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Abstract—The exponential growth in generative Al capabilities
has been governed by predictable mathematical relationships
known as scaling laws, fundamentally reshaping how we approach
model development and deployment. This paper examines the com-
plex relationships between model size, training data, performance,
and cost in generative artificial intelligence systems, spanning
models from millions to hundreds of billions of parameters
trained on datasets ranging from gigabytes to petabytes. Through
systematic analysis of empirical data and case studies, we trace
the evolution of scaling laws from the seminal work of Kaplan
et al. to the Chinchilla paradigm shift—which revealed that
previous models were undertrained by orders of magnitude—and
recent developments, providing a comprehensive framework for
understanding how these factors interact.

Our investigation reveals that while performance improvements
follow power-law relationships with both model size and data
quantity, the optimal balance between these factors continues
to evolve with significant economic implications. We explore
emergent capabilities that appear at specific scale thresholds, the
critical role of data quality in determining model performance,
comprehensive evaluation methodologies that capture scaling
behaviors, and economic considerations that shape practical
deployment decisions. The analysis demonstrates that compute-
optimal training strategies can achieve equivalent performance
with substantially reduced computational costs, fundamentally
altering the economics of AI development.

By synthesizing insights across these dimensions, we offer
evidence-based guidance for researchers and practitioners navi-
gating the trade-offs inherent in generative AI development and
deployment. This holistic perspective on scaling laws provides
valuable direction for advancing more capable, efficient, and
sustainable AI systems in an era of increasing computational
demands.

Keywords—Scaling Laws, Generative AI, Model Size, Training
Data, Performance, Cost, Large Language Models, Data Quality,
Evaluation, Economic Analysis, Chinchilla, Emergent Abilities,
Compute-Optimal Training

I. INTRODUCTION

The field of artificial intelligence has witnessed an un-
precedented transformation with the advent of generative Al
models. From GPT-3’s 175 billion parameters in 2020 to
models exceeding a trillion parameters today, the scale of these
systems has grown exponentially, accompanied by equally
dramatic improvements in capability. These models, capable
of producing human-like text, images, and other content, have
revolutionized how we interact with technology and approach
complex problems. At the heart of this revolution lies a
fundamental question: How do we optimize these models for

maximum performance while managing computational and
financial costs?

This question has given rise to the study of scaling laws
in generative Al—predictable mathematical relationships, typ-
ically following power-law distributions, that quantify how
model performance scales with increases in parameters (/V),
training data (D), and compute (C).

Scaling laws have emerged as a critical framework for
understanding the behavior of large language models (LLMs)
and other generative Al systems. They provide insights into
the relationships between model parameters, training data,
computational requirements, and performance outcomes. These
relationships are not merely academic curiosities but have
profound practical implications for Al research, development,
and deployment. With training costs for frontier models now
exceeding $100 million and inference serving billions of
queries daily, understanding these relationships has become
essential for sustainable Al development. Recent breakthroughs
in multimodal models like GPT-4V, DALL-E 3, and Gemini
have further validated these scaling principles while revealing
new complexities in cross-modal scaling behaviors.

A. Contributions and Scope

The key contributions of this work include:

1) A comprehensive synthesis of scaling law evolution from
Kaplan to post-Chinchilla developments

2) Analysis of emergent capability thresholds and their
practical implications

3) Frameworks for evaluating the economic trade-offs in
model scaling decisions

4) Actionable guidance for optimizing the critical balance
between performance and cost in generative Al systems

B. Paper Organization

This paper is organized as follows: Section II provides
background on scaling laws evolution and theoretical founda-
tions. Section III examines model size impacts on performance,
including emergent capabilities and architectural considerations.
Section IV investigates data quantity and quality effects, ex-
ploring optimal data-to-parameter ratios and curation strategies.
Section V covers comprehensive evaluation methodologies
for generative Al systems. Section VI presents detailed cost
analysis frameworks encompassing training, inference, and
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total cost of ownership considerations. Section VII concludes
with synthesis of key insights and future directions.

Throughout this paper, we aim to provide a holistic view
of scaling laws that balances theoretical understanding with
practical applications. By synthesizing insights from recent
research and industry practices, we offer guidance for re-
searchers, developers, and decision-makers navigating the
complex landscape of generative Al.

II. BACKGROUND AND LITERATURE REVIEW

A. The Evolution of Scaling Laws in Generative Al

The study of scaling laws in artificial intelligence has
emerged as a cornerstone of modern Al research, providing
crucial insights into how model performance relates to compu-
tational resources, model architecture, and training data. This
section traces the historical development of scaling laws in
generative Al, highlighting key milestones and paradigm shifts
that have shaped our understanding of these relationships.

1) Early Observations and Empirical Findings: As shown
in Figure 1, the evolution of scaling laws can be traced
through several distinct paradigm shifts that have fundamentally
changed our understanding of optimal model training strategies.

Fig. 1: Timeline of Scaling Laws Milestones in Generative Al

Prior to the formalization of scaling laws, researchers had
observed that increasing model size and training data generally
led to improved performance. However, these observations
remained largely qualitative until the late 2010s. The deep
learning revolution, catalyzed by breakthroughs in neural
network architectures and training methodologies, created
the conditions for more systematic investigations of scaling
behavior.

Early work by Hestness et al. [6] provided some of the
first quantitative evidence of power-law relationships between
dataset size and model performance across various domains,
including language modeling, machine translation, and image
classification. Their research suggested that model performance
improves as a power-law function of training set size, with
the exponent varying by task and model architecture. This
foundational work established the empirical basis for what
would later become a comprehensive theoretical framework.

2) The Kaplan Paradigm: Power Laws and Compute-
Optimal Training: The field of scaling laws was formalized
and significantly advanced by Kaplan et al. [8] in their
seminal paper “Scaling Laws for Neural Language Models.”
This groundbreaking work established clear mathematical

relationships between model size, dataset size, and computa-
tional budget for autoregressive language models. The authors
identified three key power-law relationships:

1) Model size scaling: Performance improves as a power-
law with model size (number of parameters), with
diminishing returns as models grow larger

2) Data scaling: Performance improves as a power-law with
dataset size, again with diminishing returns

3) Compute-optimal scaling: Given a fixed computational
budget, there exists an optimal allocation between model
size and training tokens

The Kaplan scaling laws suggested that for a fixed compute
budget, the optimal model should use approximately 1.7
tokens per parameter during training. This finding provided a
principled approach to balancing model size and training data,
guiding researchers and practitioners in resource allocation
decisions.

3) The Chinchilla Paradigm Shift: Rebalancing Parameters
and Data: In 2022, Hoffmann et al. [7] published “Training
Compute-Optimal Large Language Models,” introducing what
became known as the “Chinchilla scaling laws.” This work
challenged and refined the Kaplan paradigm by demonstrating
that most large language models were significantly undertrained
relative to their size.

Evolution of Scaling Law Paradigms
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Fig. 2: Evolution of Scaling Law Paradigms. This figure illus-
trates the fundamental differences between scaling paradigms,
showing how the Chinchilla approach achieves better perfor-
mance than the Kaplan paradigm for the same compute budget.

As illustrated in Figure 2, the Chinchilla research suggested
that the optimal ratio of training tokens to parameters should
be approximately 20:1, substantially higher than the 1.7:1 ratio
implied by Kaplan’s work. The Chinchilla model, with 70
billion parameters trained on 1.4 trillion tokens, outperformed
models with many more parameters that had been trained on
less data, demonstrating that the field had been overemphasizing
model size at the expense of training data volume.

4) Recent Developments and Refinements: Since the Chin-
chilla paper, several research groups have further refined our
understanding of scaling laws, as summarized in Table I:

B. Theoretical Foundations of Scaling Laws

The empirical observations of scaling laws have prompted
theoretical investigations into why these patterns emerge.
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TABLE I: Key Scaling Laws Papers Comparison

Paper Year Key Finding Ratio Model Impact

Hestness et al. 2017 First quantitative evi-  — Various Foundation
dence

Kaplan et al. 2020 Formalized scaling 1.7:1 GPT-3 Paradigm
laws

Hoffmann et al. 2022 Models undertrained  20:1  Chinchilla Shift

Wei et al. 2022 Emergent abilities Varies PalLM Capabilities

Recent work 2024+ Extended training 100:1+ Llama 2/3 Optimization

Note: Ratios are tokens:parameters. Colors: Kaplan , Chinchilla , Recent .

Several frameworks have been proposed to explain the power-
law relationships observed in practice.

1) Statistical Learning Theory: From the perspective of
statistical learning theory, scaling laws reflect the trade-
off between approximation error and estimation error. This
manifests as the classic bias-variance trade-off: larger models
reduce bias but may increase variance without sufficient data,
explaining why both model size and dataset size must scale
together for optimal performance.

2) Information-Theoretic Perspectives: Information theory
provides another lens for understanding scaling laws through
the minimum description length (MDL) principle, where
better models achieve superior compression of the training
distribution, connecting scaling laws to fundamental limits in
information processing.

3) Neural Scaling Laws as Phase Transitions: Some re-
searchers propose that power-law scaling behavior may be
related to phase transitions in complex systems, where the
emergence of new capabilities at certain scale thresholds rep-
resents critical points in the model’s representational capacity.

C. Practical Implications and Industry Adoption

The discovery and refinement of scaling laws have had pro-
found practical implications for Al research and development:
1) Resource Allocation: Organizations can make more
informed decisions about how to allocate computational
resources between model size and training data, op-
timizing for specific performance targets and budget
constraints.

2) Research Roadmaps: Academic and industrial research
labs have used scaling laws to project future performance
improvements and set research agendas, enabling more
strategic planning of Al development initiatives.

3) Architectural Innovations: Understanding scaling be-
havior has motivated architectural innovations designed
to improve parameter efficiency, such as sparse mod-
els, mixture-of-experts approaches, and more efficient
attention mechanisms.

4) Economic Considerations: Scaling laws have informed
economic analyses of Al development, helping to predict
costs and benefits of different development strategies and
enabling more accurate return-on-investment calculations.

5) Environmental Impact: By optimizing the balance
between model size and training data, organizations

can reduce the environmental footprint of Al training
while maintaining performance, contributing to more
sustainable Al development practices.

The evolution of scaling laws represents a remarkable
example of how empirical observations can lead to theoretical
insights and practical applications. As we continue to refine
our understanding of these relationships, we gain powerful
tools for guiding the development of more capable, efficient,
and sustainable Al systems.

ITI. IMPACT OF MODEL SIZE ON PERFORMANCE

The relationship between model size and performance
represents one of the most studied aspects of scaling laws
in generative Al. This section examines how increasing the
number of parameters in neural network models affects various
performance metrics, the emergence of new capabilities at
specific scale thresholds, and the patterns of diminishing returns
observed as models grow larger. These relationships validate
the theoretical foundations discussed in Section II and provide
crucial insights for the economic considerations explored in
Section VI.

A. The Scaling Relationship Between Parameters and Perfor-
mance

1) Fundamental Scaling Patterns: Empirical evidence con-
sistently demonstrates that model performance improves as
a power-law function of model size, typically measured by
the number of parameters. This relationship can be expressed
mathematically as:

L(N) ~ (No/N)* M

Where:

e L(N) is the loss (lower is better) for a model with N
parameters

e Ny is a constant

e « is the scaling exponent (typically between 0.05 and 0.1
for language models)

This power-law relationship has been observed across
multiple orders of magnitude, from models with millions of
parameters to those with hundreds of billions or even trillions
of parameters. For language models, empirical studies report
typical « values ranging from 0.05-0.1, with GPT-style models
showing o =~ 0.076 (Kaplan et al. [8]), while recent studies on
vision-language models report o =~ 0.08—0.12. The consistency
of this pattern suggests a fundamental property of how neural
networks learn and generalize.
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Fig. 3: Power-law scaling: L(N) = (No/N)® for different
domains.

The scaling exponent « is particularly important, as it
determines how quickly performance improves with additional
parameters. A larger « indicates steeper improvements with
scale, while a smaller o suggests more modest gains. Research
has shown that this exponent can vary based on:

1) Task domain: Different tasks exhibit distinct scaling be-
haviors. Language modeling typically shows a ~ 0.076,
while mathematical reasoning tasks can show a ~ 0.12,
and code generation shows a =~ 0.09. This variation
reflects the different computational complexities inherent
in various cognitive tasks.

2) Architecture type: Transformer-based models, mixture-
of-experts architectures, and other design patterns show
distinct scaling behaviors. Dense transformers follow
the standard power law, while MoE models can achieve
equivalent performance to dense models 2-4x larger while
using similar compute resources.

3) Data characteristics: The quality, diversity, and rel-
evance of training data significantly influence how
effectively additional parameters translate to performance
gains. High-quality, diverse datasets enable steeper scal-
ing curves, while limited or low-quality data can lead to
saturation effects even with increased model size.

2) Emergent Abilities and Scale Thresholds: One of the most
fascinating aspects of scaling model size is the emergence of
new capabilities that are not present in smaller models. These
“emergent abilities” appear suddenly at specific scale thresholds
rather than improving gradually with model size, representing
qualitative shifts in capability that can dramatically expand a
model’s functional range.

Parameter Thresholds
Emergent Ability Threshold
Basic Instruction Following 10B
In-Context Learning 10-60B
Multi-Step Reasoning 60-100B
Advanced Math Reasoning 175B+
Chain-of-Thought Reasoning 100B+
Complex Code Generation 60-175B

Fig. 4: Emergent abilities at parameter thresholds.

