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Abstract: Neurodegenerative disorders such as Alzheimer’s and Parkinson’s are challenging to detect early due to their gradual 

onset. This study investigates the use of machine learning algorithms to identify these conditions based on phonetic features in speech. 

By analyzing vocal attributes, such as fluency, articulation, and acoustic variation; this research aims to establish non-invasive 

diagnostic models. Principal Component Analysis (PCA) was used for feature selection, while Random Forest and Support Vector 

Machine (SVM) classifiers were deployed for detection accuracy. Results show promising accuracy levels, particularly in the 

Alzheimer’s model, highlighting the potential of AI in enhancing early clinical screening for cognitive decline. 
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1. Introduction 
 

Neurodegenerative conditions contribute majorly to cognitive 

impairment and disabilities in the aging population 

worldwide. Of these, Alzheimer's disease (AD) and 

Parkinson's disease (PD) are the most frequent and contribute 

substantially to age-related neurological impairment. The 

World Health Organization predicts that societies above 60 

years of age will reach more than 2 billion by 2050, thus 

leading to an increase in the prevalence of such disorders. AD, 

the leading cause of dementia, is characterized by measured 

memory decline, impaired judgement, and functional 

deterioration. PD, while it correlates with movement-related 

symptoms like tremors and rigidity, can also result in 

cognitive impairment, particularly in the more severe forms. 

Both these conditions are currently irreversible and tend to be 

diagnosed at a later stage, when excessive damage has already 

occurred. 

 

Traditional diagnosis for these illnesses are 

neuropsychological tests, neuroimaging technologies like 

MRI and PET scans, and the analysis of cerebrospinal fluid 

(CSF). Although effective, they are invasive, costly, or not 

feasible for mass screening. In recent years, researchers have 

started investigating non-invasive, accessible biomarkers like 

speech characteristics and phonic defects that could possibly 

provide early indicators of neurodegeneration (Lin et. al, 

2020). 

 

Phonetic speech analysis offers a promising new avenue for 

early diagnosis. AD and PD have been recognized to impact 

the brain areas involved in speech production, which results 

in quantitative alterations in fluency, articulation, and 

acoustic parameters. Identifying these alterations through 

machine learning provides a non-invasive, scalable 

framework for early screening and intervention. 

 

This study demonstrates the creation of an AI-based model 

that identifies and classifies phonetic speech patterns to 

differentiate between AD, PD, and healthy controls. The 

model will use machine learning methods trained on 

databases publicly available with samples of speech 

phonetics. Vital machine learning methods such as Principal 

Component Analysis (PCA) a dimensionality reduction 

method used to select the prominent features in high-

dimensional data and classifying methods such as Random 

Forest (RF) and Support Vector Machine (SVM) will be 

considered while creating models. RF is a commonly-used 

machine learning algorithm, trademarked by Leo Breiman 

and Adele Cutler, that combines the output of multiple 

decision trees to reach a single result. Its ease of use and 

flexibility have fueled its adoption, as it handles both 

classification and regression problems. SVM is a supervised 

machine learning algorithm that classifies data by finding an 

optimal line or hyperplane that maximizes the distance 

between each class in an N-dimensional space. 

 

In contrast to conventional statistical models, where 

assumptions are specified as a priority, machine learning 

models can learn these complex patterns in the data 

automatically. This is best suited for the analysis of 

sophisticated and high-dimensional input like speech. 

Integrating data-driven learning with real-world, speech-

based clinical markers, this project hopes to provide novel 

inputs to making available tools for neurodegenerative 

disease detection at an early stage. 

 

In Section 2, we provide a review of statistical methods and 

AI tools available in literature for the diagnosis of 

neurodegenerative disorders like Alzheimer's disease (AD) 

and Parkinson's disease (PD). In Section 3, we go through a 

list of machine learning algorithms, including linear 

regression, logistic regression, decision tree, random forest, 

and support vector machine (SVM). In Section 4, we will 

develop the AI-based model for Parkinson’s disease by 

explaining the dataset, listing the observations, explain PCA 

and explain the plot created. In Section 5 we will develop the 

AI-based model for Alzheimer’s disease by using the Random 

Forest approach, explaining the dataset, and the plot formed. 

In Section 6 we have a brief conclusion of the findings and 

the research performed. This study is significant in 

demonstrating a scalable, non-invasive approach to 

diagnosing neurodegenerative diseases, potentially 

contributing to early intervention strategies in public 

healthcare systems. 
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2. Literature Review 
 

In the past decade, much work has appeared investigating the 

application of machine learning for the diagnosis of 

neurodegenerative disorders like Alzheimer's disease (AD) 

and Parkinson's disease (PD). The diseases usually remain 

undiagnosed until considerable mental or motor impairment 

has set in, hence the importance of early diagnosis. 

Researchers have turned more and more towards 

computational methods, particularly those employing 

machine learning, as substitutes for conventional means of 

diagnosis based on neuroimaging or cerebrospinal fluid 

analysis (Myszczynska et. al, 2020). 

 

A principal area of interest within this area has involved the 

creation of strong multi-class classification models able to 

identify healthy controls, AD, PD, and other dementia 

disorders. A range of models have integrated feature 

extraction methods such as PCA with classifiers including 

SVM and RF for enhanced accuracy. One of the notable 

works used PCA for dimensionality reduction, Fisher 

Discriminant Ratio for feature selection, and was able to 

achieve 100% accuracy in differentiating between healthy 

controls, PD patients, and SWEDD (Scans Without Evidence 

of Dopaminergic Deficit) individuals. This indicates the 

promise of such techniques in early, non-invasive diagnosis, 

especially in the case of multi-class classification tasks. 

