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Abstract: In this paper, we introduce the atom bond sum connectivity uphill and the multiplicative atom bond sum connectivityuphill
indices of a graph. Furthermore, we compute these newly defined uphill indices for some standard graphs, wheel graphs, helm graphs,

tadpole graphs.
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1. Introduction

The simple graphs which are finite, undirected, connected
graphs without loops and multiple edges are considered. Let
G be such a graph with vertex set V(G) and edge set E(G).
The degree dg(u) of a vertex u is the number of vertices ad-
jacent to u.

A u-v path P in G is a sequence of vertices in G, starting
with u and ending at v, such that consecutive vertices in P
are adjacent, and no vertex is repeated. A path

7T = Vp,V,,..V 4 in Gis a uphill path if for every ;1 < J
<k dg(vi)<dg (V).

A vertex vis uphill dominates a vertex uif there exists an
uphill path originated from u to v. The uphill neighbor-

hood of a vertex vis denoted by N, (v) and defined as:
Nup (v) = {u: vuphill dominates u}. The uphill degree
dup (v) of a vertex vis the number of uphill neighbors of
v, see [1,2].
In [3], Ali et al. introduced the atom bond sum connectivity
index and this index is defined as

[dg (u) +dg (v) -2
UVEE(G)\I dg () +dg (v)

Recently, some atom bond connectivity indices were stu-
died in [4-13].

ABS(G) =

Motivated by the atom bond sum connectivity index, the
atom bond sum connectivity uphill index of a graph G is
defined as

ABSU(G)= "

uveE(G)

dy, (W +d,, (v)

We also define the multiplicative atom bond sum
connectivity uphill index of a graph G as

~ [dup (U)+dup (v)-2
ABSUII(G)—WQG)\I dyy (W) + dyp (V)

Jdup(u)+dup (v)-2

Recently, some uphill indices were studied such as the
Nirmala uphill index [14], F-uphill index [15], Sombor
uphill index [16], inverse sum indeg uphill index [17],
geometric-arithmetic uphill index [18].

In this research, the atom bond sum connectivity uphill
index and multiplicative atom bond sum connectivity uphill
index for some standard graphs, wheel graphs, helm
graphsand tadpole graphs are determined.

2. Results for Some Standard Graphs

Proposition 1. Let Gbe r-regular with n vertices and r> 2.
Then

_nr [(n-2)
ABSU (G) =—- oD

Proof: Let G be an r-regular graph with n vertices and r> 2
nr
and > edges. Thend,,, (v) =n—1 for every vin G.

From definition,

ABSU(G)= >’ Jdup(u)+dup (v)-2

uveE(G) dup (u)+ dup (v)
_nr [(n-D+(n-1)-2
2\ (h-D+(n-1)

_nr [((n=1)+(n-1)-2
2\ (n-D+(n-1

_nr [(n-2)
2\ (h-1)°
Corollary 1.1. Let C, be a cycle with n> 3vertices. Then

(n-2)
(n-1°

ABSU (Cn ) =n
Corollary 1.2. Let K,

vertices. Then
«\/(n -1(n=2).

be a complete graph with n> 3

ABSU(Kn):g
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Proposition 2. Let Gbe r-regular with n vertices and r= 2.
Then

nr

(n—2)j2
(n-1)

Proof: Let G be an r-regular graph with n vertices and r> 2

ABSUII(G)=[

nr
and ? edges. Then dup (v)=n-1 forevery v in G.

dyp (U) +dy, (V) -2
dyp (U) +dyy (V)

nr

_( (n—1)+(n—1)—2j2
B (n-D+(n-1)

ABSUII(G)= ]
uveE(G)

nr
[ [(n=2) )2
(n-1)
Corollary 2.1. Let C, be a cycle with n= 3vertices. Then
n
(n—2)
(n-1 )

Corollary 2.2. Let K,
vertices. Then

ABSUII(Cn)z(

be a complete graph with n> 3

n(n-1)
(n-2)) 2

Proposition 3. Let P, be a path with n>3vertices. Then

2n-7) [ =3)n-a).

ABSU (P) =2,/ —;

Proof: Let P, be a path with n>3vertices. Clearly, P,has two
types of edges based on the uphill degree of end vertices of
each edge as follows:

E1={uv € E(Py) [ dyp(u)=n -2, dyp(v)=n-3}, | E4| =

E, ={uv € E(Py) | dyp(u)= dyp(v)=n—3}, |E;l=n-3.

~ [dup(u)+dup (v)-2
ABSU (Pn)_uv»e%(:Pn)V dup (U)+dup (V)

(n-2)+(n-3)-2

(n=2)+(n-3)
(n-3)+(n-3)-2
= e g
(2n 7)

+J(n=3)(n-4).

(2 -5)

Proposition 4. Let P,, be a path with n>3vertices. Then

> 7 2 2 n-3
ABSUII(Pn):(\/ n- jx(\/”_ ] .