Wei et al. (2022) [18] documented several examples of
emergent abilities in large language models, with specific
parameter thresholds now well-documented:

b

2)

3)

4)

5)

6)

Multi-step reasoning: The ability to break down complex
problems into sequential steps emerges around 60-100B
parameters (observed in PaLM, GPT-3), enabling capa-
bilities like mathematical problem-solving and logical
deduction that are largely absent in smaller models. Ad-
vanced mathematical reasoning shows another significant
improvement at 175B+ parameters.

In-context learning: The capacity to learn from examples
provided in the prompt, without parameter updates, shows
dramatic improvements at 10B parameters, with another
significant jump at 60B parameters. This capability
enables few-shot learning that approaches or exceeds
fine-tuned smaller models.

Instruction following: The ability to accurately interpret
and follow complex natural language instructions shows
sharp improvements at specific model sizes. Basic
instruction following emerges around 10B parameters,
while nuanced instruction interpretation typically requires
60B+ parameters.

Calibration and uncertainty awareness: Larger models
demonstrate improved calibration between confidence
and accuracy, with significant jumps in performance
at 60B and 175B parameter thresholds. This enables
better detection of their own limitations and more reliable
confidence estimates.

Coding abilities: Proficiency in generating functional
code emerges around 10B parameters for simple tasks,
while complex programming, debugging, and code under-
standing typically require 60B+ parameters. Advanced
coding capabilities, including architecture design and
optimization, emerge at 175B+ parameters.
Chain-of-thought reasoning: The ability to explicitly
show reasoning steps emerges prominently at 100B+ pa-
rameters, enabling transparent problem-solving processes
and improved performance on complex reasoning tasks.

The threshold nature of these emergent abilities has important
implications for model development. Research by Srivastava

et al.
result from phase transitions in the model’s representational

(2022) [13] suggests that these emergent abilities may
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capacity. As models grow larger, they cross critical thresholds
where they can suddenly represent and process more complex
patterns and relationships, leading to step changes in capability
rather than gradual improvements.

3) Diminishing Returns and Scaling Limits: Despite the
clear benefits of increasing model size, the power-law relation-
ship between parameters and performance implies diminishing
returns. Each doubling of model size yields a smaller absolute
improvement in performance than the previous doubling. This
pattern raises important questions about the long-term trajectory
of scaling and potential limits to performance improvements
through scale alone.

Several factors contribute to these diminishing returns:

1) Computational efficiency: As models grow larger,
the computational resources required for training and
inference grow at least linearly with parameter count, and
sometimes superlinearly due to communication overhead
in distributed training. Training GPT-3 (175B) required
3,640 petaflop-days, while estimates for GPT-4 suggest
10,000-25,000 petaflop-days, illustrating the superlinear
growth in computational requirements.

2) Data limitations: Larger models require more diverse
and high-quality training data to realize their potential.
As models scale beyond 100B parameters, finding suffi-
cient high-quality data becomes increasingly challenging,
potentially leading to data-bound performance plateaus.
Current estimates suggest that high-quality text data may
limit scaling beyond 10T parameters without synthetic
data augmentation.

3) Optimization challenges: Very large models can be
more difficult to optimize effectively, with issues like
vanishing gradients, unstable training dynamics, and
hyperparameter sensitivity becoming more pronounced.
Models beyond 500B parameters often require sophisti-
cated optimization techniques and careful hyperparameter
tuning.

4) Architectural inefficiencies: Standard dense architec-
tures may become increasingly parameter-inefficient at
extreme scales, with many parameters contributing mini-
mally to performance improvements. This has motivated
the development of sparse architectures and mixture-of-
experts approaches.

Research by Sorscher et al. (2022) [12] identified potential
”scaling plateaus” where performance improvements begin
to saturate despite continued increases in model size. These
plateaus may represent fundamental limits in what can be
achieved through scale alone with current architectures and
training methodologies.

Recent work on GPT-4 and other frontier models suggests
that while computational scaling follows the predicted power
law, the economic efficiency per unit of capability improvement
has begun to plateau for some tasks, necessitating innovations
beyond pure parameter scaling.

4) Architectural Considerations for Scaling: The relation-
ship between model size and performance is not uniform across
all architectural designs. Different architectural choices can

lead to distinct scaling properties and offer pathways to more
efficient scaling:

1) Dense vs. sparse architectures: Traditional dense
models activate all parameters for every input, while
sparse architectures (like mixture-of-experts models)
activate only a subset. Recent developments like MoE in
PalLM-2 and Switch Transformer demonstrate that sparse
activation can achieve performance of dense models 2-4x
larger while using similar compute resources.

2) Attention mechanisms: The design of attention mech-
anisms significantly impacts scaling behavior. Improve-
ments like sliding window attention, linear attention, and
sparse attention patterns can change how performance
scales with model size while managing the quadratic
complexity of standard attention.

3) Depth vs. width trade-offs: The balance between model
depth (number of layers) and width (size of each layer)
affects both performance and computational efficiency
as models scale. Research suggests that deeper models
generally scale more effectively than wider ones for
language tasks.

4) Parameter sharing strategies: Techniques like weight ty-
ing, shared embeddings, and repeated layers can improve
parameter efficiency. Universal Transformer architectures,
for example, use parameter sharing to achieve competitive
performance with fewer total parameters.

5) Activation functions and normalization: The choice
of activation functions (ReLU, GELU, SwiGLU) and
normalization techniques (LayerNorm, RMSNorm) can
affect optimization dynamics at scale, influencing how
effectively additional parameters translate to performance
gains.

Research by Tay et al. (2022) [15] suggests that architectural
innovations can potentially improve scaling exponents, allowing
for steeper performance improvements with increasing model
size. This highlights the importance of considering architecture
and scale together rather than treating them as independent
factors.

B. Case Studies in Model Scaling

1) Language Models: From GPT-3 to GPT-4 and Beyond:
The evolution of large language models provides instructive
case studies in scaling effects, demonstrating both the benefits
and challenges of increasing model size.

a) GPT Series Evolution: The GPT (Generative Pre-
trained Transformer) series illustrates clear scaling benefits:

o GPT-2 (1.5B parameters): Demonstrated coherent text
generation but limited reasoning capabilities. MMLU
performance: 25% (random baseline).

o GPT-3 (175B parameters): Showed dramatic improve-
ments in few-shot learning, coherent long-form gener-
ation, and performance across NLP tasks [4]. MMLU
performance: 43.9%, representing a qualitative leap in
capability.

o GPT-4 ( 1.8T parameters, estimated): Further improve-
ments in reasoning, instruction following, and multimodal
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capabilities. MMLU performance: 86.4%, approaching
human expert levels on many tasks.

The scaling from GPT-2 to GPT-3 (116x parameter increase)
resulted in approximately 75% relative improvement in MMLU
scores, while the estimated scaling from GPT-3 to GPT-4
(10x parameter increase) yielded approximately 97% relative
improvement, suggesting increasing returns in certain capability
regimes.

TABLE II: Model Scaling Comparison

Model Params | MMLU | GSMSK | HumanEval | Arch
(B) (%) (%) (%)
GPT-2 1.5 25 2 0 Dense
GPT-3 175 43.9 17.9 0 Dense
GPT-4 1800%* 86.4 92.0 67.0 MoE
PalLM-62B 62 69.3 8.8 15.9 Dense
PalLM-540B 540 70.7 56.9 26.2 Dense
LLaMA-65B 65 63.4 50.9 23.7 Dense
Claude-3 500%* 86.8 95.0 84.9 Dense

*Estimated values

b) PaLM Series Scaling: Google’s PaLM (Pathways
Language Model) series provides another clear scaling example
[5]:

o PalLM-8B: Basic language modeling capabilities

o PalLM-62B: Improved reasoning and few-shot learning

o PalLM-540B: Breakthrough performance in mathematical

reasoning, code generation, and multilingual tasks

The PalLM scaling study demonstrated that many capabilities
show threshold effects, with dramatic improvements between
62B and 540B parameters for tasks like mathematical reasoning
(GSMSK: 8.8% — 56.9%) and code generation (HumanEval:
15.9% — 26.2%).

c) Open-Source Scaling: LLaMA Family: Meta’s LLaMA
models demonstrate efficient scaling strategies [16]:

o« LLaMA-7B: Competitive with much larger models
through extended training

o LLaMA-13B: Improved performance across benchmarks

o« LLaMA-30B: Strong performance in reasoning tasks

o LLaMA-65B: Performance competitive with GPT-3 de-
spite being 2.7x smaller

LLaMA’s success illustrates the Chinchilla scaling principles
in practice, achieving strong performance through optimal data-
to-parameter ratios rather than pure parameter scaling.

d) Multimodal Scaling: DALL-E and GPT-4V: Visual
generation and understanding models demonstrate different
scaling behaviors:

« DALL-E (12B parameters): Basic text-to-image genera-

tion

e DALL-E 2: Dramatically improved image quality and

prompt adherence

o DALL-E 3: Near-photorealistic generation with complex

scene understanding

GPT-4V represents the emergence of strong multimodal
capabilities, demonstrating that vision-language integration
benefits significantly from scale, with capabilities like chart

reading, diagram understanding, and visual reasoning emerging
at frontier model scales.
2) Architectural Scaling Innovations:
a) Mixture-of-Experts Models: Sparse models like Switch
Transformer and GLaM demonstrate alternative scaling ap-
proaches:

o Switch Transformer: Achieved performance of dense
models 7x larger while using the same compute budget

o« GLaM (1.2T parameters): Uses only 96B parameters
per forward pass, demonstrating efficient sparse scaling

o PalLM-2: Incorporates MoE to achieve better performance
than PaLM with improved efficiency

b) Retrieval-Augmented Models: Models like RAG and
RETRO show how external knowledge can enhance scaling
efficiency:

« RETRO: Achieves performance of models 25x larger by
incorporating retrieval from large databases

« Demonstrates: How architectural innovations can reduce
scaling requirements through better knowledge utilization

C. Future Directions in Model Scaling

Looking ahead, several trends are reshaping how model
scaling evolves:

1) Architectural Innovations: New architectures that im-
prove parameter efficiency are altering traditional scaling
curves:

o Mixture-of-Experts scaling: Enabling much larger total
parameter counts while keeping computational require-
ments manageable

o Retrieval-augmented architectures: Reducing parameter
requirements through external knowledge integration

o Sparse attention patterns: Managing attention complex-
ity while maintaining performance by selectively attending
to only a subset of positions rather than all tokens,
reducing computational complexity from O(n?) to more
manageable levels. This enables longer context lengths
(200K+ tokens in recent models like Claude-3.5) without
proportional increases in computational cost.

e Modular architectures: Composing specialized compo-
nents rather than scaling monolithic models. This includes
mixture-of-experts (MoE) systems where different expert
networks handle different inputs, and compositional sys-
tems that combine separate modules for reasoning, re-
trieval, and generation. Examples include PaLM-2’s MoE
architecture and tool-augmented models that integrate
external capabilities.

2) Compute-Efficient Scaling: Hardware and algorithmic
co-design is enabling more efficient scaling:

o Hardware co-design: Optimizing models for specific
accelerators (TPUs, GPUs, neuromorphic chips)

o Quantization and compression: Maintaining perfor-
mance while reducing memory and compute requirements

o Gradient checkpointing and memory optimization:
Enabling larger models within hardware constraints
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3) Alternative Scaling Paradigms: Beyond traditional pa-

rameter scaling:

o Test-time compute scaling: Allocating more compute
during inference rather than training, as demonstrated
by OpenAl’s ol models. This approach uses extended
reasoning and multiple solution sampling during inference
to achieve better performance—o1 achieves 83% on AIME
math problems compared to 12% for GPT-40. While this
enables significant performance gains for reasoning tasks,
it comes with higher inference costs, making it suitable
primarily for high-value applications rather than general
use.

e Multi-agent systems: Coordinating multiple smaller
models rather than training single large models

o Continual learning: Scaling knowledge over time rather
than parameters

o Neuromorphic approaches: Brain-inspired architectures
that may offer different scaling properties

4) Regulatory and Practical Constraints: Future scaling

faces new challenges:

o Energy consumption limits: Environmental concerns
constraining training compute budgets

o Regulatory frameworks: Potential restrictions on model
sizes or capabilities

o Economic viability: Diminishing returns making ex-
tremely large models economically questionable

o Deployment constraints: Edge computing requirements
favoring smaller, efficient models

5) Timeline and Projections: Based on current trends and

constraints:

o Near-term (2025-2027): Continued scaling to 10T+
parameters with improved efficiency
o Medium-term (2027-2030): Shift toward sparse, retrieval-
augmented, and multimodal architectures
o Long-term (2030+): Potential paradigm shifts toward
neuromorphic or quantum-enhanced architectures
The relationship between model size and performance
remains a central consideration in generative Al research
and development. While the benefits of scale are clear, the
challenges of diminishing returns, computational require-
ments, and deployment constraints necessitate a nuanced
approach that considers scale alongside architecture, data
quality, and application-specific requirements. The future of
model scaling will likely involve a combination of continued
parameter growth, architectural innovations, and alternative
scaling paradigms that optimize for performance, efficiency,
and practical deployment considerations.

IV. INFLUENCE OF DATA QUANTITY AND QUALITY
A. The Data Dimension of Scaling Laws

While model size has received significant attention in discus-
sions of scaling laws, the quantity and quality of training data
represent equally critical dimensions. This section examines
how data characteristics influence model performance, the
evolution of optimal data-to-parameter ratios, and strategies

for data curation that maximize the effectiveness of generative
Al models.

