Impact Factor 2024: 7.101

Computation of Atom Bond Sum ConnectivityUphill and Multiplicative Atom Bond Sum Connectivity Uphill Indices of Graphs

Kulli V R

Professor, Department of Mathematics, Gulbarga University, Kalaburgi, India Email: vrkulli[at]gmail.com

Abstract: In this paper, we introduce the atom bond sum connectivity uphill and the multiplicative atom bond sum connectivityuphill indices of a graph. Furthermore, we compute these newly defined uphill indices for some standard graphs, wheel graphs, helm graphs, tadpole graphs.

Keywords: atom bond sum connectivity uphill index, multiplicative atom bond sum connectivity uphill index, graph.

1. Introduction

The simple graphs which are finite, undirected, connected graphs without loops and multiple edges are considered. Let G be such a graph with vertex set V(G) and edge set E(G). The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u.

A *u-v* path *P* in *G* is a sequence of vertices in *G*, starting with *u* and ending at *v*, such that consecutive vertices in *P* are adjacent, and no vertex is repeated. A path $\pi = v_1, v_2, ..., v_{k+1}$ in *G* is a uphill path if for every *i*, $1 \le i \le k$, $d_G(v_i) \le d_G(v_{i+1})$.

A vertex v is uphill dominates a vertex u if there exists an uphill path originated from u to v. The uphill neighborhood of a vertex v is denoted by $N_{uv}(v)$ and defined as:

 $N_{up}(v) = \{u: v \text{ uphill dominates } u\}$. The uphill degree $d_{up}(v)$ of a vertex v is the number of uphill neighbors of v, see [1,2].

In [3], Ali et al. introduced the atom bond sum connectivity index and this index is defined as

$$ABS(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u) + d_G(v)}}.$$

Recently, some atom bond connectivity indices were studied in [4-13].

Motivated by the atom bond sum connectivity index, the atom bond sum connectivity uphill index of a graph G is defined as

$$ABSU(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}.$$

We also define the multiplicative atom bond sum connectivity uphill index of a graph G as

$$ABSUII(G) = \prod_{uv \in E(G)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}.$$

Recently, some uphill indices were studied such as the Nirmala uphill index [14], F-uphill index [15], Sombor uphill index [16], inverse sum indeg uphill index [17], geometric-arithmetic uphill index [18].

In this research, the atom bond sum connectivity uphill index and multiplicative atom bond sum connectivity uphill index for some standard graphs, wheel graphs, helm graphs and tadpole graphs are determined.

2. Results for Some Standard Graphs

Proposition 1. Let G be r-regular with n vertices and $r \ge 2$.

$$ABSU(G) = \frac{nr}{2} \sqrt{\frac{(n-2)}{(n-1)}}.$$

Proof: Let G be an r-regular graph with n vertices and $r \ge 2$

and
$$\frac{nr}{2}$$
 edges. Then $d_{up}(v) = n - 1$ for every v in G .

From definition,

$$ABSU(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= \frac{nr}{2} \sqrt{\frac{(n-1) + (n-1) - 2}{(n-1) + (n-1)}}$$

$$= \frac{nr}{2} \sqrt{\frac{(n-1) + (n-1) - 2}{(n-1) + (n-1)}}$$

$$= \frac{nr}{2} \sqrt{\frac{(n-2)}{(n-1)}}.$$

Corollary 1.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$ABSU(C_n) = n\sqrt{\frac{(n-2)}{(n-1)}}.$$

Corollary 1.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$ABSU(K_n) = \frac{n}{2}\sqrt{(n-1)(n-2)}.$$

Volume 14 Issue 8, August 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

Proposition 2. Let G be r-regular with n vertices and $r \ge 2$. Then

ABSUII
$$(G) = \left(\sqrt{\frac{(n-2)}{(n-1)}}\right)^{\frac{nr}{2}}$$
.