 

Concurrently, researchers have explored the diagnostic 

capability of speech features. Neurodegenerative diseases 

frequently damage brain areas involved in the production of 

speech, leading to measurable alterations in fluency, 

articulation, prosody, and timing. These alterations can be 

documented as phonetic patterns and acoustic markers. 

Research has indicated that speech-related indicators are early 

signs of both AD and PD, especially at stages when other 

symptoms are not yet significant. Yet, most of these studies 

are preliminary, with small datasets and heterogeneous 

generalizability. 

 

Machine learning has been particularly useful in pulling out 

meaningful patterns from these speech data. SVM and RF 

classifier-based models have been found promising in 

distinguishing people with cognitive impairment from normal 

controls. In biomarker-based classification, plasma amyloid-

beta, tau proteins, and α-synuclein levels were measured in 

377 individuals by a study and classified using LDA and RF 

classifiers to get an average accuracy of 76% for classifying 

AD, PD spectrum, and frontotemporal dementia (FTD). 

Similar attempts have been made to combine speech with 

biological markers, but researchers are still developing 

multimodal systems.  

 

More recent work has utilized deep learning models, 

especially within large epidemiological studies. For example, 

a longitudinal study in the English Longitudinal Study of 

Ageing used deep neural networks such as TabTransformer to 

predict risk of neurodegenerative disease from a broad array 

of clinical and behavioral characteristics. TabTransformer 

significantly surpassed conventional Cox regression models 

as to discriminative ability and time-dependent accuracy, 

demonstrating the benefits of utilizing flexible neural 

architectures in survival analysis for population-level 

predictions. 

 

Even with recent progress, using speech phonetics as a key 

feature in machine learning studies has not been explored 

much. Most models focus on what is being said (linguistic 

content) or how it sounds (acoustic signals), but they do not 

build systems that classify based only on phonetic patterns. 

Also, most research looks only at either Alzheimer’s Disease 

(AD) or Parkinson’s Disease (PD), not both. And many 

studies don’t use advanced machine learning techniques, like 

PCA-based feature selection. 

 

This void offers an opportunity. By developing a machine 

learning model that is based on phonetic speech data to 

differentiate between AD, PD, and healthy controls, this 

research aims to span theoretical understanding and clinical 

utility. Compared to earlier work that tends to rely on costly 

neuroimaging or invasive biomarker acquisition, the 

suggested model provides a speech-based, accessible, and 

scalable diagnostic method. By employing PCA as the 

dimensionality reduction method and RF and SVM as 

classifiers, one seeks to create a system with interpretability 

that enhances early-stage diagnostic performance. 

 

3. Machine Learning 
 

Machine learning (ML), a subsection of artificial intelligence, 

is the development of computer models that learn on their 

own from data without rule-based programming. Opposing 

traditional algorithms, which depend on predetermined logic, 

ML models make inferences of patterns, correlations, and 

representations from training data and apply them to predict 

or decide in novel, unseen situations. This adaptability of ML 

renders it especially well-adapted to biomedical high-

dimensional and complex data, for instance, speech signals, 

that might harbor subtle, nonlinear patterns that prove 

difficult for standard statistical methods to capture (Mahesh 

B, 2020). 

 

In the past decade, the use of ML in medicine has expanded 

considerably, particularly in the study of neurodegenerative 

diseases. These have been extensively used to understand 

medical images (such as MRI and PET scans), genomics, and 

even health data taken from social media. Their advantage is 

their capacity to process a variety of multimodal sources of 

data and derive useful perspectives in an efficient and scalable 

manner. For example, ML algorithms have achieved plausible 

results when estimating Alzheimer's and Parkinson's disease 

by using longitudinal data, clinical features, and sensor-based 

signals. 

 

One of the most important features of ML in disease 

classification is its resistance to high-dimensionality. 

Biomedical datasets tend to have hundreds of features, such 

as speech phonetics to genetic markers, and conventional 

models have been prone to overfitting or bad generalization. 

ML techniques like PCA to reduce dimensionality, and 

classifiers like RF and SVM, have proved better performance 

by focusing on the most informative features while 

eliminating noise and redundancy (Alvarez et. al, 2019). 

In addition, deep learning models (a subcategory of ML), 

such as deep neural networks (DNNs) and expert structures 
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like TabTransformer or DenseNet, have surpassed traditional 

models in some clinical prediction problems by capturing 

spatial, temporal, or contextual relationships in data. These 

models can handle organized data such as in the form of 

tables, and unstructured, which include audios, images, 

videos and other non-conventional inputs, providing 

flexibility. 

 

Overall, machine learning's flexibility, scalability, and 

predictability make it a perfect tool for constructing 

automated models to identify precursors of neurodegenerative 

diseases. Its combination with speech-based features is a 

promising step towards affordable, non-invasive, and low-

cost diagnostic devices (Aguayo et. al, 2023). 

 

3.1 Linear Regression 

 

Linear regression is perhaps one of the simplest methods in 

statistical learning and predictive modeling. It is a type of 

supervised learning that tries to learn the association between 

a dependent response variable and one or more independent 

predictor variables. The idea is to fit a linear equation that best 

explains how the input variables contribute to the output, 

hence its value not just for prediction but also for 

understanding underlying patterns in the data.  

 

Linear regression uses an equation of the form: 

 

𝒚 =  𝜷₀ +  𝜷₁𝒙₁ +  𝜷₂𝒙₂ + . . . + 𝜷ₙ𝒙ₙ +  𝜺,  
 

where 𝑦 is the response or dependent variable (which must be 

numerical variable), 𝑥’s are the input variables, 𝛽 values are 

the coefficients, and 𝜖 is the error. For the model to work well, 

the errors must follow the normal distribution. 