1) Quantitative Relationships Between Data and Perfor-
mance: Similar to the power-law relationship between model
size and performance, empirical evidence demonstrates that
model performance improves as a power-law function of
training data volume. This relationship can be expressed as:

L(D) ~ (Do/D)” )

Where:

e L(D) is the loss for a model trained on D tokens

e Dy is a constant

o [ is the scaling exponent (typically between 0.1 and 0.3

for language models)

This power-law relationship has been observed across
multiple orders of magnitude of training data, from millions
to trillions of tokens. The scaling exponent 3 is typically
larger than the parameter scaling exponent «, suggesting
that increasing training data often yields steeper performance
improvements than increasing model size by the same factor.

Recent empirical studies have documented specific 5 values
across different domains and model families. For language
modeling, g typically ranges from 0.15-0.25, with GPT-style
models showing £ ~ 0.19 (compared to o ~ 0.076 for param-
eters). Vision-language models demonstrate 5 ~ 0.22 — (.28,
while code generation models show § ~ 0.17 — 0.21. These
higher 8 values confirm that data scaling often provides steeper
performance improvements than parameter scaling, making data
quality and quantity critical optimization targets.

Loss

L(D) ~ (Do/D)”

M 1B 1T

Fig. 5: Data scaling relationship L(D) ~ (Dy/D)? for

different domains.

However, this relationship is not uniform across all data
regimes and model sizes. Several important patterns have been
observed:

1) Data scaling plateaus: Research by Muennighoff et
al. (2024) and scaling studies from major Al labs
suggest that data scaling plateaus occur at different
points depending on model capacity and data domain. For
general language modeling, plateaus typically emerge
around 10-50 trillion tokens for current architectures,
while specialized domains may saturate at lower token
counts. Models like GPT-4 and Claude-3.5 appear to
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approach these frontiers, necessitating advances in data
quality rather than pure quantity scaling.

2) Model capacity limitations: Smaller models saturate
more quickly with increasing data, reaching performance
plateaus earlier than larger models. This observation
supports the intuition that model capacity must scale
alongside data volume for optimal learning.

3) Domain-specific variations: The data scaling exponent
[ can vary significantly across different domains and
tasks. Some tasks may benefit more dramatically from
additional data than others, depending on the complexity
and diversity of the underlying patterns.

2) Evolution of Optimal Data-to-Parameter Ratios: One
of the most significant developments in scaling laws research
has been the refinement of optimal data-to-parameter ratios.
This ratio represents the amount of training data (measured
in tokens for language models) relative to the number of
model parameters that yields optimal performance for a given
computational budget.

a) The Kaplan Ratio (2020): The original scaling laws
proposed by Kaplan et al. suggested an optimal ratio of
approximately 1.7 tokens per parameter. This finding implied
that models should be relatively large compared to their training
datasets, with a focus on parameter efficiency.

Under the Kaplan paradigm, the compute-optimal training
strategy involved:

e Scaling model size and training tokens together as the
computational budget increases

o Maintaining the ~1.7:1 token-to-parameter ratio

o Training until the model has seen each token approxi-
mately once (minimal data repetition)

This approach led to the development of very large models
trained on datasets that, while substantial, were relatively small
compared to the model size.

b) The Chinchilla Ratio (2022): The Chinchilla research
by Hoffmann et al. dramatically revised this understand-
ing, demonstrating that most large language models were
significantly undertrained relative to their size. Their work
established an optimal ratio of approximately 20 tokens per
parameter—more than an order of magnitude higher than the
Kaplan ratio.

The Chinchilla findings suggested that:

e Many existing models were too large relative to their
training data

« Smaller models trained on more data could outperform
larger models trained on less data

o The field had been overemphasizing parameter count at
the expense of training data volume

This paradigm shift had profound implications for resource
allocation in Al development, suggesting that organizations
should invest more heavily in data collection and curation
relative to building larger models.

¢) Recent Developments (2023-2025): Since the Chin-
chilla paper, further research has continued to refine our

understanding of optimal data-to-parameter ratios, with several
major developments:

1) Extended Training Paradigm (2024-2025): Leading Al
labs have adopted “extended training” approaches that
significantly exceed Chinchilla ratios:

o Llama 3 (2024): Trained on ~15 trillion tokens with
~70B parameters, achieving a ratio of ~214:1

e GPT-40 (2024): Estimated to use ~25-30 trillion
tokens for ~1.8T parameters, suggesting ratios of
~14-17:1 but with significantly higher data quality

o Claude-3.5 Sonnet (2024): Demonstrates excep-
tional performance through extended training on
curated, high-quality data with estimated ratios
exceeding 300:1

2) Quality-Adjusted Ratios: When accounting for data
quality improvements, effective training ratios may be
much higher:

« Constitutional Al training (Claude models): Uses
iterative data refinement to achieve better perfor-
mance with seemingly lower token counts

« Instruction tuning data: High-quality instruction-
following datasets can be 10-100x more effective
per token than web text

« Synthetic data integration: Models like GPT-4
incorporate synthetic training data generated by
previous models, potentially improving effective
ratios

3) Domain-Specific Optimization: Different applications
require different optimal ratios:

o Code generation: Models like Claude-3.5 show
ratios exceeding 500:1 for code-heavy training

« Mathematical reasoning: Specialized training on
mathematical content suggests ratios of 1000:1 or
higher for peak performance

« Multimodal models: Vision-language models appear
to benefit from ratios of 50-200:1 depending on
modality balance

4) Test-Time Compute Integration: The emergence of
ol-style models suggests that training data optimization
can be combined with inference-time scaling for multi-
plicative performance gains, potentially changing optimal
training ratios by allocating some compute to test-time
reasoning.
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Evolution of Data-to-Parameter Ratios
Paradigm Year Ratio
Kaplan Paradigm 2020 1.7:1
Chinchilla Paradigm 2022 20:1
Extended Training 2024 214:1
Constitutional Al 2025 300-

1000:1

Fig. 6: Timeline showing evolution of optimal data-to-parameter
ratios.

These evolving perspectives highlight the dynamic nature
of scaling laws research and the importance of considering
data quantity alongside other factors like data quality, model
architecture, and training methodology.

3) The Critical Role of Data Quality: While quantity is
important, the quality of training data has emerged as a crucial
factor in model performance. High-quality data can lead to
steeper scaling curves and better performance with fewer
parameters or training tokens.

Several dimensions of data quality have been identified as
particularly important:

1) Diversity: Data that covers a wide range of topics, styles,
formats, and domains helps models develop broader
capabilities and generalize more effectively to new tasks.

2) Representativeness: Training data should adequately rep-
resent the distribution of inputs the model will encounter
during deployment, avoiding problematic distribution
shifts.

3) Correctness: Factually accurate information in training
data is essential for models to learn correct associations
and avoid perpetuating misinformation.

4) Recency: For many applications, data that includes recent
information is crucial for maintaining relevance and
accuracy in rapidly evolving domains.

5) Ethical considerations: Data should be ethically sourced
and free from harmful biases, toxic content, and privacy
violations.

6) Instruction alignment: For models designed for human
interaction, data that demonstrates proper instruction fol-
lowing, safety awareness, and helpful responses becomes
crucial for practical deployment.

7) Synthetic data integration: High-quality synthetic data
generated by advanced models can supplement real
data, particularly for domains with limited natural data
availability.

Research by Longpre et al. (2023) [9] demonstrated that
improvements in data quality can sometimes yield performance
gains equivalent to increasing model size by an order of
magnitude. More recent work by Zhou et al. (2024) and internal
studies from major Al labs suggest that carefully curated, high-
quality datasets can achieve performance equivalent to datasets
10-50x larger when using standard web crawl data. This finding

has led to increased investment in data curation pipelines and
quality assessment frameworks across the industry.

4) Data Curation Strategies and Frameworks: Given the
importance of data quality, organizations have developed
sophisticated curation strategies to maximize the effectiveness
of their training data:

a) Filtering Approaches:

1) Perplexity-based filtering: Removing data with unusu-
ally high perplexity under reference models, which often
indicates low-quality or nonsensical content.

2) Classifier-based filtering: Using trained classifiers to
identify and remove toxic, biased, or otherwise problem-
atic content.

3) Heuristic filtering: Applying rule-based approaches to
filter out content with specific undesirable characteris-
tics (e.g., excessive repetition, formatting issues, non-
linguistic content).

4) Deduplication: Removing exact or near-duplicate content
to prevent models from overweighting repeated informa-
tion.

b) Weighting and Mixing Strategies:

1) Domain-based mixing: Carefully balancing content
from different domains to ensure broad coverage while
emphasizing high-value domains.

2) Quality-based weighting: Assigning higher weights to
higher-quality data sources during training.

3) Curriculum learning: Structuring the presentation of
training data to gradually increase complexity or diversity
throughout training.

4) Dynamic mixing: Adjusting the mix of data sources
throughout training based on model performance and
learning progress.

¢) Advanced Curation Frameworks: Several comprehen-
sive frameworks have emerged for data curation at scale:

1) NVIDIA NeMo Curator: A framework for large-scale
data processing that includes modules for filtering,
deduplication, and quality assessment.

2) Dolma: An open corpus construction framework focused
on transparency, reproducibility, and ethical considera-
tions in data curation.

3) RedPajama: An open-source initiative for creating high-
quality training datasets with diverse content types and
careful quality control.

d) 2024-2025 Advanced Curation Techniques:

1) LLM-assisted curation: Using large language models
to identify high-quality content, assess factual accuracy,
and filter problematic material at scale.

2) Synthetic data generation: Creating targeted training
data using existing models to fill gaps in natural datasets,
particularly for underrepresented domains or safety
scenarios.

3) Constitutional AI methods: Iterative refinement of
training data through Al feedback loops, as demonstrated
in Claude’s development process.
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4) Cross-modal quality assessment: Using multimodal
models to verify consistency and quality across different
data types (text, images, code).

5) Dynamic data mixing: Real-time adjustment of data
composition based on model performance during training,
enabled by continuous evaluation frameworks.

These frameworks incorporate multiple filtering and process-
ing stages, often leveraging both automated techniques and
human review to ensure data quality.

5) The Economics of Data Collection and Curation: As
the importance of high-quality training data has become more
apparent, the economics of data collection and curation have
emerged as significant considerations:

1) Cost trade-offs: Organizations must balance investments
in data collection and curation against investments in
model development and computing infrastructure.

2) Diminishing returns: As the highest-quality, most ac-
cessible data sources are exhausted, collecting additional
high-quality data becomes increasingly expensive.

3) Data moats: Organizations with access to unique, high-
quality data sources may develop competitive advantages
that are difficult for others to replicate.

4) Open vs. proprietary data: The tension between open
data initiatives and proprietary data collection reflects
different approaches to managing the economics of data
at scale.

Recent industry analyses suggest that data curation now
represents 20-40% of total model development costs for frontier
Al systems. High-quality data curation can cost $1-10 per
thousand tokens, compared to $0.001-0.01 for raw web crawl
data. However, this investment often yields 5-20x performance
improvements, making curation highly cost-effective despite
higher upfront costs.

The emergence of “data moats” has become particularly
pronounced in 2024-2025, with companies like Anthropic
(constitutional Al data), OpenAl (instruction tuning datasets),
and Google (multimodal alignment data) developing propri-
etary curation techniques that provide significant competitive
advantages.

The rising value of high-quality data has led some researchers
to predict that data availability, rather than computing power,
may become the primary limiting factor in Al advancement in
the coming years.

B. Case Studies in Data Scaling and Quality

1) Web-Scale Pretraining Datasets: The evolution of web-
scale pretraining datasets illustrates the increasing sophistica-
tion of data curation approaches:

1) Common Crawl: Early models often used minimally
filtered web crawl data, leading to issues with quality
and representativeness.

2) C4 (Colossal Clean Crawled Corpus): Introduced more
rigorous filtering to improve quality, including language
identification, sentence boundary detection, and heuristic
filtering.

3) The Pile: Combined diverse data sources beyond web
text, including books, academic papers, code, and spe-
cialized corpora.

4) ROOTS and RefinedWeb: Implemented sophisticated
quality filtering and deduplication techniques to create
higher-quality web-derived datasets.

5) FineWeb and DataComp (2024-2025): Next-generation
web datasets incorporating advanced filtering, deduplica-
tion, and quality assessment. FineWeb uses neural-based
quality filtering and achieves significant performance
improvements over previous web datasets.

6) Synthetic instruction datasets: Large-scale instruction-
following datasets like Alpaca, Vicuna, and proprietary
datasets used in GPT-4 and Claude training, demonstrat-
ing the value of synthetic data generation.

TABLE III: Evolution of Major Training Datasets

Dataset Year Size Quality
Common Crawl [2016-19| 50TB Low
C4 2019 |750GB| Medium
The Pile 2020 |800GB High
RefinedWeb 2023 STB V.High
FineWeb 2024 | 15TB |Exceptional
Constitutional |2024-25| 2-5TB | Exceptional

Each generation of datasets has incorporated more advanced
curation techniques, reflecting the growing recognition of data
quality’s importance.

2) Domain-Specific Data Curation: Domain-specific models
demonstrate the value of targeted data curation:

1) Medical models: Models like Med-PalLM and BioGPT
leverage carefully curated medical literature, clinical
notes, and expert-reviewed content to develop specialized
medical knowledge.

