclaves / EC2 Confidential

Computing instances

• GKE – Confidential VMs powered by AMD SEV-SNP

5.3.2 Confidential Containers

Confidential containers take the notion of confidential

computing from the node level down to the workload level on

an individual container basis, running containers in hardware-

backed enclaves so that both the application code and in-

memory data are encrypted and verifiable at runtime. This

means that threats from a host kernel, Confidential VM,

container runtime, or even cluster administrator have been

protected.

Confidential Containers (CoCo) based on Kata Containers

integrated well with Kubernetes, and similar projects, provide

a consistent way to execute Open Container Initiative (OCI)

containers inside Trusted Execution Environments (TEEs).

Confidential containers add a level of security not only

because of the TEE but also because of underlying hardware

that reduces the attack surface and provides protection from

compromised kernel, compromised Confidential Virtual

Machine (CVM) and container runtimes. This means that

sensitive workloads, such as those which process financial

transactions, supply chain services, conduct training on

proprietary AI models, or involve regulated health data, may

be operationally run in untrusted cloud environments.

Therefore, it is essential to operate mission-critical services as

Confidential Containers. Azure Kubernetes Service (AKS)

also supports the integration of Azure Container Instances

(ACI) based confidential containers through Virtual Node.

5.3.3 What security gap still exists after the third C?

With Confidential virtual machines and containers as a

security measure for the third C (Container), our security

posture has improved as described in the diagram below:

As illustrated, the security vulnerability exposed to actors as

well as code from hypervisor, host/guest agents, peer

pods/containers are all mitigated. The remaining security

vulnerability is within the code running inside the subject

container. Despite TCB to protect the subject pod, the code

running inside can still present security risks (such as running

downloaded code or starting new processes). The final

vulnerability is addressed by the subject of securing the last

C, the Code.

5.4 Securing Code Boundary for Managed Kubernetes

As discussed, Confidential Container secures the boundary of

container by providing a TCB for application code to run

inside a Trusted Execution Environment, but it does not

control the runtime behavior of the code running inside the

container. Windows implements code integrity to control

runtime code behavior, Linux has a different solution that

provides a runtime code security as secure as Code Integrity

in Windows. The below sections discuss security controls at

various levels to secure the last C, the Code.

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 675

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5.4.1 Securing Container Images

Container images are the foundation of all workloads that run

in Kubernetes. If a container image is compromised, it is a

potential gateway for injecting vulnerabilities, malware, or

backdoors into the cluster. Container images should be

secured through integrity and authenticity validation and

compliance validations before deploying to a Kubernetes

cluster. This will include trusted base images, scanning for

known vulnerabilities, enforcing signing & verification

requirements, and securely storing images in registries.

Security controls need to be in place throughout the image

build and delivery pipeline, so unverified or malicious code

cannot be deployed to production in a Kubernetes cluster.

5.4.1.1 Container Image scanning at Build time

The first security control is to ensure the container image is

free of malware. Containers with outdated base images or

unpatched application runtimes introduce security risks and

possible attack vectors. We can minimize these risks by

scanning containers at build time. The following are the best

practices to ensure container images are not vulnerable:

a) Use distroless images for Linux workloads.

• Distroless images are secured as it does not have any

bash/shell and package manager installed and it

contains only required software for application to run.

b) Scan your container images for vulnerabilities.

c) Regularly update the base images and application

runtime.

d) Regularly deploy updated containers.

5.4.1.2 Container Image signing and verification

Container images are then signed in CI build pipeline using

Signing task. It will sign the container image artifacts and

attach it to the Image and upload it to a private registry that is

secured as described in securing the Cloud section. Verifying

container image integrity takes place at various points in

container’s life cycle: deployment time, startup time and run

time. At the deployment time, Custom Admission Controller

verifies the Container image signature (validate the entire

chain) before it allows the container to be deployed in

managed Kubernetes cluster. This will protect running

unsigned or wrongly signed container images into Kubernetes

cluster.

5.4.1.3 Container Image Re-scanning

Regularly and consistently scanning container images is

critical to discover new vulnerabilities that can exist after an

image is built and then deployed. This applies to images that

are stored in a container registry (e. g., Azure Container

Registry, Amazon Elastic Container Registry, Google

Artifact Registry) and those images running in the workloads

of Kubernetes clusters. Continuous re-scanning keeps images

aligned against the most up-to-date vulnerability databases so

that security drift does not occur over time. Cloud providers

also have built-in security solutions to achieve this (for

example, Microsoft Defender for Containers for AKS,

Amazon Inspector for EKS, Google Cloud Security

Command Center for GKE) to observe and protect

containerized assets (Kubernetes clusters, nodes, workloads,

registries, etc.).