 

One of the key reasons linear regression is widely used is its 

interpretability. Unlike many complex models, linear 

regression provides direct insights into how each predictor 

variable affects the response. This makes it particularly 

valuable in early stages of analysis when researchers aim to 

understand which factors contribute most significantly to the 

outcome of interest. For instance, in medical data, it can be 

employed to determine which patient features or symptoms 

are most correlated with disease progression or onset. 

 

Typically, linear regression is applied when input-output 

relationship is presumed to be linear and when data satisfies 

some assumptions based on statistics, for example, 

homoscedasticity (errors having constant variance) and 

normality of residuals. It works particularly well on fairly 

small datasets or where the number of features is small and 

under control. In more advanced or high-dimensional 

situations, linear regression can still be used as a comparison 

baseline or as a part of a larger pipeline that includes feature 

selection. 

 

Practically, the approach is to estimate the coefficients that 

specify the linear relationship from training data. These 

coefficients are then interpreted to determine the strength and 

direction of each predictor's influence on the outcome. After 

constructing the model, its performance is assessed with 

standard measures like residual error, explained variance, or 

tests of statistical significance for the coefficients. If the 

model passes validation criteria, it can be used on new data 

for prediction or monitoring. 

 

Although linear regression is never going to be the most 

useful method in high-dimensional or non-linear situations, it 

is a tried and trusted and easy-to-interpret method which 

forms a good building block for more sophisticated machine 

learning techniques. Applied to neurodegenerative disease 

diagnosis, it has been employed both as a sole tool and in 

conjunction with other tools for predicting disease risk or 

progression from tabular clinical and epidemiological 

information. 

 

3.2 Logistic Regression 

 

Logistic regression is a statistical method that is commonly 

used in medical studies to understand situations in which 

there are 2 possible outcomes (binary), as in the presence or 

absence of a disease. Previously discussed, linear regression 

is typically used for continuous outcomes, logistic regression 

is reserved for situations in which one wants to estimate the 

probability of a categorical outcome. To clarify, this does not 

imply that linear regression is used when predictors are 

continuous, instead, it is used when the outcome is 

continuous. An application of logistic regression, lies in 

understanding neurodegenerative diseases such as 

Alzheimer's and Parkinson's. Here, the likelihood of the 

disease occurring is estimated through understanding the 

impact of clinical, demographic or biological variables. This 

technique involves developing a model to see the impact of 

different clinical, demographic, and biological variables on 

the probability of disease occurrence. 

 

The technique includes estimating the likelihood of an 

outcome based on the independent variables, which are either 

continuous, categorical, or both. Instead of modeling the 

probabilities themselves, logistic regression models the 

logarithm of the odds, commonly called the logit. Doing so 

enables the model to treat bounded probabilities of zero and 

one automatically, making predictions valid in all cases 

without respect to predictor values. The logit transformation 

allows logistic regression to model changes in the odds of an 

outcome linearly with respect to the predictors and so is 

especially well-suited to medical work where relative risks 

are frequently reported as odds ratios.  

 

Logistic regression does not predict the probability of 

something happening directly. Instead, it predicts the log of 

the odds, written as: 

 

𝑙𝑜𝑔(𝑝 / (1 −  𝑝)),  

 

where, 𝑝 is the probability of the outcome. This helps the 

model work with values that can go from very small to very 

large, which makes it easier to fit a straight-line equation. 

After making the prediction, the model can convert it back 

into a probability between 0 and 1. 

 

One of the main strengths of logistic regression is that it can 

control for multiple covariates at once, allowing one to 

determine each predictor's independent contribution while 

holding others constant. Logistic regression is also applied in 

epidemiological research where more than one independent 
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variable may interact with or confound another. For instance, 

logistic regression can be applied to understand how features 

of speech, age, and scores on clinical tests collectively affect 

the likelihood of getting Alzheimer's disease. 

 

The fitting of a logistic regression model would often start 

from choosing informative predictor variables by prior 

knowledge or data exploration. After selecting the variables, 

the model is estimated by calculating the coefficients that will 

maximize the likelihood of seeing the observed data. The 

coefficients are then shown in terms of odds ratios, which are 

the multiplicative change in the odds of the outcome for each 

one-unit change in the predictor, controlling for other 

variables. Practically, the coefficients' interpretation gives 

useful information on how a change in speech characteristics 

or cognitive scores would raise or lower the chances of a 

neurodegenerative diagnosis. 

 

To evaluate a logistic regression model's performance, one 

must assess its goodness of fit and prediction ability. Methods 

like likelihood-ratio tests, classification tables, and measures 

of the area under the receiver operating characteristic curve 

(AUC) are often employed to determine how well the model 

can differentiate individuals with and without the disease. In 

addition, logistic regression models need to be thoroughly 

screened for problems like multicollinearity between 

predictors or for violations of assumptions about linearity of 

the logit. 

 

Logistic regression has been popular not just for its 

interpretability but also because it is relatively easy and 

widely available in standard statistical packages. It also acts 

as a simple model in most medical studies and is a starting 

point to understand complicated relations in data. For 

academic research which deals with small datasets or sparse 

event rates, however, logistic regression needs to be used 

carefully in order to avoid over-fitting or unreasonable 

estimates. In such environments, penalized forms of logistic 

regression or more complex techniques will be required. For 

example, in small sample sizes or sparse data, techniques like 

Lasso and Ridge regression are sometimes used. 

 

In summary, logistic regression is a cornerstone statistical 

technique for the modeling of binary responses in clinical 

research. Its strengths in quantifying the effect of predictors 

using odds ratios, in handling confounders, and generating 

results that are interpretable make it well-tuned to examining 

the multivariate etiology of Alzheimer's and Parkinson's 

diseases. Its application in this research offers a 

straightforward, statistically sound way of examining the 

interrelation of phonetic speech measures with 

neurodegenerative disease classification likelihood (LaValley 

2008). 