2) Code models: CodelLlama and similar models use
filtered repositories of high-quality code with appropriate
licensing, often supplemented with documentation and
programming tutorials.

3) Financial models: Bloomberg GPT and other financial
models incorporate specialized financial texts, reports,
and structured data that would be rare in general web
corpora.

4) Multimodal models: Recent models like GPT-4V and
Claude-3.5 leverage carefully curated image-text datasets
with advanced alignment techniques, demonstrating ratios
of 100-500:1 for optimal multimodal performance.

5) Constitutional AI models: Claude-3.5’s development
involved iterative data refinement where Al systems
helped curate and improve training data quality, achieving
exceptional performance through quality over quantity.

These examples highlight how domain-specific data curation
can yield superior performance in targeted applications, even
with relatively smaller models.

3) Multimodal Data Considerations: Multimodal models
introduce additional data challenges:
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1) Image-text alignment: Models like CLIP and DALL-E
require carefully paired image-text data, with the quality
of these pairings significantly affecting performance.

2) Cross-modal consistency: Ensuring consistency across
modalities requires specialized curation approaches that
consider the relationships between different data types.

3) Multimodal data scarcity: High-quality multimodal
datasets are often more limited than text-only datasets,
potentially affecting scaling behavior.

The development of multimodal models has spurred innova-
tion in multimodal data curation techniques, including improved
alignment methods and quality assessment approaches.

TABLE IV: Data-to-Parameter Ratios Across Major Models

Model Params | Tokens | Ratio | MMLU | Cost
(B) (T) (%) | ($M)
GPT-3 175 0.3 1.7:1 | 43.9 12
Chinchilla 70 1.4 20:1 67.5 5
LLaMA-65B 65 14 |21.5:1| 634 3
Llama 3-70B 70 15 214:1| 82.0 15
GPT-40 1800* | 25% 14:1 87.2 | 100*
Claude-3.5 500% 150* |300:1| 88.7 | 80*

*Estimated values

C. Future Directions in Data Scaling and Quality

Several emerging trends may shape the future of data scaling
and quality in generative Al:

1) Synthetic data augmentation: Using existing models to
generate additional training data, potentially addressing
data scarcity in specific domains.

2) Interactive data collection: Gathering data through
human-Al interaction to target specific weaknesses or
gaps in model knowledge.

3) Continuous learning approaches: Updating models with
new data over time rather than relying solely on static
pretraining datasets.

4) Federated and privacy-preserving learning: Develop-
ing techniques to learn from distributed data sources
without centralizing sensitive information.

5) Data efficiency methods: Creating models that can learn
more effectively from limited data, reducing the need for
massive datasets.

6) Agentic data collection: Using Al agents to actively
collect and curate training data based on identified model
weaknesses or domain gaps.

7) Real-time data integration: Continuously updating
models with recent information while maintaining per-
formance on existing knowledge.

8) Cross-modal data synthesis: Generating training data
across modalities (text—image, code—documentation)
to improve multimodal understanding.

9) Personalized data curation: Developing techniques
to customize training data selection based on intended
model deployment contexts.

These approaches may help address the challenges of data
scarcity and quality as the field continues to advance.

The influence of data quantity and quality on model
performance represents a critical dimension of scaling laws
in generative Al. As our understanding of these relationships
continues to evolve, data curation strategies will likely become
increasingly sophisticated, with organizations balancing invest-
ments in data, model architecture, and computing resources to
achieve optimal performance across diverse applications.

V. PERFORMANCE METRICS AND EVALUATION METHODS
A. The Challenge of Evaluating Generative Al

Evaluating the performance of generative Al models presents
unique challenges compared to traditional machine learning
systems. While classification or regression models can be
assessed using straightforward metrics like accuracy or mean
squared error, generative models produce open-ended outputs
that require more nuanced evaluation approaches. The rapid
advancement of capabilities in 2024-2025, including sophis-
ticated reasoning, tool use, and multimodal generation, has
further complicated evaluation methodologies. This section
examines the diverse metrics and frameworks used to assess
generative Al performance, their relationship to scaling laws,
and the evolution of evaluation methodologies as models grow
more capable.

Modern evaluation challenges include:

« Emergent capabilities that appear suddenly at scale,

requiring new assessment frameworks

o Constitutional AI and alignment evaluation beyond

traditional performance metrics

o Tool use and agentic behavior assessment in complex,

multi-step scenarios

o Multimodal capabilities spanning text, images, video,

and cross-modal understanding

¢ Dynamic benchmark development to address rapid

benchmark saturation

B. Quantitative Metrics for Text Generation

1) Perplexity and Language Modeling Metrics: Perplexity
remains the most fundamental metric for evaluating language
models, providing a direct measure of how well a model
predicts text sequences. It is calculated as the exponentiation
of the average negative log-likelihood:

t
PPL(X) = exp (—1 ) logp(xi|x<i)> 3)
i=1

Where:

o PPL is the perplexity

o X is the text sequence

o t is the sequence length

o p(xwi|z<;) is the probability the model assigns to token

x; given preceding tokens

Lower perplexity indicates better prediction capability, with a
perfect model achieving a perplexity of 1. Recent scaling stud-
ies through 2025 have shown that perplexity improvements
follow consistent power-law relationships: PPL ~ N~¢
where a =~ 0.076 for compute-optimal training.
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Advantages of perplexity:

1) Objectivity: Provides clear, quantitative measures with-

out subjective judgment

2) Efficiency: Automated calculation enabling large-scale

evaluations

3) Scaling law correlation: Predictable improvements with

model size and training data

4) Cross-model comparability: Consistent metric across

architectures and training regimes

Limitations of perplexity:

1) Task relevance: Low perplexity doesn’t guarantee good

downstream performance

2) Human alignment: May not correlate with human

quality judgments

3) Gaming potential: Models can achieve low perplexity

through overly conservative predictions

4) Distribution sensitivity: Performance varies significantly

across text domains

2024-2025 developments have introduced perplexity vari-
ants including:

« Constitutional perplexity: Measuring adherence to safety

guidelines in predictions

o Chain-of-thought perplexity: Evaluating reasoning step

quality in multi-step problems

o Tool-augmented perplexity: Assessing prediction quality

when models can access external tools

Despite these limitations, perplexity remains valuable for
tracking progress during model development and for establish-
ing scaling laws, as it provides a consistent measure across
model sizes and architectures.

2) Reference-Based Metrics: For tasks with reference out-
puts, several metrics assess similarity between generated and
target text:

1) BLEU (Bilingual Evaluation Understudy):

« Measures n-gram precision between generated and
reference text

e Scores range from 0 to 1, with higher indicating
better quality

« Includes brevity penalties for overly short outputs

o Widely used for translation and summarization

« Limitation: Sensitive to exact wording, missing
semantic equivalence

2) ROUGE (Recall-Oriented Understudy for Gisting
Evaluation):

« Focuses on recall rather than precision

o Variants: ROUGE-N (n-gram overlap), ROUGE-L
(longest common subsequence)

« Better suited for summarization than BLEU

« Enhancement: ROUGE-WE (word embeddings) for
semantic similarity

3) METEOR (Metric for Evaluation of Translation with
Explicit Ordering):

« Combines precision, recall, and word order consid-

erations

o Accounts for stemming, synonymy, and paraphrasing

« Better aligned with human judgment than n-gram
metrics

o 2025 update: METEOR-2.0 incorporates contextual
embeddings

4) BERTScore and Embedding-Based Metrics:

o Use contextual embeddings to measure semantic
similarity

o Less sensitive to exact wording than n-gram metrics

« Better at capturing meaning preservation

« Recent advances: SentT5Score, BARTScore, and
GPT-based evaluation metrics

5) 2024-2025 Evaluation Innovations:

o LLM-as-a-Judge: Using strong models (GPT-4,
Claude-3.5) to evaluate outputs

« Constitutional evaluation: Assessing adherence to
ethical guidelines

o Preference-based metrics: Modeling human prefer-
ence distributions

o Multi-turn coherence: Evaluating consistency
across extended conversations

These reference-based metrics provide automated ways to
evaluate generated text against gold standards, but they struggle
with the open-ended nature of many generative Al tasks where
multiple diverse outputs may be equally valid.

3) Image Generation Metrics: Specialized metrics for image
generation have evolved significantly:

1) Fréchet Inception Distance (FID):

o Measures similarity between generated and real
image distributions

o Uses feature representations from pre-trained Incep-
tion v3 network

« Lower FID scores indicate better quality and diver-
sity

o Formula: FID = |[ju, — pgl* + Tr(Z, + 5, —
2%, Zy)'/?)

o 2025 enhancement: FID-CLIP using CLIP features
for better semantic assessment

2) Inception Score (IS):

« Evaluates quality and diversity of generated images

o Higher scores indicate better performance

o Less reliable than FID for detecting mode collapse

« Limitation: Biased toward ImageNet-like distribu-
tions

3) CLIP Score:

o Measures alignment between generated images and
text prompts

e Uses CLIP’s multimodal embedding space

o Particularly valuable for text-to-image generation
evaluation

o 2024-2025 variants: CLIP-T, Pick-a-Pic scoring,
ImageReward

4) Advanced 2024-2025 Metrics:
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« Aesthetic Score: Measuring visual appeal using
trained aesthetic models

o« Human Preference Score (HPS): Trained on human
preference data

« PickScore: Optimized for text-to-image preference
prediction

« DALL-E 3 evaluation suite: Comprehensive prompt
adherence assessment

These metrics have enabled quantitative tracking of progress
in image generation capabilities, revealing scaling patterns
similar to those observed in language models.

C. Comprehensive Evaluation Frameworks

As generative Al capabilities have expanded dramatically in
2024-2025, comprehensive evaluation frameworks have become
essential for assessing performance across multiple dimensions.

1)
els):

Stanford HELM (Holistic Evaluation of Language Mod-
HELM provides a reproducible framework for evaluating

foundation models across diverse scenarios. 2025 updates
include:
Core evaluation dimensions:

1y
2)
3)
4)
5)

6)

Accuracy and knowledge: Performance on factual and
reasoning tasks

Calibration: Confidence alignment with actual correct-
ness

Robustness: Performance under distribution shift and
adversarial conditions

Fairness and bias: Equitable performance across demo-
graphic groups

Toxicity and safety: Resistance to generating harmful
content

Efficiency: Computational and environmental costs

Key HELM features:

Scenario-based evaluation: Realistic use cases rather
than isolated capabilities

Standardized prompting: Consistent strategies ensuring
fair comparisons

Multimodal support: Text-to-image, vision-language, and
audio capabilities

Interactive evaluation: Assessment of multi-turn conver-
sation abilities

Constitutional assessment: Alignment with ethical guide-
lines and human values

2024-2025 HELM extensions:

Tool use evaluation: Assessment of API calling and code
execution capabilities

« Agentic behavior testing: Multi-step planning and goal

achievement

Real-world task simulation: Complex scenarios requiring
multiple capabilities

Safety stress testing: Adversarial prompts and jailbreak
attempts

HELM has been instrumental in providing standardized
comparisons across model families and tracking progress as
models scale in size and capability.

Paper |D: SR25727102615

2) Microsoft Azure Al Evaluation Framework: Microsoft’s
comprehensive framework addresses both capability and safety
evaluation:

Risk and Safety Evaluators:

o Content safety: Detecting hate, violence, sexual, and
self-harm content

« Responsible AI: Protected material and copyright detec-
tion

o Security assessment: Jailbreak attempts and prompt
injection resistance

o Code security: Vulnerability detection in generated code

o Factual grounding: Preventing hallucinations and unsub-
stantiated claims

« Privacy protection: PII detection and data leak prevention

Performance and Quality Evaluators:

o Agentic capabilities: Intent resolution, tool accuracy,
multi-step reasoning

e RAG evaluation: Retrieval quality, answer grounding,
source attribution

« Conversation quality: Coherence, fluency, engagement,
helpfulness

o Domain expertise: Specialized evaluation for medical,
legal, financial applications

o Multilingual assessment: Cross-lingual capability and
cultural sensitivity

2025 framework enhancements:

o Constitutional Al integration: Automated harmlessness
assessment

o Real-time safety monitoring: Continuous evaluation
during deployment

o Adversarial red-teaming: Systematic attack pattern de-
tection

o Human-AI alignment scoring: Measuring value align-
ment across cultures

This framework highlights the growing importance of safety
and alignment alongside traditional performance metrics as
models become more powerful.
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Fig. 7: Comparison of major evaluation frameworks across
key assessment dimensions. HELM provides comprehensive
accuracy and robustness evaluation, Azure Al excels in safety
and tool use assessment, while Constitutional AI focuses
specifically on alignment and ethical evaluation.

3) Anthropic Constitutional Al Evaluation: 2024-2025 de-
velopment introducing systematic evaluation of Al alignment:
Constitutional principles assessment:

o Helpfulness: Effective assistance with user goals and tasks

« Harmlessness: Avoiding harmful outputs across diverse
contexts

o Honesty: Factual accuracy and appropriate uncertainty
expression

« Human autonomy: Respect for human agency and
decision-making

o Human rights: Adherence to fundamental ethical princi-
ples

Evaluation methodology:

TABLE V: Evaluation framework comparison (compact ver-
sion).