5.4.2 Securing Container at runtime

Securing the runtime means making the container execution

environment minimal, immutable, and constrained so that

even if an attacker gains foothold, they cannot escape, persist,

or move laterally.

5.4.2.1 Immutable Containers

Immutable containers maintain their original state after

deployment because they cannot be altered which protects

against unauthorized changes and maintains a stable runtime

environment. The process of updating requires developers to

build and redeploy a fresh image which strengthens security

measures for all three platforms including AKS, EKS and

GKE. Containers can be configured as immutable using

Security Context of security policy for Confidential

Containers. Immutability is important as it denies any

alternation of container images after their deployment.

Remote access to the container can be blocked by either the

security context of the pod configuration or by the security

policy of the confidential containers (the later is the preferred

approach as it does not reply on the Kubernetes cluster from

being malicious). No one can “shell” into containers and

make any changes to the container, including running any

shell command that might introduce changes to the container

after its deployment. Immutability guarantees that container

image remains the same throughout its lifetime.

Note, sometimes, your application needs files access, in those

scenarios use Kubernetes emptyDir. When we use emptyDir

as volume, Kubernetes will attach a local folder from

underlying worker node, which lives as long as the pod.

Changes are limited to what is on the emptyDir as a local file

share. However, the emptydir lives inside the UVM and takes

space away from the root file system of the containers. Once

emptydir hosted on the node filesystem is enabled, as of now,

Confidential Containers will not encrypt the contents, so

anything you write there will be visible outside of your TEE.

5.4.2.2 Controlling container runtime behavior using

Seccomp

Seccomp is a Linux kernel feature that can be used to restrict

the system calls that a process can make. In Kubernetes,

Seccomp can be used to secure containers by defining profiles

that restrict the system calls that a container can make.

Seccomp profiles can be defined for individual containers or

for entire namespaces. Using the security profile configured

for individual containers or inherited from the namespaces,

Seccomp ensures the container can only make the system calls

allowed by the profile. The default Docker Seccomp profile

blocks 44 syscalls, including reboot, mount, unmount among

others. In our implementation, we will add fork and vfork

syscalls into this list so the container cannot create any new

process. With this security policy, no code inside container

can download code from network at the runtime and run

downloaded code. Combining immutable containers with

Seccomp security profile, the application container runtime

behavior is completely controllable.

5.4.2.3 Real Time Security Monitoring at runtime using

Falco

Falco is a cloud-native security tool designed for Linux

systems. It employs custom rules on kernel events, which are

enriched with containers and Kubernetes metadata, to provide

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 676

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

real-time alerts. Falco helps you gain visibility into abnormal

behavior, potential security threats, and compliance

violations. With this visibility, Falco allows you to respond to

security threats using actions. Sysdig built Falco as an Apache

2.0 Cloud Native Computing Foundation (CNCF) project. It

provides a continuous runtime security monitoring system on

Linux operating systems that tackle:

• Zero-day vulnerabilities

• Privilege escalation attempts.

• Bugs that cause erratic behavior or resource leaking

• Unexpected behavior in the deployed artifacts

5.4.3 What security gap still exists after the last C?

With a combination of immutable containers and Seccomp

security policies as a security measure for the fourth and the

last C (Code), our security posture has improved as described

in the diagram below:

As illustrated, the vulnerability of subject pod can be

completely mitigated in the proposed security architecture.

6. Conclusion

In summary, this paper has advocated for a defense-in-depth

security architecture design for managed Kubernetes

environments running mission-critical services across

industries such as finance, healthcare, defense and supply

chain (Signing, Scanning, Packaging, etc.). By securing the

Cloud, Cluster, Container, and Code layers, this architecture

provides multiple overlapping lines of defense that will

minimize insider threats, supply chain compromises and

runtime exploits. The features of this architecture rely heavily

on security tooling provided by the cloud provider. These

cloud security features include Hub-Spoke network

architecture for network segmentation and isolation,

Confidential Containers to protect sensitive workloads even

from cloud infrastructure operations, a comprehensive set of

cluster security controls, multiple admission controllers,

Role-Based Access Control (RBAC), seccomp profiles,

runtime detection, and secure image registries to enforce strict

security policy and harden clusters.

More importantly, this security exists as part of the developer

workflows and is built in a way that does not affect their

productivity or operational flexibility while significantly

lifting the organizations overall security posture. The design

is also able to protect against more sophisticated attacks by

isolating workloads critical to the organization's security and

minimizing the attack surface against privileged access from

hypervisor or VM or host compromises, cloud administrator

breaches, and malicious insider activities from admin

accounts.