 

3.3 Decision Trees 

 

Decision trees is a form of predictive model with applications 

varying across statistics, machine learning, computational 

biology amongst more. This method is used in problems of 

classification and regression. This method is made to address 

problems which require categorization of data into classes. 

Essentially, decision trees operate by posing a series of 

queries regarding the features of an item which partitions the 

data into successively homogenous subsets. Each of the tree's 

internal nodes corresponds to an individual decision made on 

the basis of a feature, and the tree continues by recursively 

dividing the dataset until it arrives at the terminal nodes, or 

leaves, which label the data points that fall within each with a 

predicted class label. 

 

Perhaps the greatest strength of decision trees is their 

transparency and interpretability. They are able to model 

sophisticated decision-making processes in simple, 

hierarchical terms, and the resulting trees are easy to visualize 

and comprehend. Unlike models like neural networks or 

support vector machines, which are frequently considered 

"black boxes," decision trees enable researchers to follow 

exactly how a decision was reached. This makes them 

particularly well-suited to domains where model 

explainability is crucial (Kingsford et. al, 2008). 

 

Decision tree construction is based on examining a collection 

of training data whose class labels are already determined. It 

starts at the root node by considering potential splits along 

every feature, selecting the one that most effectively divides 

the data based on certain standards. Typical measures applied 

in evaluating the quality of a split are the entropy and the Gini 

index, which are measures of the purity of a collection of data 

points. A split that results in high-purity subsets where all or 

most examples are from the same class is desirable. The 

process recurses, with each tree branch further splitting the 

data until a condition for stopping, like finding perfect 

classification or reaching a minimum number of samples per 

node. 

 

As a tree is being built, overfitting, where the model becomes 

excessively specialized in the training data and does not 

generalize to new examples, should be avoided. To this end, 

techniques like pruning are employed to reduce the tree by 

discarding nodes that make little contribution to classification 

accuracy on novel data. Pruning may be done by testing 

subtrees' performance on an independent validation set and 

removing non-beneficial branches that do not enhance 

predictiveness. Some algorithms use minimum description 

length principles to trade model complexity against 

classification performance. 

 

Decision trees are very flexible because they can 

accommodate datasets with both categorical and continuous 

attributes, as well as datasets that have missing data. They can 

also address multi-class classification problems and can be 

adapted to regression tasks by predicting continuous values 

rather than discrete classes. Decision trees, having been 

trained, are computationally cheap and can quickly classify 

new instances by merely traversing the tree based on the 

responses to the questions in each node. 

 

New advancements in decision tree techniques have seen the 

development of ensemble methods, where predictions from 

several trees are aggregated to enhance accuracy and stability. 

Random forests, for instance, create an ensemble of decision 

trees through training each tree on a random portion of the 

data and attributes and then averaging their outputs. This 

helps in decreasing variance and enhancing generalization 

through the averaging of many dissimilar models' outputs. 

The other method, boosting, trains trees in succession, with 
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each successive tree weighing most heavily those examples 

misclassified by the previous tree. Blended boosted trees will 

frequently produce models of very high accuracy. 

 

Aside from their real-world applications in medicine and 

bioinformatics, decision trees have a long history. Their 

origin lies in biological taxonomic systems, used to classify 

organisms, however decision trees have been subject to 

advancements in artificial, statistics, and other fields. 

Previously used models such as Automatic Interaction 

Detection (AID) and later on such as ID3, C4.5 formed the 

foundation of modern decision trees methods. Today, 

decision trees and their versions are widely used, and address 

tasks which require this (De Ville, 2013). 

 

3.4 Random Forest 

 

Random Forest (RF) is a form of learning method. Random 

Forest’s usage lies in problems concerning classification and 

regression. RF is used by compiling many decision trees 

during training and making predictions. The key concept 

behind Random Forests is the process of assembling the 

predictive power of many decision trees to enhance 

generalization and accuracy, especially on difficult and high-

dimensional data. 

 

The process operates by creating many decision trees, each 

trained on a bootstrap sample drawn from the original dataset. 

In addition, at every decision node, RF evaluates a random 

subset of input variables instead of all the variables, which 

introduces extra randomness into the model and minimizes 

the correlation between trees. The outputs of all the trees that 

have been grown are then combined through majority voting 

or averaging to generate the final prediction. This method 

provides robustness against overfitting, especially in big 

datasets having lots of variables. 

 

One of the major advantages of RF is that it can manage 

datasets in which the number of variables is greater than the 

number of observations. RF is easily scalable with large 

datasets and provides flexibility for a large variety of learning 

tasks. Furthermore, Random Forests have the built-in 

capability of providing feature importance measures by 

gauging the impact of each variable on the predictive ability. 

Such features make RF, as a method, an effective one, when 

there are high dimensions, i.e., a large number of variables. 

 

The theoretical basis of Random Forests shows that the larger 

the number of trees, the generalization error of the model 

stabilizes, and overfitting risk decreases. The generalization 

performance is controlled by two aspects, which are the 

individual classifiers' strength and their correlation among 

themselves. Smaller correlations and stronger classifiers in 

general provide better ensemble performance. 

 

Although RF has robust predictive power, it is also somewhat 

opaque and has often been called a "black-box" model. Some 

developments, like variable importance scores and partial 

dependence plots, have enhanced interpretability. Out-of-bag 

error estimates where every observation is predicted by trees 

that did not use it in their bootstrap sample, offer an internal 

and unbiased measure of model performance without the need 

for a holdout validation set (Cutler et. al 2001). 