Proof: Let *G* be an *r*-regular graph with *n* vertices and $r \ge 2$ and $\frac{nr}{2}$ edges. Then $d_{up}(v) = n - 1$ for every *v* in *G*.

$$ABSUII(G) = \prod_{uv \in E(G)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= \left(\sqrt{\frac{(n-1)+(n-1)-2}{(n-1)+(n-1)}}\right)^{\frac{nr}{2}}$$

$$= \left(\sqrt{\frac{(n-2)}{(n-1)}}\right)^{\frac{nr}{2}}.$$

Corollary 2.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$ABSUII(C_n) = \left(\sqrt{\frac{(n-2)}{(n-1)}}\right)^n.$$

Corollary 2.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$ABSUII(K_n) = \left(\sqrt{\frac{(n-2)}{(n-1)}}\right)^{\frac{n(n-1)}{2}}.$$

Proposition 3. Let P_n be a path with $n \ge 3$ vertices. Then

$$ABSU(P_n) = 2\sqrt{\frac{(2n-7)}{(2n-5)}} + \sqrt{(n-3)(n-4)}.$$

Proof: Let P_n be a path with $n \ge 3$ vertices. Clearly, P_n has two types of edges based on the uphill degree of end vertices of each edge as follows:

$$E_1 = \{uv \in E(P_n) \mid d_{up}(u) = n - 2, \ d_{up}(v) = n - 3\}, \ |E_1| = 2.$$

 $E_2 = \{uv \in E(P_n) \mid d_{up}(u) = d_{up}(v) = n - 3\}, \ |E_2| = n - 3.$

$$ABSU(P_n) = \sum_{uv \in E(P_n)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= 2\sqrt{\frac{(n-2) + (n-3) - 2}{(n-2) + (n-3)}}$$

$$+ (n-3)\sqrt{\frac{(n-3) + (n-3) - 2}{(n-3) + (n-3)}}$$

$$= 2\sqrt{\frac{(2n-7)}{(2n-5)}} + \sqrt{(n-3)(n-4)}.$$

Proposition 4. Let P_n be a path with $n \ge 3$ vertices. Then

$$ABSUII(P_n) = \left(\sqrt{\frac{2n-7}{2n-5}}\right)^2 \times \left(\sqrt{\frac{n-4}{n-3}}\right)^{n-3}.$$

Proof: We obtain

$$ABSUII(P_n) = \prod_{uv \in E(P_n)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= \left(\sqrt{\frac{(n-2) + (n-3) - 2}{(n-2) + (n-3)}}\right)^2$$

$$\times \left(\sqrt{\frac{(n-3) + (n-3) - 2}{(n-3) + (n-3)}}\right)^{n-3}$$

$$= \left(\sqrt{\frac{2n-7}{2n-5}}\right)^2 \times \left(\sqrt{\frac{n-4}{n-3}}\right)^{n-3}.$$

3. Results for Wheel Graphs

Let W_n be a wheel with n+1 vertices and 2n edges, $n \ge 4$. Then there are two types of edges based on the uphill degree of end vertices of each edge as follows:

$$E_1 = \{uv \in E(W_n) \mid d_{up}(u) = 0, d_{up}(v) = n \}, |E_1| = n.$$

 $E_2 = \{uv \in E(W_n) \mid d_{up}(u) = d_{up}(v) = n \}, |E_2| = n.$

Theorem 1. Let W_n be a wheel with n+1 vertices and 2n edges, $n \ge 4$. Then

$$ABSU(W_n) = n\sqrt{\frac{n-2}{n}} + n\sqrt{\frac{n-1}{n}}.$$

Proof. We deduce

$$\begin{split} ABSU\left(W_{n}\right) &= \sum_{uv \in E\left(W_{n}\right)} \sqrt{\frac{d_{up}\left(u\right) + d_{up}\left(v\right) - 2}{d_{up}\left(u\right) + d_{up}\left(v\right)}} \\ &= n\sqrt{\frac{0 + n - 2}{0 + n}} + n\sqrt{\frac{n + n - 2}{n + n}} \\ &= n\sqrt{\frac{n - 2}{n}} + n\sqrt{\frac{n - 1}{n}}. \end{split}$$