The examples provided in this work demonstrate that layered

security can be applied at all levels and in a scalable and

flexible manner to managed Kubernetes deployments. This

work offers organizations valuable lessons on how to

implement security for cloud-native supply chain activities

with Kubernetes as the foundation while still addressing an

increasingly complex and evolving threat landscape.

References

[1] Kubernetes, Cluster Architecture, 2024. [Online].

Available: https: //kubernetes.

io/docs/concepts/architecture/

[2] CNCF, Cloud Native Security Whitepaper, Cloud

Native Computing Foundation, 2023. [Online].

Available: https: //www.cncf. io/reports/cloud-native-

security-whitepaper/

[3] Sandeep Kampa, “NAVIGATING THE LANDSCAPE

OF KUBERNETESSECURITY THREATS AND

CHALLENGES, ” Journal of Knowledge Learning and

Science Technology, 3 (4), 2024, https: //doi.

org/10.60087/jklst. v3. n4. p274

[4] Santosh Pai 1, & Srinivasa. R. Kunte, “Secret

Management in Managed Kubernetes Services,

”International Journal of Case Studies in Business, IT,

and Education 7 (2), 2023, http: //dx. doi.

org/10.47992/IJCSBE.2581.6942.0263

[5] Luca Passaretta, Hub & Spoke Architecture and

Landing Zones on Azure Cloud, 2023. [Online].

Available: https: //medium. com/[at]lupass93/hub-

spoke-architecture-and-landing-zones-on-azure-cloud-

ad2e1b11c55

[6] Microsoft, Hub-spoke network topology in Azure.

[Online]. Available: https: //learn. microsoft. com/en-

us/azure/architecture/networking/architecture/hub-

spoke

[7] Microsoft, Baseline architecture for an Azure

Kubernetes Service (AKS) cluster. [Online]. Available:

https: //learn. microsoft. com/en-

us/azure/architecture/reference-

architectures/containers/aks/baseline-aks

[8] Microsoft, Security concepts for applications and

clusters in Azure Kubernetes Service (AKS). [Online].

Available: https: //docs. azure. cn/en-us/aks/concepts-

security

[9] Google Cloud, Hub-and-spoke network architecture,

2025. [Online]. Available: https: //cloud. google.

com/architecture/deploy-hub-spoke-vpc-network-

topology

[10] AWS, Multi-Cluster centralized hub-spoke topology.

[Online]. Available: https: //aws-ia. github.

io/terraform-aws-eks-blueprints/patterns/gitops/gitops-

multi-cluster-hub-spoke-argocd/

[11] Microsoft, Confidential Containers (preview) with

Azure Kubernetes Service (AKS), 2025. [Online].

Available: https: //learn. microsoft. com/en-

us/azure/aks/confidential-containers-overview

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 677

http://www.ijsr.net/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://www.cncf.io/reports/cloud-native-security-whitepaper/
https://www.cncf.io/reports/cloud-native-security-whitepaper/
https://doi.org/10.60087/jklst.v3.n4.p274
https://doi.org/10.60087/jklst.v3.n4.p274
http://dx.doi.org/10.47992/IJCSBE.2581.6942.0263
http://dx.doi.org/10.47992/IJCSBE.2581.6942.0263
https://medium.com/@lupass93/hub-spoke-architecture-and-landing-zones-on-azure-cloud-ad2e1b11c55
https://medium.com/@lupass93/hub-spoke-architecture-and-landing-zones-on-azure-cloud-ad2e1b11c55
https://medium.com/@lupass93/hub-spoke-architecture-and-landing-zones-on-azure-cloud-ad2e1b11c55
https://learn.microsoft.com/en-us/azure/architecture/networking/architecture/hub-spoke
https://learn.microsoft.com/en-us/azure/architecture/networking/architecture/hub-spoke
https://learn.microsoft.com/en-us/azure/architecture/networking/architecture/hub-spoke
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks/baseline-aks
https://docs.azure.cn/en-us/aks/concepts-security
https://docs.azure.cn/en-us/aks/concepts-security
https://cloud.google.com/architecture/deploy-hub-spoke-vpc-network-topology
https://cloud.google.com/architecture/deploy-hub-spoke-vpc-network-topology
https://cloud.google.com/architecture/deploy-hub-spoke-vpc-network-topology
https://aws-ia.github.io/terraform-aws-eks-blueprints/patterns/gitops/gitops-multi-cluster-hub-spoke-argocd/
https://aws-ia.github.io/terraform-aws-eks-blueprints/patterns/gitops/gitops-multi-cluster-hub-spoke-argocd/
https://aws-ia.github.io/terraform-aws-eks-blueprints/patterns/gitops/gitops-multi-cluster-hub-spoke-argocd/
https://learn.microsoft.com/en-us/azure/aks/confidential-containers-overview
https://learn.microsoft.com/en-us/azure/aks/confidential-containers-overview