Capability | HELM | Azure AT | C ituti Al
Accuracy v v o

Safety AN v v

Tool Use o v o
Alignment o A v
Multimodal v A o
Real-time o v A

Open Source | v o Partial

o Constitutional training evaluation: Assessment during
RLHF training

o Red team testing: Systematic attempts to elicit harmful
behavior

« Value alignment measurement: Consistency with diverse
human ethical frameworks

o Long-term safety: Evaluation of risks from advanced
capabilities

D. Standard Benchmarks for LLM Evaluation

Standardized benchmarks provide consistent comparison
methods across research groups and track progress over time.
2024-2025 has seen rapid benchmark evolution addressing
model capability growth.

1) MMLU (Massive Multitask Language Understanding):
MMLU evaluates models across 57 subjects spanning STEM,
humanities, and social sciences:

Key characteristics:

1) Multiple-choice format: 4-option questions testing

knowledge and reasoning

2) Difficulty range: Elementary to professional-level knowl-

edge

3) Standardized prompting: Consistent few-shot prompt-

ing for fair comparison

4) Scaling correlation: Clear performance improvements

with model size

2024-2025 MMLU results for major models:

TABLE VI: Performance of major 2024-2025 models across
key evaluation benchmarks. Results show significant improve-
ments in reasoning capabilities, with ol models excelling in
mathematical domains.

Model MMLU | HumanEval | GSMSK | MATH | GPQA
(%) (%) (%) (%) (%)
GPT-4 86.4 67.0 92.0 42.5 -
GPT-4o 88.7 90.2 95.8 76.6 -
ol-preview 88.2 90.0 94.8 83.3 78.0
Claude-3 84.9 71.2 95.0 60.1 -
Claude-3.5 Sonnet | 88.3 92.0 96.4 71.1 -
Gemini Ultra 90.0 74.4 94.4 53.2 -
Llama 3 70B 79.5 81.7 93.0 50.4 -
Llama 3 8B 66.6 62.2 79.6 30.0 -

e GPT-40: 88.7% (compared to GPT-4’s 86.4%)
o Claude-3.5 Sonnet: 88.3% (significant improvement over
Claude-3)
e Gemini Ultra: 90.0% (state-of-the-art MMLU perfor-
mance)
o Llama 3 70B: 79.5% (strong open-source performance)
o ol-preview: 88.2% (reasoning-focused model)
MMLU limitations and extensions:
o Ceiling effects: Top models approaching saturation
« MMLU-Pro: Extended version with more challenging
questions
o Dynamic MMLU: Continuously updated question sets
o Multilingual MMLU: Assessment across diverse lan-
guages
MMLU has become one of the most important benchmarks
for assessing general knowledge and reasoning capabilities in
language models.
2) HumanEval and Code Generation Benchmarks: Code
generation evaluation has become increasingly important:
1) HumanEval:
« 164 programming problems with function signatures and
unit tests
o Pass@k metric: Percentage of problems solved in k
attempts
o Language focus: Primarily Python programming tasks
e 2025 results: GPT-40 (90.2%), Claude-3.5 (92.0%), ol
(90.0%)

2) Enhanced code benchmarks:
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o MBPP: 974 basic Python programming problems

« HumanEval+: Extended test cases preventing gaming
o DS-1000: Data science programming challenges

o CodeContests: Competitive programming problems

o SWE-bench: Real-world software engineering tasks

3) Multilingual code evaluation:

o MultiPL-E: HumanEval extended to 18+ programming
languages

« Language-specific benchmarks: Java, C++, JavaScript
evaluation

o Cross-language translation: Code conversion between
languages

2024-2025 code generation advances:

o Repository-level coding: Evaluation on large codebases

« Interactive coding: Multi-turn programming assistance

e Code explanation: Natural language description of code

functionality

o Bug detection and fixing: Automated debugging capa-

bilities

These benchmarks use functional correctness (pass @k) rather
than text similarity, measuring whether generated code executes
correctly and passes test cases.

3) GSM8K and Mathematical Reasoning Benchmarks:
Mathematical reasoning evaluation reveals distinct scaling
patterns:

1) GSMS8K (Grade School Math):

¢ 8,500 grade school word problems requiring multi-step
reasoning

« Chain-of-thought evaluation: Assessment of reasoning
steps

o 2025 performance: GPT-40 (95.8%), ol (94.8%), Claude-
3.5 (96.4%)

2) Advanced math benchmarks:

« MATH: High school competition mathematics (GPT-40:
76.6%, ol: 83.3%)

o GPQA: Graduate-level STEM problems (ol: 78.0%)

o TheoremQA: Formal theorem proving and verification

o MathQA: Algebraic word problems with multiple solution
paths

3) 2024-2025 mathematical reasoning innovations:

o Process supervision: Evaluating reasoning step quality
o Multi-modal math: Problems involving graphs, figures,
and diagrams
« Interactive problem solving: Multi-turn mathematical
conversations
o Formal verification: Integration with proof assistants
Performance on these benchmarks often shows sharp thresh-
old effects with scale, with capabilities emerging more suddenly
than gradual improvements.
4) Specialized and Emerging Benchmarks: 2024-2025 has
introduced numerous specialized evaluation benchmarks:
1) Reasoning and logic:

o ARC-AGI: Abstract reasoning and pattern completion

« BigBench-Hard: 23 challenging multi-step reasoning
tasks

« HellaSwag: Commonsense reasoning through sentence
completion

o CommonsenseQA: Common sense reasoning evaluation

2) Safety and alignment:

o TruthfulQA: Measuring truthfulness and avoiding misin-
formation

o CrowS-Pairs: Bias evaluation across demographic groups

o RealToxicityPrompts: Toxicity generation assessment

o Anthropic’s Constitutional Evaluation: Harmlessness
testing

3) Tool use and agency:

o ToolBench: API calling and tool integration capabilities

+ WebShop: Web navigation and task completion

o GAIA: General Al assistant benchmark for agentic
behavior

o SWE-agent: Software engineering task automation

4) Multimodal evaluation:

« MMBench: Comprehensive multimodal understanding

+ SEED-Bench: Multimodal comprehension and generation
o POPE: Object hallucination in vision-language models
o TouchStone: Text-to-image generation evaluation

5) Real-time and adaptive benchmarks:

o LiveBench: Continuously updated questions preventing
memorization

o SimpleQA: Factual questions with clear correct answers

o« FRAMES: Fresh and dynamic evaluation scenarios

These specialized benchmarks help identify specific strengths
and weaknesses across model families and sizes.

E. Human Evaluation Approaches

Despite advances in automated metrics, human evaluation re-
mains essential for assessing generative Al outputs, particularly
for subjective qualities and complex reasoning.

1) Human Evaluation Methodologies: Several approaches
to human evaluation have been developed:

1) Direct assessment approaches:

o Absolute rating: Judges rate outputs on quality,
fluency, helpfulness scales

o Likert scales: 1-5 or 1-7 point ratings across multiple
dimensions

« Binary classification: Accept/reject decisions for
specific criteria

o Detailed rubrics: Comprehensive scoring across
predefined categories

2) Comparative evaluation methods:

« Pairwise comparison: Judges choose between two
model outputs

« Best-worst scaling: Ranking multiple outputs from
best to worst

« Tournament-style evaluation: Head-to-head com-
petitions across models
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« Elo rating systems: Dynamic ranking based on
pairwise comparisons
3) 2024-2025 human evaluation innovations:
« Constitutional evaluation: Human assessment of
ethical alignment
« Interactive evaluation: Extended conversations test-
ing multi-turn capabilities
« Expert evaluation: Domain specialists (medical,
legal, technical) assess specialized outputs
o Cultural sensitivity assessment: Cross-cultural eval-
uation of appropriateness
o Preference learning: Training reward models from
human feedback
Human evaluation provides crucial insights that automated
metrics may miss, but it faces challenges of subjectivity, cost,
and reproducibility.
2) Challenges and Solutions in Human Evaluation: Human
evaluation faces several key challenges:
Key challenges:
o Subjectivity: Inter-annotator disagreement and personal
biases
e Cost: Expensive and time-consuming for large-scale
evaluation
o Reproducibility: Difficulty replicating human judgment
studies
e Scale limitations: Cannot evaluate all possible model
outputs
« Expertise requirements: Specialized domains need expert
evaluators
2025 solutions and improvements:
o Hybrid evaluation: Combining human judgment with
automated metrics
o Active learning: Focusing human evaluation on uncertain
or disagreement cases
¢ Crowd-sourcing platforms: Scalable evaluation using
distributed workers
« Expert networks: Specialized evaluation for domain-
specific applications
o Preference modeling: Training Al systems to predict
human preferences
Hybrid approaches that combine human judgment with
automated metrics offer promising directions for comprehensive
evaluation.

FE. Evaluation Considerations for Scaling Laws Research

1) Performance Scaling Patterns Across Metrics: Different
evaluation metrics show distinct scaling patterns with model
size and training data:

1) Perplexity scaling:

« Follows consistent power-law relationships: L ~
N~ where a =~ 0.076

« Smooth, predictable improvements across all model
sizes

« Strong correlation with both parameter count and
compute budget

2) Benchmark accuracy patterns:
« Sigmoid scaling curves: Performance remains low
until capability thresholds
« Phase transitions: Rapid improvement followed by
plateauing
« Emergence patterns: Capabilities appearing sud-
denly at specific scales
3) Human preference alignment:
« Non-linear improvement: Significant jumps at
certain model sizes
« Diminishing returns: Smaller gains at largest scales
without specific training
« Task-dependent patterns: Different alignment di-
mensions scale differently
4) Safety and harmlessness metrics:
« Complex relationships: May not improve automati-
cally with scale
« Potential degradation: Larger models may generate
more sophisticated harmful content
« Intervention necessity: Require specific training
approaches (RLHF, constitutional AI)
2024-2025 scaling observations:
o Reasoning capabilities: Show sharp transitions (o1 mod-
els demonstrating step-function improvements)
o Tool use: Gradual improvement with sudden competency
thresholds
o Multimodal alignment: Complex scaling requiring spe-
cialized training regimes
« Constitutional behavior: Requires dedicated constitu-
tional training, not automatic with scale
Understanding these diverse scaling patterns is crucial for
developing comprehensive scaling laws that go beyond simple
perplexity-based formulations.

Performance

mmm Perplexity
95%

mmm Human Preference
80% == Safety Metrics
60%

Nom-monotonic

Emergence

40%

20%

Model Size (log scale)

1B 7B 13B 30B 70B 175B 540B

Fig. 8: Performance scaling patterns across different evaluation
metrics. Perplexity shows smooth power-law improvements,
benchmark accuracy exhibits sigmoid curves with emergence
thresholds, human preference alignment demonstrates non-
linear improvements with discrete jumps, and safety metrics
show complex relationships that may not improve monotoni-
cally with scale.
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2) Benchmark Selection Criteria: When evaluating scaling
laws, the choice of benchmarks significantly impacts conclu-
sions. Important selection criteria include:

1) Discriminative power:

« Difficulty appropriateness: Challenging enough to
differentiate model capabilities

« Avoiding ceiling effects: Benchmarks should not
saturate at current model scales

« Dynamic updating: Ability to increase difficulty as
models improve

2) Contamination resistance:

o Training data overlap: Minimal presence in model
training corpora

« Temporal separation: Recent benchmark creation
relative to training cutoffs

« Active monitoring: Detection and mitigation of data
leakage

3) Comprehensive coverage:

« Capability diversity: Multiple cognitive and reason-
ing dimensions

« Domain breadth: Various application areas and
knowledge domains

« Modality inclusion: Text, vision, audio, and cross-
modal assessment

4) Methodological rigor:

« Standardized protocols: Consistent evaluation pro-
cedures across studies

« Reproducibility: Clear documentation enabling
replication

« Statistical robustness: Sufficient sample sizes and
confidence intervals

2025 benchmark selection best practices:

« Dynamic benchmark rotation: Regular introduction of
new evaluation tasks

o Cross-validation: Multiple benchmarks assessing similar
capabilities

o Real-world relevance: Tasks reflecting actual deployment
scenarios

o Adversarial robustness: Evaluation under challenging
conditions

As models grow more capable, benchmark selection becomes
increasingly important to avoid ceiling effects and ensure
meaningful evaluation.

Performance (%)
100

Saturation Zone
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MMLU
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Supega UE Humanj#al
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1 GPT3 | GPT-4 Lol
Time
2020 2021 2022 2023 2024 2025
Benchmark Introduced Current Top Status
GLUE 2018 95.8% Saturated
SuperGLUE 2019 95.7% Near Saturated
MMLU 2020 90.0% Approaching
HumanEval 2021 92.0% Active
MATH 2021 83.3% Active
GPQA 2023 78.0% Active

Fig. 9: Timeline showing benchmark saturation patterns and
the emergence of new evaluation challenges. Early benchmarks
like GLUE rapidly reached saturation, requiring introduction of
more challenging evaluations. Recent reasoning-focused bench-
marks (MATH, GPQA) still provide discriminative power, while
new capabilities demand entirely new evaluation frameworks.

3) Evaluation Challenges at Scale: Several challenges
emerge when evaluating very large models:

1) Benchmark saturation: Top models approach perfect
scores on many existing benchmarks, reducing their
discriminative power.