Theorem 2. Let W_n be a wheel with n+1 vertices and 2n edges, $n \ge 4$. Then

$$ABSUII(W_n) = \left(\sqrt{\frac{n-2}{n}}\right)^n \times \left(\sqrt{\frac{n-1}{n}}\right)^n.$$

Proof. We obtain

$$ABSUII(W_n) = \prod_{uv \in E(W_n)} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= \left(\sqrt{\frac{0 + n - 2}{0 + n}}\right)^n \times \left(\sqrt{\frac{n + n - 2}{n + n}}\right)^n$$

$$= \left(\sqrt{\frac{n - 2}{n}}\right)^n \times \left(\sqrt{\frac{n - 1}{n}}\right)^n.$$

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

4. Results for Helm Graphs

The helm graph H_n is a graph obtained from W_n (with n+1 vertices) by attaching an end edge to each rim vertex of W_n . Clearly, $|V(H_n)| = 2n+1$ and $|E(H_n)| = 3n$. A graph H_n is shown in Figure 1.

Figure 1:Helm graph H_n

Let H_n be a helm graph with 3n edges, $n \ge 3$. Then H_n has three types of the uphill degree of edges as follows:

$$E_1 = \{uv \in E(H_n) \mid d_{up}(u) = n+1, d_{up}(v) = n\}, |E_1| = n.$$

$$E_2 = \{uv \in E(H_n) \mid d_{up}(u) = d_{up}(v) = n\}, |E_2| = n.$$

$$E_3 = \{uv \in E(H_n) \mid d_{up}(u) = n, d_{up}(v) = 0\}, |E_3| = n.$$

Theorem 3. Let H_n be a helm graph with 2n+1 vertices, n > 3 Then

$$ABSU\left(H_{n}\right) = n\sqrt{\frac{2n-1}{2n+1}} + \sqrt{n(n-1)} + \sqrt{n(n-2)}.$$

Proof: We obtain

$$\begin{split} ABSU\left(H_{n}\right) &= \sum_{uv \in E(H_{n})} \sqrt{\frac{d_{up}\left(u\right) + d_{up}\left(v\right) - 2}{d_{up}\left(u\right) + d_{up}\left(v\right)}} \\ &= n\sqrt{\frac{(n+1) + n - 2}{(n+1) + n}} + n\sqrt{\frac{n + n - 2}{n + n}} \\ &+ n\sqrt{\frac{n + 0 - 2}{n + 0}} \\ &= n\sqrt{\frac{2n - 1}{2n + 1}} + \sqrt{n(n - 1)} + \sqrt{n(n - 2)}. \end{split}$$

Theorem 4. Let H_n be a helm graph with 2n+1 vertices, $n \ge 3$. Then

$$ABSU(H_n) = \left(\sqrt{\frac{2n-1}{2n+1}}\right)^n \times \left(\sqrt{\frac{n-1}{n}}\right)^n \times \left(\sqrt{\frac{n-2}{n}}\right)^n$$

Proof: We deduce

$$\begin{split} ABSUII \left(H_n \right) &= \prod_{uv \in E\left(H_n \right)} \sqrt{\frac{d_{up} \left(u \right) + d_{up} \left(v \right) - 2}{d_{up} \left(u \right) + d_{up} \left(v \right)}} \\ &= \left(\sqrt{\frac{(n+1) + n - 2}{(n+1) + n}} \right)^n \times \left(\sqrt{\frac{n + n - 2}{n + n}} \right)^n \\ &\times \left(\sqrt{\frac{n + 0 - 2}{n + 0}} \right)^n \\ &= \left(\sqrt{\frac{2n - 1}{2n + 1}} \right)^n \times \left(\sqrt{\frac{n - 1}{n}} \right)^n \times \left(\sqrt{\frac{n - 2}{n}} \right)^n. \end{split}$$