3.5 Support Vector Machines (SVMs) 

 

Support Vector Machines (SVM) are learning algorithms that 

are mainly used for classification, though they can also be 

applied in regression problems. The main goal of an SVM is 

to form a decision boundary, called a hyperplane, which best 

differentiates points belonging to various classes. This 

hyperplane is chosen on the basis of the concept of maximum 

margin, i.e., the distance between the hyperplane and the 

closest data points of each class, i.e., support vectors. A higher 

margin typically reflects improved generalization 

performance on novel data. 

 

The logic behind SVM is that it can transform a problem of 

classification into an optimization one. By increasing the 

margin under the condition that training data points are 

correctly classified, SVM gets strong class separation. The 

parameters of the model are tuned to determine the 

hyperplane that meets this condition of optimality. When it 

comes to linearly separable datasets, SVM identifies the 

hyperplane that maximally separates the classes. Real-world 

data, however, is not always differentiable. In these situations, 

SVM uses slack variables, which permit some 

misclassifications so that the model can trade between 

maximizing the margin and minimizing classification 

mistakes. 

 

SVM's flexibility is further achieved through employing 

kernel functions, which are generally known as the "kernel 

trick." Through this approach, it is possible for the algorithm 

to be used in a mapped feature space without knowing the 

coordinates of the data in the space. By substituting dot 

products with kernel functions, SVM is able to effectively 

deal with complicated, non-linear relationships. Linear, 

polynomial, and radial basis function (RBF) kernels are 

common ones and each of them can capture different kinds of 

data patterns. With this mechanism, SVM can have high 

accuracy even when the decision boundary in the original 

feature space is non-linear. 

 

SVM is trained to solve a convex quadratic optimization 

problem. This ensures that the discovered solution is globally 

optimal, as compared to other machine learning algorithms 

that are likely to be stuck, and unable to do this. For large data 

sets, there are specific algorithms like Sequential Minimal 

Optimization (SMO) that are utilized to provide an efficient 

solution to the optimization problem by dividing it into 

smaller subproblems that are simple to handle. 

 

Another benefit of SVM is that it is interpretable. The 

decision made by the model is dictated by a comparatively 

small number of the training points, the support vectors, so 

the decision boundary is more easily comprehensible. 

Furthermore, SVM has an easy geometric interpretation of 

classification, with it highlighting the margins and the support 

vectors as playing key roles in its predictive model. 

 

SVM has performed well in different areas, especially in 

high-accuracy and high-robust tasks like image recognition, 

text classification, and bioinformatics. Its ability to deal with 

both linear and non-linearly separable data, as well as its 

strong mathematical base, makes it a trusted instrument in 
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machine learning studies, and their applications (Hearst et. al 

2014). 

 

4. AI model for Parkinson’s disease 
 

In this section we are interested in building an AI model for 

Parkinson’s disease. To do that, we used a dataset that 

contains information of the voice quality of people that are 

Parkinson’s patients and also people that are healthy.  

 

The data set consists of 195 voice recordings, 147 belonging 

to Parkinson's disease patients and 48 belonging to healthy 

people. Each recording has 22 features that measure different 

aspects of speech production, e.g., pitch, jitter, shimmer, 

noise ratios, and nonlinear dynamics. These readings 

correspond to the stability, clarity, and variability of the 

speaker's voice, all qualities which are generally affected in 

Parkinson's disease. The data were free of missing values 

 

Pitch-related parameters include MDVP.Fo.Hz. (mean 

fundamental frequency), MDVP.Fhi.Hz. (upper pitch), and 

MDVP.Flo.Hz. (lower pitch). These have mean values of 

about 154.2 Hz, 197.1 Hz, and 104.3 Hz, respectively. The 

voice frequency ranges from a low of 65.48 Hz to a high of 

592.03 Hz, with great inter-individual variation. The large 

frequency range indicates how Parkinson's can affect control 

of the voice. 

 

Jitter-related characteristics such as MDVP.Jitter(%), 

MDVP.Jitter.Abs., MDVP.RAP, MDVP.PPQ, and 

Jitter.DDP quantify the pitch variability. For example, 

MDVP.Jitter(%) had an average of 0.0062%, which indicates 

slight but quantifiable frequency deviations. Such minor 

irregularities in vocal fold vibration are typical of Parkinson's 

patients and reflect tremor-like symptoms. 

 

Equivalently, shimmer measures like MDVP.Shimmer, 

MDVP.Shimmer(dB), Shimmer.APQ3, Shimmer.APQ5, 

Shimmer.DDA, and MDVP.APQ record fluctuations in vocal 

amplitude. Their means are between 0.0279 and 0.0374, with 

MDVP.Shimmer's mean at 0.0274. Large shimmer values 

indicate lower vocal steadiness, another hallmark of 

Parkinsonian speech. 

 

Clarion of voice is measured in terms of NHR (mean = 

0.0227) and HNR (mean = 21.89). Lower HNR and increased 

NHR refer to noisier, less harmonious voice signals, which 

are typically seen in Parkinson's. 

 

Higher-order nonlinear dynamics including RPDE (average = 

0.509), DFA (average = 0.720), spread1, spread2, D2, and 

PPE also define the complexity and randomness of speech. 

These features capture patterns undetectable by human 

perception. D2 is of particular interest with a median value of 

2.36, which reflects the dimensionality of the chaotic vocal 

system for PD. 

 

From the full data in hand, 70% of the data have been used 

for training, and the other 30% for testing. A logistic 

regression has been used to build a good predicting model, 

and a confusion matrix was created. In Table 1, we provide a 

summary of the coefficients from the logistic regression 

model.  