2n-5 n-3
Proof: We obtain

_ Idup(u)+dup(\/)_2
ABSU”(Pn)_UVEl;([Pn)\I Ay (W) +dy (V)

_{\/(n—2)+(n—3)—2]z
- (n-2)+(n-3)

X[ (n—3)+(n—3)—2]n3

(n=3)+(n-3)
2 n-3

[ [2n-7 5 n-4
_( 2n—5] ( n—?J '

3. Results for Wheel Graphs

Let W, be a wheel with n+1vertices and 2n edges, n>4. Then
there are two types of edges based on the uphill degree of
end vertices of each edge as follows:

Ey = {uve E(Wy) | dp(U) =0, dyp(v) =} Ex | =1,
E; = {uve E(Wy) | dplU) = d(¥) =N} Ez [ = 1.

Theorem 1. Let W, be a wheel with n+1vertices and 2n
edges, n>4. Then

et

Proof. We deduce

ABSU (W,

B IdUP (U)+dup (v)-2
ABSU (Wn ) - UVGEZ(WH)\I dUP (U) + dup (V)

O+n-2 n+n-2
=n + +n +
0O+n n-+n
Jn—z n— 1
=n JE——
n n
Theorem 2. Let W, be a wheel with n+1vertices and 2n
edges, n>4. Then

o (525

Proof. We obtain

dyp, (U)+dy, (V) -2
ABSUII (W, uv};[WHJ ) (u)+d W
[ 0+n-2

o)
|2
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4. Results for Helm Graphs

The helm graph H, is a graph obtained from W, (with n+1
vertices) by attaching an end edge to each rim vertex of W,,.
Clearly, [V(Hy)| = 2n+1 and |E(H,)] = 3n. A graph H, is
shown in Figure 1.

&,

°
Us

Figure 1:Helm graph H,

Let H, be a helm graph with 3n edges, n>3. Then H, has
three types of the uphill degree of edges as follows:

E1 ={uve E(Hy) | dyp(u) = n+1, dyp(v) =} Eq | =n.
Ez={uve E(H)) | dup(u) = dup(v) =n}|Ez|=n.
Es = {uve E(H)) | dup(u) =n, dup(V) =0}|Es|=n.

Theorem 3. Let H, be a helm graph with 2n+1 vertices,
n> 3. Then

ABSU (H,)=n 2"~

1+\/n(n—1) +n(n—2).

Proof: We obtain

[d (W) +d,, (v)-2
uveE \I dup(u)+dup(v)

:n\/(n+1)+n—2+n\/n+n—2

(n+1)+n n+n
4n /n+0—2
n+0
2n—1
:nf +4n(n—1) ++/n(n—2).
2n+1 \/ \/

Theorem 4. Let H, be a helm graph with 2n+1vertices, n> 3.

Then
on—1) [\/n—l]n
X
2n+1 n

ABSU

ABSU (H, )=

Proof: We deduce

Id (u)+d, (v) 2

ABSU” ) UVEE \ V dup (u)+dup v)
| [n+D+n-2 ><[\/nJrn—Z]n
WV (n+D)+n n+n

fn+o—2 "
>< —_—
[ n+0 ]
2n—1n [ n—l]n [ n—Z}n
= X _— X _— .
[ 2n+1] n n

5. Results for Tadpole Graphs

Let G=T, ,, be the tadpole graph with n+m vertices, where

n, m=3.Then G has five types of the uphill degree of edges
as follows:

Table 1
dyp(U), dyp(V) Number of edges
(m—1,0) 2
(m—1,m—1) m—2
(0,n—1) 1
(n—1,n—1) n—2
(n—1,n) 1

Theorem 5. Let G=T, ., be a tadpole graph with n+m
vertices. Then

ABsu<Tnm):2/m__3’+(m_2) m-2
’ m-1 m-—1
n-—2 2n—3
+1f +(n 2) —+1,\/ .
n-1 -1 2n—1

Proof: We obtain

Id (u)+dy, (V)-2
ABSU (T, )= uveEZ K dup(u)+dup(v)

m—-14+0-2 m-14+m-1-2
—2 M=2+072  (m—2) +

m-—-1+0 m—-1+m-1
41 0+n—1—2+(n_2) n-1+n-1-2

0+n-1 n—-1+n-1
41 /n—1+n—2

n—1+n
—2} +( —2)\/m 2 1\/”_3

n-—1

n-—2 2n—3
+n-2),—+1 .
( ) n—1 \/Zn—l

Theorem 6. Let G=T, ., be a tadpole graph with n+m
vertices. Then
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ABSUII (T, )=

=R

2

[m—3

Vm—l

n-2
n—2] [
_— X
n—-1

Proof: We obtain

ABSUII (T, )=

Idup(u)4—dup(v)—-2
UMEQHV dyp () +dyp (v)

m—-1+0-2

J

m-1+0

2 m—2
o m-14+m-1-2
m—-1+m-1

0rn-1-2) ([n—iyn-1-2|""
X — | X _—
O+n-1 n—-1+n-1

n—1+n—2l
>< —_—
n—1-+n
2 m—2 1
m—3 m—2 [ n—3]
= — X e X _
m-—1 m-—1 n-1
n-2 1
[ n—2] [2n—3]
X —_— X .
n-1 2n—1

6. Conclusion

In this paper, theatom bond sum connectivity uphill and
multiplicative atom bond sum connectivity uphill indices of
a graph are defined. Also these newly defined uphill indices
for some standard graphs, wheel graphs,helm graphs and
tadpole graphsare determined.
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