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[12] Microsoft, Create and configure an Azure Kubernetes

Services (AKS) cluster to use virtual nodes using Azure

CLI, 2025. [Online]. Available: https: //docs. azure.

cn/en-us/aks/virtual-nodes-cli

[13] Confidential Containers, Overview. [Online].

Available: https: //confidentialcontainers.

org/docs/overview/

[14] Tigera, Cloud-Native Security: 4 C’s and 5 Strategies.

[Online]. Available: https: //www.tigera.

io/learn/guides/cloud-native-security/#The-Four-Cs-of-

Cloud-Native-Security

[15] David Mosyan, The 4C’s of Cloud Native Kubernetes

security, 2023. [Online]. Available: https: //medium.

com/[at]dmosyan/the-4cs-of-cloud-native-kubernetes-

security-958c720e2391

[16] Crowdstrike, The Fundamentals of Kubernetes

Security, 2024. [Online]. Available: https:

//www.crowdstrike. com/en-us/cybersecurity-

101/cloud-security/kubernetes-security/

[17] Asim Mirza, Kubernetes Security Contexts Series-Part

4: Immutable Filesystem, 2025. [Online]. https:

//medium. com/[at]mughal. asim/kubernetes-security-

contexts-series-part-4-immutable-filesystem-

b3d7e5d0be5c

[18] RX-M, CKS Mod 6: Ensure immutability of containers

at runtime. [Online]. Available: https: //rx-m.

com/lesson/cks-ensure-immutability-of-containers-at-

runtime/

[19] Marco Lenzo, Immutable Kubernetes Pods, 2022.

[Online]. Available: https: //marcolenzo. eu/create-

immutable-kubernetes-pods-with-the-security-context/

[20] Falco, Detect security threats in real time. [Online].

Available: https: //falco. org/

Paper ID: SR25812221601 DOI: https://dx.doi.org/10.21275/SR25812221601 678

http://www.ijsr.net/
https://docs.azure.cn/en-us/aks/virtual-nodes-cli
https://docs.azure.cn/en-us/aks/virtual-nodes-cli
https://confidentialcontainers.org/docs/overview/
https://confidentialcontainers.org/docs/overview/
https://www.tigera.io/learn/guides/cloud-native-security/#The-Four-Cs-of-Cloud-Native-Security
https://www.tigera.io/learn/guides/cloud-native-security/#The-Four-Cs-of-Cloud-Native-Security
https://www.tigera.io/learn/guides/cloud-native-security/#The-Four-Cs-of-Cloud-Native-Security
https://medium.com/@dmosyan/the-4cs-of-cloud-native-kubernetes-security-958c720e2391
https://medium.com/@dmosyan/the-4cs-of-cloud-native-kubernetes-security-958c720e2391
https://medium.com/@dmosyan/the-4cs-of-cloud-native-kubernetes-security-958c720e2391
https://www.crowdstrike.com/en-us/cybersecurity-101/cloud-security/kubernetes-security/
https://www.crowdstrike.com/en-us/cybersecurity-101/cloud-security/kubernetes-security/
https://www.crowdstrike.com/en-us/cybersecurity-101/cloud-security/kubernetes-security/
https://medium.com/@mughal.asim/kubernetes-security-contexts-series-part-4-immutable-filesystem-b3d7e5d0be5c
https://medium.com/@mughal.asim/kubernetes-security-contexts-series-part-4-immutable-filesystem-b3d7e5d0be5c
https://medium.com/@mughal.asim/kubernetes-security-contexts-series-part-4-immutable-filesystem-b3d7e5d0be5c
https://medium.com/@mughal.asim/kubernetes-security-contexts-series-part-4-immutable-filesystem-b3d7e5d0be5c
https://rx-m.com/lesson/cks-ensure-immutability-of-containers-at-runtime/
https://rx-m.com/lesson/cks-ensure-immutability-of-containers-at-runtime/
https://rx-m.com/lesson/cks-ensure-immutability-of-containers-at-runtime/
https://marcolenzo.eu/create-immutable-kubernetes-pods-with-the-security-context/
https://marcolenzo.eu/create-immutable-kubernetes-pods-with-the-security-context/
https://falco.org/