5. Results for Tadpole Graphs

Let $G=T_{n,m}$ be the tadpole graph with n+m vertices, where $n, m \ge 3$. Then G has five types of the uphill degree of edges as follows:

 Table 1

 $d_{up}(u), d_{up}(v)$ Number of edges

 (m-1, 0) 2

 (m-1, m-1) m-2

 (0, n-1) 1

 (n-1, n-1) n-2

 (n-1, n) 1

Theorem 5. Let $G=T_{n,m}$ be a tadpole graph with n+m vertices. Then

$$ABSU(T_{n,m}) = 2\sqrt{\frac{m-3}{m-1}} + (m-2)\sqrt{\frac{m-2}{m-1}} + 1\sqrt{\frac{n-3}{n-1}} + (n-2)\sqrt{\frac{n-2}{n-1}} + 1\sqrt{\frac{2n-3}{2n-1}}.$$

Proof: We obtain

$$ABSU(T_{n,m}) = \sum_{uv \in E(T_{n,m})} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= 2\sqrt{\frac{m - 1 + 0 - 2}{m - 1 + 0}} + (m - 2)\sqrt{\frac{m - 1 + m - 1 - 2}{m - 1 + m - 1}}$$

$$+ 1\sqrt{\frac{0 + n - 1 - 2}{0 + n - 1}} + (n - 2)\sqrt{\frac{n - 1 + n - 1 - 2}{n - 1 + n - 1}}$$

$$+ 1\sqrt{\frac{n - 1 + n - 2}{n - 1 + n}}$$

$$= 2\sqrt{\frac{m - 3}{m - 1}} + (m - 2)\sqrt{\frac{m - 2}{m - 1}} + 1\sqrt{\frac{n - 3}{n - 1}}$$

$$+ (n - 2)\sqrt{\frac{n - 2}{n - 1}} + 1\sqrt{\frac{2n - 3}{2n - 1}}.$$

Theorem 6. Let $G = T_{n,m}$ be a tadpole graph with n+m vertices. Then

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

$$\begin{split} ABSUII\left(T_{n,m}\right) &= \left(\sqrt{\frac{m-3}{m-1}}\right)^2 \times \left(\sqrt{\frac{m-2}{m-1}}\right)^{m-2} \\ &\times \left(\sqrt{\frac{n-3}{n-1}}\right)^1 \times \left(\sqrt{\frac{n-2}{n-1}}\right)^{n-2} \times \left(\sqrt{\frac{2n-3}{2n-1}}\right)^1. \end{split}$$

Proof: We obtain

$$ABSUII(T_{n,m}) = \prod_{uv \in E(T_{n,m})} \sqrt{\frac{d_{up}(u) + d_{up}(v) - 2}{d_{up}(u) + d_{up}(v)}}$$

$$= \left(\sqrt{\frac{m - 1 + 0 - 2}{m - 1 + 0}}\right)^{2} \times \left(\sqrt{\frac{m - 1 + m - 1 - 2}{m - 1 + m - 1}}\right)^{m - 2}$$

$$\times \left(\sqrt{\frac{0 + n - 1 - 2}{0 + n - 1}}\right)^{1} \times \left(\sqrt{\frac{n - 1 + n - 1 - 2}{n - 1 + n - 1}}\right)^{n - 2}$$

$$\times \left(\sqrt{\frac{n - 1 + n - 2}{n - 1 + n}}\right)^{1}$$

$$= \left(\sqrt{\frac{m - 3}{m - 1}}\right)^{2} \times \left(\sqrt{\frac{m - 2}{m - 1}}\right)^{m - 2} \times \left(\sqrt{\frac{n - 3}{n - 1}}\right)^{1}$$

$$\times \left(\sqrt{\frac{n - 2}{n - 1}}\right)^{n - 2} \times \left(\sqrt{\frac{2n - 3}{2n - 1}}\right)^{1}.$$

6. Conclusion

In this paper, theatom bond sum connectivity uphill and multiplicative atom bond sum connectivity uphill indices of a graph are defined. Also these newly defined uphill indices for some standard graphs, wheel graphs, helm graphs and tadpole graphsare determined.