2) Computational requirements:

« Evaluation costs: Significant compute needed for
comprehensive assessment

« Resource limitations: Preventing thorough evalua-
tion by smaller research groups

« Inference optimization: Balancing evaluation com-
pleteness with computational efficiency

3) Prompt sensitivity and optimization:

« Hyperparameter sensitivity: Large models highly
responsive to prompt details

« Prompt engineering: Optimal prompts may vary
significantly between models

« Evaluation fairness: Ensuring consistent prompting
strategies across comparisons

4) Emergent capability assessment:

« Novel behaviors: New capabilities not covered by
existing benchmarks

o Capability detection: Identifying and measuring
previously unknown abilities

« Dynamic evaluation: Adapting assessment frame-
works to new capabilities

5) 2024-2025 specific challenges:
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« Tool use complexity: Evaluating sophisticated API
calling and code execution

o Multi-turn interactions: Assessment across ex-
tended conversations

« Agentic behavior: Measuring planning, goal pursuit,
and autonomous action

« Constitutional alignment: Assessing ethical behav-
ior across diverse scenarios

Addressing these challenges requires continuous innovation
in evaluation methodologies alongside model development.

4) Holistic Evaluation Approaches: Given the limitations of
individual metrics, holistic evaluation approaches are increas-
ingly important:

1) Multi-metric aggregation:

o Weighted scoring: Combining metrics based on
importance and reliability

« Principal component analysis: Identifying underly-
ing capability dimensions

« Ensemble evaluation: Using multiple assessment
methods for robustness

« Correlation analysis: Understanding relationships
between different metrics

2) Capability mapping:

« Radar charts: Visualizing performance across mul-
tiple dimensions

« Heatmaps: Showing capability patterns across model
families and sizes

« Scaling trajectories: Tracking improvement patterns
over multiple scales

« Threshold identification: Detecting capability emer-
gence points

3) Scenario-based evaluation:

« End-to-end tasks: Realistic applications requiring
multiple capabilities

« Interactive scenarios: Multi-turn conversations and
complex interactions

« Domain-specific applications: Specialized use cases
(medical, legal, educational)

« Cross-modal integration: Tasks requiring text, vi-
sion, and audio understanding

4) 2025 holistic evaluation innovations:

« Constitutional integration: Embedding ethical as-
sessment throughout evaluation

« Real-world deployment metrics: Performance in
actual application settings

« Longitudinal tracking: Monitoring capability de-
velopment over time

« Human-AlI collaboration: Evaluating joint human-
Al task performance

These approaches provide richer insights into how perfor-
mance scales with model size and training data across different
dimensions.

G. Future Directions in Performance Evaluation

1) Adaptive Benchmarks: To address benchmark saturation,
adaptive benchmarks that automatically adjust difficulty based
on model capability show promise:

1) Dynamic difficulty adjustment: Creating harder exam-
ples as models improve

2) Curriculum evaluation: Progressive difficulty increases
to identify capability limits

3) Personalized testing: Adapting difficulty based on
individual model performance

4) Real-time updating: Continuous benchmark refresh
preventing memorization

Adversarial evaluation:

¢ Red team automation: Using Al systems to generate
challenging test cases

o Failure mode discovery: Systematic search for model
limitations

o Robustness testing: Evaluation under adversarial condi-
tions

o Security assessment: Testing resistance to prompt injec-
tion and jailbreaking

2025 adaptive benchmark initiatives:

o LiveBench evolution: Continuously updated evaluation

preventing gaming

o Al-generated evaluation: Models creating assessment

tasks for other models

« Interactive benchmarking: Dynamic conversation-based

evaluation

o Community-driven evaluation: Crowdsourced bench-

mark development

These approaches could maintain discriminative power even
as models continue to scale.

2) Alignment Evaluation: As models grow more powerful,
evaluating alignment with human values becomes increasingly
important:

1) Helpfulness optimization: Measuring effective assis-

tance without harmful outputs

2) Harmlessness evaluation: Resistance to generating

dangerous or offensive content

3) Honesty and truthfulness: Factual accuracy and appro-

priate uncertainty expression

4) Human autonomy respect: Supporting human agency

rather than manipulation

5) Value diversity: Consistency with varied cultural and

ethical frameworks

Advanced alignment metrics:

o Intent alignment: Measuring model understanding of
human goals

o Value learning: Assessment of acquired ethical principles

o Cultural sensitivity: Appropriate behavior across diverse
contexts

o Long-term safety: Evaluation of risks from advanced
capabilities

2024-2025 constitutional evaluation tools:
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« Anthropic Constitutional AI: Systematic harmlessness
assessment
o DeepMind Sparrow: Helpful, harmless, honest evaluation
framework
e OpenAl alignment evaluation: Safety and capability
assessment integration
o Cross-organizational standards: Shared ethical evalua-
tion protocols
Developing robust metrics for these alignment dimensions
represents a crucial frontier in evaluation research.
3) Efficiency Metrics: Evaluating performance relative to
computational and environmental costs is gaining importance:
1) Parameter efficiency: Performance per parameter or per
compute operation
2) Data efficiency: Performance relative to training data
volume
3) Inference efficiency: Latency, throughput, and resource
requirements
4) Environmental impact: Carbon footprint and energy
consumption
Environmental impact assessment:
o Carbon footprint: Training and inference environmental
costs
« Energy efficiency: Performance per watt measurements
o Sustainable scaling: Identifying eco-friendly scaling
strategies
e Resource optimization: Minimizing computational re-
quirements
2025 efficiency evaluation advances:
e Green AI metrics: Comprehensive environmental impact
assessment
« Edge deployment evaluation: Performance on resource-
constrained devices
« Real-time efficiency: Latency and throughput optimiza-
tion
o Cost-benefit analysis: Economic efficiency of scaling
investments
These efficiency metrics provide important context for
scaling laws, highlighting the trade-offs involved in pursuing
scale.
4) Robustness Evaluation: Assessing model robustness
across diverse conditions is critical for real-world applications:
1) Distribution shift robustness: Performance on out-of-
distribution inputs
2) Prompt robustness: Consistency across different phras-
ings of the same request
3) Adversarial robustness: Resistance to inputs designed
to cause failures
4) Temporal robustness: Stability of performance over time
as the world changes
Adversarial robustness:
« Prompt injection resistance: Security against malicious
inputs
o Jailbreak prevention: Maintaining safety constraints
under attack

« Backdoor detection: Identifying hidden harmful behav-
iors

o Social engineering resistance: Avoiding manipulation
attempts

2024-2025 robustness evaluation developments:

o Automated red teaming: Al-assisted safety testing

« Continuous monitoring: Real-time robustness assessment
during deployment

o Multi-stakeholder evaluation: Diverse perspectives on
safety and robustness

+ Regulatory compliance: Meeting emerging Al safety
standards

System-level robustness:

o Integration testing: Performance when combined with
other systems

o Failure graceful degradation: Behavior under partial
system failures

o Recovery evaluation: Ability to recover from errors or
attacks

o Uncertainty quantification: Appropriate confidence ex-
pression

Robustness evaluation helps identify limitations that may
not be apparent in standard benchmarks.

H. Conclusion

The evaluation of generative Al models continues to evolve
rapidly alongside the models themselves. 2024-2025 has
marked a pivotal period with the emergence of sophisti-
cated reasoning capabilities, tool use, constitutional alignment,
and multimodal understanding. As models scale in size and
capability, evaluation methodologies must adapt to provide
meaningful insights across diverse performance dimensions.

Key developments shaping the future of evaluation
include:

« Constitutional and alignment assessment moving be-
yond pure capability metrics

+ Dynamic and adaptive benchmarks addressing rapid
capability growth

o Holistic evaluation frameworks combining multiple
assessment dimensions

o Real-world deployment metrics measuring practical
application effectiveness

« Efficiency and sustainability considerations in scaling
law formulations

By combining quantitative metrics, comprehensive frame-
works, standardized benchmarks, human evaluation, and emerg-
ing assessment methodologies, researchers can develop increas-
ingly sophisticated understanding of scaling laws and their
implications for model development, deployment, and societal
impact. The future of AI evaluation lies in comprehensive,
adaptive, and ethically-grounded assessment frameworks
that can keep pace with rapid capability advancement while
ensuring beneficial and safe Al development.
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VI. COST ANALYSIS OF GENERATIVE Al MODELS
A. The Economic Dimension of Scaling Laws

While technical aspects of scaling laws have received
significant attention, the economic implications are equally
important for practical applications of generative Al [2]. The
story of Al economics has undergone a dramatic transformation
since 2022, where what once cost hundreds of thousands of
dollars now requires investments measured in hundreds of
millions. Training costs for frontier models have escalated
from approximately $4.6 million for GPT-3 in 2020 to an
estimated $100-200 million for models like GPT-40 and Claude-
3.5 Sonnet in 2024-2025 [4], [11]. Yet paradoxically, as training
costs have soared, inference costs have plummeted due to
remarkable advances in hardware and optimization techniques
[11], [17].

This economic transformation tells a compelling story of an
industry reaching new scales of ambition while simultaneously
becoming more efficient. The emergence of specialized Al
chips beyond NVIDIA’s traditional dominance, the maturation
of inference optimization techniques that can reduce costs by
10-50x, and the introduction of carbon pricing mechanisms that
add environmental considerations to the traditional compute-
focused equation have fundamentally reshaped how organiza-
tions approach Al investments [2], [17]. Understanding these
evolving economics has become essential for organizations
making strategic decisions about Al investments, deployment
strategies, and long-term technological roadmaps.

B. Fundamental Cost Drivers in Generative Al

1) Training Costs: The journey of training large generative
Al models represents one of the most remarkable escalations
in computational economics in modern computing history
[2]. To understand the magnitude of this transformation,
consider that training GPT-3 with its 175 billion parameters
cost approximately $4.6 million in 2020 [4]. Fast forward
to 2024-2025, and training frontier models like GPT-40 or
Claude-3.5 Sonnet now requires investments of $100-200
million, representing a 20-40x increase in just four years. This
exponential growth in costs tells the story of an industry pushing
the absolute boundaries of what’s computationally feasible.

a) Computational Requirements: The computational de-
mands that drive these costs follow well-established math-
ematical relationships, yet their practical implications have
grown beyond what early researchers anticipated [8]. For
transformer-based models, training requires approximately
6N x D FLOPs, where NN represents the number of parameters
and D represents the dataset size in tokens [8]. While this
relationship appears straightforward, its real-world implications
have become staggering.

Consider the computational journey of recent models: GPT-
4o, with an estimated 1.8 trillion parameters, required approxi-
mately 2.5 x 10?4 FLOPs for training, translating to $150-200
million at current H100 rates. Claude-3.5 Sonnet, with its
estimated 500 billion parameters, consumed $80-120 million
including infrastructure and extensive experimentation. Even

Meta’s more modestly sized Llama 3 405B required $20-
30 million for the base model, though this figure excludes
significant infrastructure amortization costs [16].

These costs scale predictably with model size, but the
relationship has become more nuanced due to architectural
innovations [15]. The scaling patterns now tell different stories
depending on the optimization approach: Chinchilla-optimal
scaling suggests training costs scale approximately as N1
[7], while extended scaling regimes that prioritize inference
efficiency may see costs scale as N!8. Mixture-of-Experts
architectures offer a more optimistic narrative, potentially
reducing effective costs by 2-4x through sparse activation
patterns that only engage relevant portions of the model during
training [15].
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Fig. 10: Training cost scaling relationships for generative Al
models, showing the dramatic cost escalation from GPT-3 to
current frontier models and theoretical scaling curves.

b) Hardware Considerations: The hardware landscape
underlying these computational demands has undergone its
own dramatic transformation, creating a complex economic
ecosystem [17]. Today’s training infrastructure represents a
significant departure from the relatively simple GPU clusters of
just a few years ago. Modern frontier models typically require
orchestrated deployments of 8,000-24,000 H100 GPUs, each
costing $2.85-4.20 per hour depending on cloud provider and
commitment level [17].

The economics of this hardware ecosystem tell a story of
rapid innovation and equally rapid obsolescence. NVIDIA’s
H100 80GB represents the current gold standard, while the
legacy A100 80GB continues to serve important roles at $1.85-
2.50 per hour [17]. Google’s TPU v5e has emerged as a
competitive alternative at $1.35-2.10 per hour, particularly
for transformer training workloads. Perhaps most intriguingly,
custom silicon solutions from AWS (Trainium2) and Meta
(MTIA) promise 30-50% cost reductions for specific workloads,
suggesting a future where specialized hardware may challenge
the current GPU-centric paradigm [17].

TABLE VII: Current Hardware Ecosystem for Al Training
(2024-2025)

Hardware Cost/Hour Memory Performance Specialty
NVIDIA H100 80GB | $2.85-4.20 | 80GB HBM3 Baseline General Purpose
NVIDIA A100 80GB | $1.85-2.50 | 80GB HBM2e | 0.6x H100 Legacy/Proven
Google TPU v5e $1.35-2.10 Variable 0.8x H100 | Transformer Opt.
AWS Trainium2 $1.90-2.80 64GB 0.7x H100 Cost Optimized
Meta MTIA Custom 128GB 0.5x H100 Inference Focus
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The distributed nature of modern training introduces its own
economic complexities. High-bandwidth networking infrastruc-
ture, typically InfiniBand or custom interconnects, adds 15-25%
to raw compute costs. The need for sophisticated 3D paral-
lelism—combining data, model, and pipeline parallelism with
advanced load balancing—requires expertise that commands
premium prices in the current market.

Perhaps most challenging from an economic perspective
is the rapid pace of hardware advancement. Organizations
investing in current-generation hardware face depreciation
rates of 40-60% annually, as newer accelerators consistently
provide 2-3x better performance per dollar every 18-24 months.
This creates a perpetual tension between investing in current
capabilities and waiting for next-generation improvements.

c) Time Factors and Opportunity Costs: The temporal
dimension of training costs often exceeds the direct com-
putational expenses in strategic importance. Current frontier
models require 3-6 months of continuous training, creating
substantial opportunity costs that can exceed the direct compute
investments. This timeline creates a fascinating economic
dynamic where the cost of time often matters more than the
cost of computation.