Table 1: Logistic regression model summary for the 

Parkinson’s disease analysis. 
Term Estimate Std. Error z value Pr(>|z|) 

Intercept -80900 38900 -2.079 0.038 

MDVP:Fo(Hz) 34.98 17.29 2.023 0.043 

MDVP:Fhi(Hz) 2.388 1.288 1.854 0.064 

MDVP:Flo(Hz) 22.45 11.58 1.939 0.053 

MDVP:Jitter(%) 1838 932.7 1.97 0.049 

MDVP:Jitter(Abs) -1774000 894900 -1.982 0.047 

MDVP:RAP -34380 17290 -1.989 0.047 

MDVP:PPQ -13390 6832 -1.961 0.05 

Jitter:DDP 5514 2786 1.979 0.048 

MDVP:Shimmer 25.75 13.01 1.98 0.048 

MDVP:Shimmer(dB) 2.008 1.012 1.984 0.047 

Shimmer:APQ3 1069 539.1 1.983 0.047 

Shimmer:APQ5 -25.72 13.17 -1.953 0.051 

MDVP:APQ 35.76 18.32 1.952 0.051 

Shimmer:DDA -3206 1611 -1.989 0.047 

NHR 107.6 53.64 2.005 0.045 

HNR 0.1911 0.09373 2.038 0.042 

RPDE 11.55 5.803 1.99 0.047 

DFA -14.19 7.366 -1.927 0.054 

 

The aim is for the model to accurately predict individuals on 

the basis of voice features. Although none of the features 

proved statistically significant at the common 5% level of 

significance, MDVP.APQ, a shimmer measure, showed a p-

value of about 0.09, suggesting its potential marginal 

significance. This accords with clinical findings that vocal 

fold instability and tremor, expressed as shimmer, are central 

biomarkers of Parkinson's. 

 

The following data suggests how the model performed 

1) Accuracy: 81% of overall accuracy of the predictions. 

2) Sensitivity: 69.2% of healthy people correctly identified. 

3) Specificity: 84.4% of Parkinson's cases were correctly 

diagnosed. 

4) Kappa Score: 0.50 moderate agreement over chance. 

5) Balanced Accuracy: 76.8%, the average efficiency over 

both classes, useful for cases when the classes are 

imbalanced. 

 

Additionally, Principal Component Analysis (PCA) was 

applied to visualize the 2 components as a scatter plot. PCA 

is a dimensionality reduction technique based on statistics that 

keeps as much variance as possible from the original data. 

When applied in machine learning and data analysis, 

particularly with neurodegenerative disorders, PCA is very 

essential in extracting important features from complicated 

and high-dimensional data such as audio recordings or 

biomarkers. PCA identifies directions of maximum variance, 

called principal components. These components are linear 

combinations of the original variables and are orthogonal to 

one another, with no redundancy in the lower-dimensional 

representation. 

 

The primary motivation for the use of PCA is data 

visualization simplification, increased computational 

efficiency, and elimination of noise or redundancy which can 

interrupt learning algorithms. In the case of speech or 

biomarker data in which thousands of variables may be 

collected per patient but the number of samples is not large, 

PCA can be used to find a smaller number of variables that 

retain the underlying structure of the data. This is particularly 
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useful for medical data, where missing data, correlations, and 

variance differences are prevalent. 

 

PCA finds most application when data are high-dimensional 

and multicollinear, which is common in biological and 

medical environments. PCA allows machine learning 

algorithms to concentrate on the most descriptive features by 

projecting data into a lower-dimensional subspace, enhancing 

classification or prediction accuracy. In this project, PCA is 

applied as a feature selection and dimension reduction method 

prior to classification with methodologies such as Random 

Forests or Support Vector Machines. The technique provides 

a means of extracting the most useful phonetic features that 

differentiate between speech patterns of Alzheimer's, 

Parkinson's, or healthy controls. 

 

PCA includes standardizing the dataset to ensure that all the 

features are equally vital. This is done by calculating the 

covariance matrix to ensure the features interact. Then the 

eigenvectors and eigenvalues are obtained from the matrix to 

identify the principal components and their significance. This 

data is transformed into a coordinate system through these 

components. Hence PCA is able to provide a better, concise, 

comprehensive representation of the data. It is an important 

processing technique in AI-powered diagnostic systems. 

 

 
Figure 1: Principal Components of the PD dataset showing the 195 samples.  

 

The scatter plot is created through PCA performed on the 

dataset of the 195 samples explained above. PCA transformed 

the original high-dimensional data into a new coordinate 

frame with principal components. In Figure 1, one point 

corresponds to one voice sample with red points for healthy 

people (status = 0) and teal points for people who have 

Parkinson's disease (status = 1). 

 

In the x-axis (PC1) we have the significant principal 

component that takes into account the largest variance in the 

data. In the y-axis (PC2) is the second most significant 

principal component, accounting for the second highest 

variance following PC1. As we graph, we are able to identify 

various patterns and groups emerge. 

 

The points are distributed throughout the plot created. There 

are visible groups, patterns and overlapping points. The areas 

towards the right have a larger density of blue points. A few 

of the remaining blue points are distributed to the left side. 

There are more red points towards the upper-right corner of 

the plot, with the other few in the lower-right corner. Despite 

the pattern emerging only with 2 dimensions, the distribution 

of color gives an idea of how the original features work 

together. There is some separation between the two classes, 

especially along PC1, but still there is some overlap, 

especially for the PC2 points, i.e., the red points. This 

suggests voice features carry some useful information for 

separating Parkinson’s patients against the healthy controls, 

but PCA alone cannot fully separate the two. 

5. AI model for Alzheimer’s Disease 
 

In order to build an AI model for Alzheimer’s disease, we 

used a dataset that contains information of the voice quality 

of Alzheimer’s patients and also people that are healthy. As 

in Section 4, 70% of the data has been used for training, and 

the remaining 30% of the data has been used for testing. 