References

- [1] Saleh A, Bazhear S, Muthana N, (2022).On the uphill Zagreb indices of graphs, International Journal of Analysis and Applications, 20:6. https://doi.org/10.28924/2291-8639-20-2022-6.
- [2] Kulli VR, (2025). Harmonic uphill index of graphs, International Journal of Mathematical Archive, 16(6): 1-7.
- [3] Ali A, Furtula B, Redzepovic I, Gutman I, (2022). Atom bond sum connectivity index, J. Math. Chem. 60: 2081-2093.
- [4] Alikhani S, Hasni S, Arif NE, (2014). On the atom bond connectivity index of some families of dendrimers, J. Comput. Theor. Nanosci.11(8): 1802-1805.
- [5] Das KC, I. Gutman I, Furtula B, (2012). On atom bond connectivity index, Filomat. 26(4) 733-738.
- [6] Estrada E, Torres L, Rodriguez L, Gutman I, (1998). An atom bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem. 37A: 849-855.
- [7] Kulli VR, (2023). Atom bond connectivity E-Banhatti indices, International Journal of Mathematics and Computer Research, 11(1): 3201-3208. DOI: https://doi.org/10.47191/ijmcr/v11i1.13.

- [8] Kulli VR, (2023). Neighborhood sum atom bond connectivity indices of some nanostar dendrimers, International Journal of Mathematics and Computer Research,11(1): 3230-3235.DOI: https://doi.org/10.47191/ijmcr/v11i2.01
- [9] Kulli VR, (2023). Multiplicative atom bond sum connectivity index of certain nanotubes, Annals of Pure and Applied Mathematics, 27(1): 31-35.
- [10] Kulli VR, (2023). Domination atom bond sum connectivity indices of certain nanostructures, International Journal of Engineering Sciences & Research Technology,12(11): 10-17. DOI: 10.5281/zenodo.10209674.
- [11] Gao W, Wang Y, Wang W, Shi Li, (2017). The first multiplication atom bond connectivity index of molecular structures in drugs, Saudi Pharmaceutical Journal, http://dx.doi.org/10.1016/j.jsps.2017.04.021.
- [12] Gao W, Jamil MK, Nazeer W, Amin M, (2017). Degree based multiplicative atom bond connectivity index of nanostructures, *IAENG*, International Journal of Applied Mathematics, 47:4, IJAM-47-4-04.
- [13] Husin NM, Hasni R, Arif NE, (2013). Atom bond connectivity and geometric-arithmetic indices of dendrimer nanostars, Australian Journal of Basic and Applied Sciences, 7(9): 10-14.
- [14] Kulli VR, (2025).Nirmala uphill indices of graphs, International Journal of Innovative Research in Technology, 12(1): 3801-3806.
- [15] Kulli VR, (2025). F-uphill index of graphs,Int. J. Math. And Appl.13(2): 193-202.
- [16] Kulli VR, (2025). Sombor uphill index of graphs, International Journal of Mathematics and Statistics Invention, 13(3): 42-51.
- [17] Kulli VR, (2025). Computation of inverse sum indeg uphill index and its polynomial of certain graphs, International Journal of Mathematics and Computer Research, 13(6): 5346-5350.
- [18] Kulli VR, (2025). Computation of geometric-arithmetic uphill and modified first uphill indices of graphs, International Journal of Science and Technology, *16*(3): 1-7.

Volume 14 Issue 8, August 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net