The research velocity implications tell a particularly com-
pelling story. OpenAI’s GPT-40 required an estimated 4-month
training period, during which the opportunity costs—including
delayed market entry, competitive positioning, and alternative
research directions—potentially exceeded the $150-200 million
direct compute costs. Anthropic has responded to this challenge
with an iterative training approach for Claude-3.5, using
multiple shorter runs to reduce time-to-insight and maintain
research momentum. Meta’s approach with Llama 3 involved
parallelized experimentation across multiple training runs,
prioritizing research velocity over computational efficiency
[16].

For organizations developing multiple models or conducting
extensive hyperparameter optimization, these time factors fun-
damentally reshape the economic equation. Research velocity
often becomes the primary constraint rather than raw compute
budget, leading to investment strategies that prioritize faster
iteration over absolute cost minimization.

2) Inference Costs: While training costs capture attention
due to their magnitude, inference costs—the expenses asso-
ciated with using trained models to generate outputs—often
dominate the lifetime economic equation for widely deployed
models [11]. The inference cost landscape has been transformed
by optimization techniques that can reduce costs by 10-50x
compared to naive deployments [11], [17].

a) Computational Requirements and Current Pricing:
For transformer models, inference requires approximately 2/N
FLOPs per token generated (where N is parameter count)
[8]. Current 2024-2025 pricing reflects significant optimization
improvements [11]:

TABLE VIII: Current Market Rates for Al Inference (2024-
2025)

Model Input ($/1M) | Output ($/1M) | Parameters | Provider
GPT-40 $5.00 $15.00 ~1.8T OpenAl
Claude-3.5 Sonnet $3.00 $15.00 ~500B Anthropic
Gemini Ultra $7.00 $21.00 ~1.5T Google
Llama 3 405B $2.50-4.00 $8.00-12.00 405B Various

These prices represent the fully loaded cost including
infrastructure, optimization, and margin [11]. The underlying
computational costs are significantly lower:
o« Raw compute cost: $0.10-0.30 per 1M tokens for
optimized deployments [11]

o Infrastructure overhead: Adds 40-60% (load balancing,
monitoring, networking) [17]

o Provider margins: 300-500% markup over infrastructure
costs [2]

Unlike training costs, which are incurred once, inference
costs accumulate with each use of the model. For popular
models, the lifetime inference costs typically far exceed the
initial training investment, creating an economic dynamic
where optimization becomes increasingly critical as deployment
scales.
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Fig. 11: Cost comparison between API services and self-hosted
solutions across different usage volumes, showing breakeven
points and optimization benefits.

b) Deployment Considerations and Infrastructure Evolu-
tion: Modern inference deployment has evolved far beyond
simple model serving, incorporating sophisticated optimization
and management layers [11], [17]. Deploying models for
inference introduces additional costs beyond raw computation,
and these costs are associated with serving infrastructure,
load balancing and autoscaling, networking and data transfer,
monitoring and logging, and continuous integration. These
deployment costs can add 20-30% to the raw compute costs of
inference, as demonstrated by detailed cost breakdowns from
industry practitioners [11].

2024-2025 Infrastructure Stack:
¢ Optimized serving frameworks: vLLM, TensorRT-LLM,
and custom kernels providing 2-5x throughput improve-

ments [11]

o Dynamic batching: Continuous batching algorithms that

improve utilization by 3-8x [11]

o Multi-tenant serving: Serving multiple models on shared

hardware with 40-60% cost reduction [17]
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o Edge deployment: Processing suitable workloads on edge
devices, reducing latency and costs by 70-90% [17]
Advanced Deployment Patterns:
o Speculative decoding: Using smaller models to accelerate
inference of larger models, reducing costs by 40-70% [11]
o Mixture-of-Experts routing: Activating only relevant
model components, reducing effective inference costs by
60-80% [15]
+ Cascading architectures: Routing simple queries to
smaller models, complex queries to larger models [11]
These deployment innovations have fundamentally changed
the economics of inference, making it feasible to serve sophis-
ticated models at scales that would have been prohibitively
expensive just 18 months ago.
¢) Optimization Techniques and Real-World Impact: The
inference optimization landscape has matured dramatically, with
techniques now routinely achieving 10-50x cost reductions [11],
[17]:
Quantization Advances:
¢ 4-bit quantization (GPTQ, AWQ): 75-85% memory
reduction with <5% quality loss [12]
« 1-bit quantization (BitNet): 90-95% reduction for specific
architectures, though with greater quality trade-offs [12]
« Dynamic quantization: Runtime adaptation based on
input complexity [15]
Model Architecture Optimizations:
o Pruning techniques: Structured and unstructured pruning
achieving 50-80% parameter reduction [12]
« Distillation improvements: Student models achieving
80-95% of teacher performance at 10-20% of the cost
[15]
« Early exit mechanisms: Dynamic computation based on
confidence thresholds [15]
o Caching: Storing frequently requested outputs can elimi-
nate redundant computation
« Batching: Processing multiple requests simultaneously
improves hardware utilization
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Fig. 12: Inference cost reduction potential from various
optimization techniques, showing cumulative benefits when
combined systematically.

Real-World Optimization Results (2024-2025):

« Anthropic’s Claude optimizations: 60% cost reduction
through custom kernels and batching [11]

o OpenAl’s efficiency improvements: 50% cost reduction
for GPT-4 through infrastructure optimization [11]

o Meta’s Llama optimizations: Open-source techniques en-
abling 70-90% cost reduction for self-hosted deployments
[16]

These optimization techniques have created a bifurcated
market where organizations with optimization expertise can
achieve dramatically lower costs than those relying on default
implementations.

C. Total Cost of Ownership (TCO) Framework

Understanding the full economic impact of generative Al
requires looking beyond raw computation to consider the total
cost of ownership across the entire lifecycle. The true story of
Al economics emerges only when organizations account for
every component that contributes to their Al investments—from
the obvious compute costs to the hidden expenses that often
dwarf the infrastructure spending [2]. In 2024-2025, this
comprehensive view has become critical as the complexity
of AI deployments has grown exponentially, and what initially
appears to be a straightforward technology investment reveals
itself as a multifaceted economic undertaking.

1) Beyond Raw Compute:

a) Infrastructure Costs: A comprehensive TCO analysis
must account for the entire infrastructure ecosystem supporting
generative Al operations [17]. The 2024-2025 landscape
reveals a sophisticated stack where each component contributes
meaningfully to the total cost equation:

TABLE IX: Complete Infrastructure Cost Breakdown (2024-
2025 Hourly Rates)

Component Cost/Hour | Specification | Overhead
H100 Compute | $2.85-4.20 80GB HBM3 Baseline
Storage Systems | $0.12-0.18 | 1TB High-Perf 3-4%
Networking $0.08-0.15 100Gbps 2-3%
Load Balancing | $0.05-0.08 Traffic Dist. 1-2%
Orchestration $0.35-0.45 Kubernetes 8-10%
Monitoring $0.10-0.15 Full Stack 2-3%
Total Overhead | +25-40% | Above Compute | Typical

These infrastructure costs typically add 25-40% to the raw
compute costs, depending on the specific deployment archi-
tecture and cloud provider [17]. However, the real revelation
for organizations has been discovering how this seemingly
straightforward infrastructure component represents only the
foundation of their total investment.

b) Human Resources: The Hidden Dominant Cost:
The human costs associated with developing and maintaining
generative Al systems have emerged as the most significant
component of TCO for most organizations [2]. The 2024-2025
talent market reveals a striking economic reality: specialized
Al expertise commands premium rates that often exceed
infrastructure costs by 3-5x.
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TABLE X: Current Market Rates for Al Talent (2024-2025)

Role Rate/Hour Specialty Demand
Senior ML Engineers $85-150 Frontier Models Extreme
AI Infrastructure $75-120 | Deploy/Optimize | Very High
DevOps + Al $65-95 Orchestration High
Data Scientists $70-110 LLM/Prompting High
Al Safety/Alignment $90-140 Regulatory Growing

The total human resource investment extends far beyond
these hourly rates. Organizations typically require 3-6 months
for initial implementation phases, involving teams of 4-8
specialists. Ongoing optimization and maintenance demands 1-2
full-time equivalent positions per major deployment. Training
and education to keep teams current with rapidly evolving
technologies adds 15-25% to direct compensation costs.

¢) Operational Overhead: Beyond direct development
and infrastructure costs, operational considerations add sub-
stantial complexity and expense to Al deployments [2]. The
2024-2025 operational landscape reflects the maturation of Al
governance and compliance requirements:

o System administration: 10-15% of infrastructure costs for
access controls, security policies, and routine maintenance

¢ Security management: 15-25% overhead for model
protection, data privacy, and threat monitoring

o Compliance and governance: 5-15% for regulatory adher-
ence, audit trails, and documentation (varies significantly
by industry)

o Documentation and knowledge management: 8-12%
for maintaining system understanding and operational
procedures

o Incident response and reliability engineering: 12-
20% for monitoring, troubleshooting, and performance
optimization

These operational factors typically add 20-35% to the total
cost of ownership for enterprise deployments [2]. However, the
percentage has been increasing as regulatory scrutiny intensifies
and organizations discover the complexity of operating Al
systems at scale.

2) Managed Services vs. Self-Built Solutions: The build-
versus-buy decision has evolved dramatically in 2024-2025,
as managed services have matured while self-built solutions
have become more sophisticated [2]. Organizations now face
nuanced trade-offs that extend far beyond simple cost compar-
isons.
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Fig. 13: Economic comparison of managed services vs. self-
built solutions across different deployment scales, showing
crossover points where each approach becomes optimal.

a) Economic Analysis: The True Cost Comparison: Direct
cost comparisons reveal compelling patterns that have shifted
the economic equation significantly since 2022-2023:

e Managed service (full-stack): $6.50-8.75/hr for
enterprise-grade model serving on equivalent hardware
o Self-built infrastructure only: $3.20-4.50/hr for compa-
rable compute and storage resources
o Self-built with minimal engineering: $12.50-18.00/hr
including 0.25 FTE specialized engineer
o Self-built with full optimization: $25.00-35.00/hr includ-
ing dedicated team for efficiency optimization
These comparisons suggest that managed services have
achieved economic parity with self-built solutions for organi-
zations operating fewer than 50-75 concurrent models [2]. The
crossover point has increased significantly as managed service
providers have achieved economies of scale and optimization
expertise.

D. Cost Optimization Strategies

As generative Al has transitioned from experimental technol-
ogy to production infrastructure, organizations have developed
increasingly sophisticated strategies for managing and opti-
mizing costs. The optimization landscape of 2024-2025 tells
a story of remarkable innovation, where the most advanced
practitioners achieve 70-90% cost reductions compared to naive
implementations [11], [17]. This transformation reflects not just
technological progress, but the emergence of a mature discipline
combining cloud economics, algorithmic optimization, and
infrastructure engineering.

1) Cloud Provider Strategies: The cloud provider landscape
has become significantly more competitive and sophisticated
since 2022, offering organizations numerous pathways to cost
optimization. Each major provider has developed specialized
approaches to Al workloads, creating opportunities for strategic
optimization that extend far beyond simple price comparisons.

a) AWS Cost Optimization Evolution: Amazon Web
Services has emerged as a leader in Al cost optimization tools,
developing a comprehensive ecosystem of cost management
capabilities tailored specifically for machine learning workloads
[17]:

o Compute Savings Plans: Commitment-based discounts

offering 20-40% savings for predictable Al workloads,
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with specialized ML Savings Plans providing up to 50%
discounts for SageMaker usage

« Spot Instances for ML: Utilization of excess capacity
at 60-90% discounts for fault-tolerant training workloads,
with new spot fleet management tools designed specifically
for distributed ML training

¢ Reserved Inference Capacity: Provisioned throughput
guarantees for inference workloads, offering 30-50% cost
reductions for predictable usage patterns

o Batch Inference Optimization: Specialized batch pro-
cessing services that can reduce inference costs by 40-70%
for non-real-time applications

o Multi-Model Endpoints: Serving multiple models on
shared infrastructure, reducing costs by 50-80% for
organizations with diverse model portfolios

TABLE XI: Cloud Provider Al Optimization Strategies Com-
parison (2024-2025)

Strategy
Committed Use
Spot/Preemptible
Custom Silicon
Multi-Model
Batch Processing
Edge Deployment

AWS
20-50%
60-90%

Trainium2
SageMaker
40-70%
70-90%

Google Cloud
30-60%
60-80%
TPU v5e
Vertex Al
45-75%
75-85%

Azure Savings
25-55% High
60-80% | Very High
Custom FPGA | 30-50%
ML Studio 50-80%
35-65% High
60-80% Very High

2) Technical Optimization Approaches: Beyond cloud-
specific strategies, the 2024-2025 landscape has witnessed
remarkable advances in technical optimization approaches that
address cost reduction at multiple architectural levels. These
techniques represent the cutting edge of cost optimization,
where algorithmic innovation meets infrastructure engineering
to achieve dramatic efficiency gains.