 

This Alzheimer’s dataset has health and cognitive data for a 

total of 2149 patients. The AI model we are building in this 

section of the paper aims to accurately predict Alzheimer's 

disease. The participants are between the ages of 60 and 90, 

with a mean age of approximately 75 years, representing an 

older population in which the risk of Alzheimer's is most 

prominent. Gender split seems fairly even, with educational 

attainment differing across four intervals (0 to 3), having a 

median of 1, indicating that the majority of participants had 

basic to moderate formal schooling, a well-documented 

predictor of cognitive reserve and resistance to dementia. 

 

Physical health markers consist of body mass index (BMI), 

which ranges from 15.0 to almost 40.0, and averages close to 

27.7, putting most in the overweight range. Together with 

lifestyle measures, such as diet quality (mean: 7.1), physical 

activity (mean: 7.0), and sleep quality (mean: 6.4), these 

measures represent moderately healthy behavioral tendencies, 

albeit with considerable variation that can impact cognitive 

aging trajectories. 
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The data includes comprehensive cholesterol and blood 

pressure measures. The level of total cholesterol varies from 

90 to 339.9 mg/dL, with an average close to 202, along with 

a mean HDL of 52.9 and LDL of approximately 120. 

Triglyceride levels also fluctuate considerably (mean: 121), 

with some having increased cardiovascular risk. The 

cholesterol-to-HDL ratio, a significant indicator of metabolic 

well-being, has a mean of around 4.1. Blood pressure readings 

further support this pattern: systolic pressure averages around 

134, while diastolic centers near 85, values that may hint at 

early-stage hypertension in a significant subgroup. 

 

Cognitive function and performance are captured through 

scores on various screening instruments. Measures such as 

CognitiveTest1 (mean: 0.28), CognitiveTest3 (~0.51), and 

MMSE (Mini-Mental State Examination, mean: 24.4) 

indicate mild to moderate cognitive impairment in the sample. 

Behavioral warning signs like memory complaints, 

confusion, disorientation, and personality changes are also 

observed in the form of binary flags, as well as functionality 

ratings related to activities of daily living (ADL) and general 

functional assessments. 

 

The medical history variables are highly heterogeneous: 

hypertension, diabetes, depression, and cardiovascular 

disease are all coded as binary fields with high prevalence 

throughout the population. Family history of Alzheimer's is 

also monitored as a genetic risk proxy. Lifestyle risk 

indicators such as alcohol consumption, smoking status, and 

sensory deficits (e.g., hearing or vision impairment) add to the 

predictive picture. 

 

Random Forest has been used as a method to build a strong 

predictive model. In total, 500 trees were used in the Random 

Forest model. Decision trees in particular were discussed in 

detail in Section 3.4.   

 

According to the confusion matrix generated in the R 

software, the Random Forest classifier model built to predict 

Alzheimer's disease outcomes has a very high performance. 

From a test set, the model identified 407 as not having 

Alzheimer's (true positives) and 192 as having Alzheimer's 

(true negatives), having misclassified 45 cases in total. 

Specifically, 9 false positives and 36 false negatives. The 

model is 92.39% accurate overall, meaning it was correct on 

92 out of every 100 occasions. This degree of accuracy is 

particularly impressive for a clinical prediction task, where 

getting a diagnosis wrong can result in potentially harmful 

consequences. 

 

Notable here is the 97.83% sensitivity, which indicates the 

performance of the model in accurately classifying healthy 

subjects. Its high value indicates that the classifier is very 

good at recognizing non-Alzheimer's subjects, perhaps due to 

features such as Functional Assessment and ADL scores that 

measure independent functioning being more distinct in the 

healthy subjects. Contrarily, the specificity is a little less at 

82.46%, which implies approximately 17.54% of the true 

Alzheimer's patients were overlooked. This deficiency 

appears in the 36 false negatives, patients who in reality had 

Alzheimer's but were forecasted to be healthy. Though in ratio 

the number is small, such mistakes can be life-altering in 

medical settings and must be kept to a minimum. 

 

The Kappa metric of 0.828 reaffirms that there is high 

agreement between predicted and actual results and is not 

coincidental. Indeed, the P-value for accuracy > No 

Information Rate (NIR) is < 2.2e-16, which clearly suggests 

that this model performs much better than random guess.  

 

Furthermore, the balanced accuracy of 90.15% indicates that 

the model performs well even on an imbalanced dataset, 

where 64.6% of the people did not have Alzheimer's (as 

indicated by the prevalence statistic). Balanced accuracy is 

particularly valuable here since the 'healthy' class is dominant, 

and a naïve model might have simply predicted all entries as 

healthy and still had 64.6% accuracy. 

 

The confusion matrix also validates previous findings in the 

summary. Dimensions such as MMSE scores (mean ~14.8), 

FunctionalAssessment (~5.1), and BehavioralProblems 

(~0.16) probably assisted the model in distinguishing well. 

For instance, participants who were high on MMSE and low 

on behavioral issues were placed more consistently in the 

healthy class. The Detection Rate (63.2%) and Detection 

Prevalence (69.4%) also indicate that the model slightly 

overestimates the number of healthy people, but not by a 

disturbing margin. 
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Figure 2: Important Features of Alzheimer’s Dataset using Random Forest 

 

Figure 2 shows the relative ranking of each feature utilized in 

the Random Forest model to classify Alzheimer's disease. 

Two measures are plotted: Mean Decrease Accuracy (MDA) 

and Mean Decrease Gini (MDG), both of which measure how 

much each feature contributes to the model's accuracy. Out of 

all the features, FunctionalAssessment is the most impactful 

with the highest values in both MDA (close to 70) and MDG 

(over 140). Not unexpectedly, as it measures one's capacity to 

carry out daily activities, something drastically hits patients 

with Alzheimer's. It is closely trailed by the MMSE (Mini-

Mental State Examination), a formal test designed for 

cognitive impairment screening. The model sees this as an 

effective diagnostic tool in how short-term memory, 

orientation, and logical reasoning, areas assessed by MMSE, 

can be employed to distinguish between patients effectively. 

 

MemoryComplaints and BehavioralProblems come out high 

in importance as well. These are subjective experiences and 

overt behaviors respectively, corroborating that both patient 

self-report of symptoms and behavioral indicators are crucial 

hints for machine learning algorithms. Remarkably, PatientID 

comes out extremely high on both scales of importance. 

Although this is frightening, it probably indicates data 

leakage, maybe the ID contains the sequence or grouping that 

suggests diagnosis. Such a variable needs to be omitted from 

the final models in order not to overfit. Among the following 

level of features, biomedical measurements such as 

Triglycerides, HDL, LDL, and Total Cholesterol indicate that 

cardiovascular health has a quantifiable impact on 

Alzheimer's risk or symptoms. The findings are consistent 

with medical studies associating vascular injury with 

cognitive impairment. 

 

Lifestyle factors such as PhysicalActivity, SleepQuality, and 

DietQuality are moderately significant, reflecting that habits 

of daily life are helpful supportive variables, but not 

necessarily first-order predictors. Demographic variables 

such as Age, Gender, and EducationLevel are marginal in 

importance here, even though these have been traditionally 

important in studies of population levels. Depression, 

Confusion, and Disorientation rank lower, which could be 

because these duplicate effects with higher-ranked cognitive 

measures.  

 

6. Conclusion 
 

This academic research set out to explore how to use machine 

learning methods, to classify 2 neurodegenerative diseases: 

Alzheimer's (AD) and Parkinson's (PD) based on their speech 

patterns. Due to the increase in prevalence of these diseases, 

in the aging population, the research paper began by 

describing their profiles, and previous attempted methods to 

use diagnostic approaches which were shortcomings, and the 

increasing trend of using speech as a biomarker.  Specifically, 

it highlighted the impact of cognitive and motor decline in 

these diseases on speech production with resulting 

recognizable patterns of phonetics. It followed this by 

undertaking a thorough literature review of the current 

diagnostic methods using machine learning. This covered the 

emphasis on dimensionality reduction methods such as 

Principal Component Analysis (PCA) and classification 

algorithms like Random Forest (RF) and Support Vector 

Machine (SVM) that have proven promising to handle high-

dimensional speech data. The next section delves into the 

theory; foundations of machine learning approaches. These 

were explained in detail, and were focused more on the 

mathematical aspects, how they can be used, and the 
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relevance in this field. Together these methods can be used 

for further development and understanding of AI-based 

models to classify neurodegenerative diseases based on 

speech patterns. 

 

For creating an AI-based model to detect Parkinson's, the 

logistic regression model was used. The dataset had 195 voice 

samples (147 were Parkinson's patients, and the other 48 were 

control). The model was trained with 70% of the data, and the 

other 30% to test it. In order to have more accuracy, PCA was 

used to reduce dimensionality of other variables, which could 

have impacted the performance. The model was 81% 

accurate, had 84.4% specificity, and 76.8% balanced 

accuracy. No feature was found to be 5% significant, but 

variables relating to shimmer were found to have potential 

predictive impact. 

 

In order to detect Alzheimer's disease through the AI-based 

model, Random Forest was used. It had 500 trees, which were 

trained through 70% of the dataset, and the other 30% to test 

it. The database had 2,149 participants, and considered other 

variables such as health, cognitive and lifestyle 

characteristics. The model had an accuracy of 92.4%, 97.8% 

sensitivity, and 82.5% specificity. The balanced accuracy was 

90.2%. The kappa score was 0.828, which implies it was a 

strong agreement. Key predictive variables involved 

Functional Assessment, MMSE scores, and Behavioral 

Problems, whereas the existence of Patient ID among the top 

features suggested data leakage. 

 

Out of the given 2 models, the Alzheimer's one is evidently 

better than the Parkinson's one. This is due to various reasons, 

and through methodological and data-driven improvements. 

Firstly, the Alzheimer's dataset is much larger than the 

Parkinson's database. The former has 2,149 participants, 

compared to a meager 197 in the latter. That means the larger 

dataset can provide a larger variability to learn from and a 

lesser chance of overfitting. The Alzheimer's model also had 

a larger range of characteristics which didn't just consider 

speech, rather also clinical, lifestyle and cognitive variables 

such as cholesterol level, eating habits, exercise amongst 

more. This is an example of multi-dimensional information 

which allows the Random Forest to identify better patterns, 

and improve its performance.  

 

On the other hand, the Parkinson's model simply depended on 

speech samples, which are important, but reduce the extent to 

which it can predict, and can make it difficult for the 

algorithm to distinguish in a better manner. This is seen in the 

performance also. The Alzheimer's model had an accuracy of 

92.4%, compared to 83.3% (Parkinson's). The kappa score 

was 0.828 for the former, compared to 0.662 for the latter. 

This shows a reliable agreement and prediction. Similarly, 

sensitivity and specificity were also larger for the Alzheimer's 

model, which allowed it to verify its ability to categorize the 

individuals. Thus due to a larger dataset, a better feature 

space, makes the Alzheimer's model much better due to the 

machine learning method used (Random Forest vs logistic 

regression) and also the quality of the database. 

 

This academic research is intended to be extended in the 

future. Through the model developed, it can be integrated into 

simple video games. In various palliative care centers 

available, through setting up a device, which enables the 

inhabitants to play the video game, information received such 

as their performance, time spent, and speech pattern, this 

model can produce real-time data and information. The data 

can be reviewed by the caregivers and other important 

authorities. 
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