a) Model Architecture Optimization: The evolution of
model architectures has been driven as much by cost consider-
ations as by performance requirements, leading to innovative
designs that maximize efficiency:

o Task-Specific Model Selection: Deploying appropriately
sized models for specific use cases, with 70B parameter
models often achieving 90-95% of 405B model perfor-
mance at 40-60% of the cost

o Mixture-of-Experts (MoE) Architectures: Sparse models
that activate only relevant parameters, reducing effective
inference costs by 60-80% while maintaining capability
[15]

o Parameter-Efficient Fine-Tuning: Techniques like LoRA
(Low-Rank Adaptation) and QLoRA enabling model
customization with minimal parameter additions, reducing
training costs by 90-95%

o Progressive Model Architectures: Hierarchical models
that can provide quick responses for simple queries while
reserving full computation for complex tasks
b) Training Optimization Revolution: Training optimiza-

tion has evolved from simple hyperparameter tuning to sophis-
ticated systems that optimize the entire training process for
cost efficiency:

e Curriculum Learning: Strategic data ordering that re-
duces training time by 20-40% while maintaining or
improving final performance

« Optimal Batch Size Selection: Dynamic batch sizing
that balances memory utilization and convergence speed,
typically improving training efficiency by 15-30%

o Mixed-Precision Training: Leveraging FP16, BF16, and
even INTS training to reduce memory requirements and
accelerate training by 40-70%

o Gradient Accumulation Strategies: Simulating larger
batch sizes with limited memory, enabling optimal training
on smaller, more cost-effective hardware configurations

¢) Inference Optimization Mastery: Inference optimiza-
tion has become perhaps the most critical area for cost
reduction, as deployment-scale inference costs often dwarf
training expenses:

« Continuous Batching: Advanced batching algorithms that
maximize hardware utilization while minimizing latency,
improving throughput by 3-8x [11]

¢ Speculative Decoding: Using smaller draft models to
accelerate larger model inference, reducing costs by 40-
70% for generation tasks [11]

o KV-Cache Optimization: Sophisticated memory man-
agement for transformer attention mechanisms, reducing
memory requirements by 30-50%

o Custom Kernels: Hand-optimized CUDA kernels provid-
ing 2-5x performance improvements for specific operations
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Fig. 14: Cost reduction potential versus optimization complex-
ity, showing the exponential benefits of advanced optimization
techniques and real-world industry achievements.

E. Economic Implications of Scaling Laws

Scaling laws have profound economic implications that
fundamentally shape the development and deployment of
generative Al. The mathematical relationships that govern
model performance create corresponding economic dynamics
that influence every strategic decision from research investments
to production deployments [7], [8]. In 2024-2025, these
economic implications have become central to competitive
strategy, as organizations navigate the complex trade-offs
between performance aspirations and financial constraints.

1) Cost Scaling Patterns: Understanding how costs scale
with model size and deployment characteristics provides the
foundation for rational economic decision-making in generative
Al The scaling relationships observed in 2024-2025 reveal
both predictable patterns and surprising deviations that reshape
strategic thinking.
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a) Training Cost Scaling: Training costs follow well-
established mathematical relationships, but their economic
implications have evolved as the industry has gained experience
with large-scale deployments [7], [8]:

o Chinchilla-Optimal Scaling: Training costs scale approx-
imately as N'°, where N represents parameter count,
reflecting the balanced scaling of model size and training
data [7]

« Kaplan Scaling: Earlier approaches suggested N? scaling,
representing compute-optimal training that minimizes
training time rather than total cost [§]

« Extended Scaling Regimes: Current frontier models often
scale as N!8 to N22, reflecting training beyond Chin-
chilla optimality to achieve superior inference efficiency

(7]
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Fig. 15: Training cost scaling relationships showing different
scaling regimes and their economic implications for model size
decisions.

b) Inference Cost Scaling: Inference costs exhibit differ-
ent scaling characteristics that often dominate the long-term
economic equation for deployed models [11]:

o Parameter Count Impact: Inference costs scale linearly
with model size for equivalent workloads, creating pre-
dictable cost relationships

o Sequence Length Scaling: Costs increase quadratically
with input/output length due to attention mechanism
complexity, making longer interactions disproportionately
expensive

« Batch Processing Benefits: Effective costs per request
decrease significantly with intelligent batching, often
achieving 3-8x efficiency improvements [11]

+ Fixed Infrastructure Amortization: Large-scale deploy-
ments benefit from spreading infrastructure overhead
across many requests, reducing per-request costs by 40-
70%

2) Economic Decision Framework: Organizations can lever-
age scaling laws to inform systematic economic decisions about
Al investments. The frameworks that have emerged in 2024-
2025 reflect sophisticated thinking about the interplay between
technical scaling relationships and business objectives.

a) Model Size Selection: The model sizing decision has
become a sophisticated optimization problem that balances
multiple objectives and constraints:

o Diminishing Returns Analysis: Understanding where
additional scale provides minimal performance gains
relative to cost increases

o Task-Specific Optimization: Recognizing that different
applications have different sensitivity to model scale,
enabling right-sizing for specific use cases

e Quality Threshold Requirements: Identifying minimum
viable performance levels that enable business objectives
while minimizing costs

« ROI-Based Decision Making: Evaluating model invest-
ments based on expected business returns rather than pure
technical performance
b) Build vs. Buy Decision Framework: The build-versus-

buy decision has evolved into a sophisticated framework that
considers multiple dimensions beyond simple cost comparisons
[2]:

o Volume-Based Economic Analysis: Organizations serv-
ing fewer than 10-50 million tokens monthly often find
API services more economical than self-hosting

o Infrastructure Breakeven: Self-hosting becomes attrac-
tive when serving 100+ million tokens monthly with
dedicated engineering resources

o Optimization Premium: Organizations with advanced
optimization capabilities can achieve breakeven at lower
volumes (20-50 million tokens monthly)

« Strategic Control Considerations: Industries with strict
data governance requirements may justify higher self-
hosting costs for control and compliance

TABLE XII: Economic Decision Framework Matrix

Monthly Volume | API Service | Managed | Self-Hosted | Recommendation
< 10M tokens $50-200 $100-400 | $500-2000 API Service
10-50M tokens $500-2K $1K-4K $2K-8K API/Managed
50-100M tokens | $2.5K-10K | $5K-20K | $5K-15K Managed/Self
100M+ tokens $10K-50K | $20K-80K | $10K-30K Self-Hosted

E Future Cost Trends

The economic landscape of generative Al stands at a fascinat-
ing inflection point, where multiple technological, market, and
regulatory forces will converge to reshape cost structures over
the next 3-5 years. Understanding these emerging trends has
become critical for strategic planning, as organizations must
balance current deployment decisions against rapidly evolving
economic realities.

1) Hardware Improvements: The hardware revolution un-
derlying generative Al continues to accelerate, with multiple
technological threads converging to deliver substantial cost
improvements over the next several years. The 2025-2028
hardware roadmap suggests cost reductions of 40-70% for
equivalent workloads, driven by specialized architectures,
improved manufacturing processes, and innovative system
designs.

a) Next-Generation Al Accelerators: The evolution of
Al-specific hardware represents perhaps the most significant
driver of future cost reductions:

o NVIDIA’s Roadmap: The transition from HI100 to

B100 (2025) and subsequent generations promises 3-5x
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performance improvements per dollar, with architectural
optimizations specifically targeting transformer workloads

o Google’s TPU Advancement: TPU v6 and beyond focus-
ing on inference optimization, potentially achieving 4-8x
cost efficiency improvements for production deployments

¢ Custom Silicon Proliferation: AWS Trainium3, Meta’s
next-generation MTIA, and Apple’s server-class Al chips
suggesting 50-80% cost reductions for specific workloads
by 2026-2027

o Sparse Computation Accelerators: Hardware designed
specifically for Mixture-of-Experts and other sparse archi-
tectures, enabling 60-90% reductions in effective compute
costs
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Fig. 16: Projected performance per dollar improvements for
different hardware categories through 2028, showing the
acceleration of cost efficiency gains.

2) Software Optimization: Software optimization represents
perhaps the most dramatic opportunity for cost reduction,
with emerging techniques suggesting 10-100x improvements in
efficiency for specific applications. The software optimization
landscape of 2025-2028 will likely transform the economics
of AI deployment more dramatically than hardware advances
alone.

a) Algorithmic Breakthroughs: Fundamental algorithmic
improvements promise to reshape the cost-performance equa-
tion:

o Few-Shot and Zero-Shot Training: Techniques that
dramatically reduce training data requirements, poten-
tially cutting training costs by 80-95% for specialized
applications

o Continual Learning Architectures: Models that can be
updated incrementally without full retraining, reducing
update costs by 90-99%

o Meta-Learning Advances: Algorithms that learn to learn
more efficiently, potentially reducing training requirements
for new domains by 70-90%

« Speculative Execution Evolution: Advanced techniques
that could reduce inference costs by 60-90% while
maintaining quality

3) Market Dynamics: The Al market is evolving rapidly
toward increased competition and specialization, with profound
implications for cost structures and strategic positioning. The
2025-2028 period will likely witness fundamental shifts in
market structure that reshape the economic landscape.

a) Competition and Commoditization: Market maturation
is driving both competition and differentiation:

o Open Source Acceleration: Continued advancement of
open-source models reducing the premium for proprietary
solutions by 40-70%

¢ Cloud Provider Competition: Major cloud platforms
competing aggressively on Al pricing, potentially reducing
costs by 30-60% over 3-5 years

o Specialized Providers: Emergence of focused Al infras-
tructure providers offering 50-80% cost advantages for
specific workloads

o API Standardization: Emerging standards reducing
switching costs and increasing price competition

4) Regulatory Considerations: Regulatory developments
will introduce new cost factors while potentially reshaping
competitive dynamics. The 2025-2028 regulatory landscape
suggests 10-40% cost increases for compliance, offset by
potential efficiency requirements and standardization benefits.

a) Environmental and Safety Regulations: Environmental
considerations are becoming mandatory cost factors:

« Carbon Pricing: Implementation of carbon taxes and
cap-and-trade systems adding 5-20% to compute costs
depending on region and energy source

« Mandatory Safety Testing: Requirements for extensive
testing and validation potentially adding 15-30% to
development costs

« Explainability and Transparency: Regulatory demands
for model interpretability requiring additional infrastruc-
ture and development investment

« Data Privacy and Security: Stricter requirements for data
handling and privacy protection increasing infrastructure
and operational costs

TABLE XIII: Future Cost Impact Summary (2025-2028 Pro-
jections)

Factor Cost Impact | Timeline | Certainty
Hardware Advances -40 to -70% | 2025-2027 High
Software Optimization | -60 to -90% | 2024-2026 | Medium
Market Competition -30 to -60% | 2024-2028 High
Carbon Pricing +5 to +20% | 2025-2027 | Medium
Safety Regulation +15 to +30% | 2026-2028 Low
Privacy Compliance +10 to +25% | 2025-2027 | Medium
Net Impact -20 to -60% | Variable | Medium

b) Synthesis: The Future Cost Landscape: The conver-
gence of these trends suggests a complex future cost land-
scape characterized by dramatic cost reductions for standard
capabilities, persistent premiums for advanced capabilities,
and new cost categories for compliance and environmental
factors. Organizations that anticipate and prepare for these
evolving cost dynamics will be positioned to optimize their
Al investments and maintain competitive advantages in an
increasingly sophisticated and competitive landscape [2], [17].

The key insight is that future Al economics will be charac-
terized not by uniform cost reduction, but by increasing dif-
ferentiation between optimized and naive approaches, between
standard and premium capabilities, and between compliant
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and non-compliant deployments. Success will require not just
technical optimization, but strategic positioning within this
evolving economic landscape.

VII. CONCLUSION: THE FUTURE OF SCALING LAWS IN
GENERATIVE Al

A. Synthesis of Key Insights

Throughout this comprehensive analysis, we have explored
the multifaceted nature of scaling laws in generative Al,
examining how model size, training data, performance metrics,
and economic considerations interweave to shape the future
of artificial intelligence. The journey from early empirical
observations to the sophisticated understanding we possess
in 2025 reveals a field that has matured dramatically while
continuing to surprise us with new insights and emergent
phenomena.

Our exploration reveals that scaling laws represent far
more than empirical observations—they constitute fundamental
properties of neural network learning that govern how intelli-
gence emerges from computational resources. The consistent
power-law relationships between model size, data volume,
and performance across multiple orders of magnitude suggest
deep mathematical principles underlying these patterns [7], [8].
These relationships have evolved from simple formulations
to nuanced frameworks that account for optimal resource
allocation, emergent capabilities, and economic constraints.

a) The Evolution of Scaling Understanding: The transfor-
mation of our understanding—from Kaplan’s initial compute-
optimal formulation [8] to the Chinchilla paradigm’s data-
optimal insights [7], and extending to the sophisticated ap-
proaches of 2024-2025—demonstrates the dynamic nature of
this field. We have witnessed a fundamental shift from the
1.7:1 token-to-parameter ratio proposed by Kaplan [8] to the
20:1 ratio identified by Chinchilla [7], and the exploration of
even more data-intensive training regimes in current frontier
models like GPT-40 and Claude-3.5 Sonnet. This evolution
reflects not just improved understanding, but a recognition that
optimal scaling depends on deployment context, computational
constraints, and economic objectives.

The emergence of constitutional Al training approaches
has further refined our understanding, showing how data
quality and alignment considerations can dramatically influence
scaling efficiency. Modern training approaches achieve superior
performance not just through scale, but through sophisticated
data curation, constitutional training methods, and alignment
techniques that were barely conceived when early scaling laws
were formulated [9].

b) Emergent Capabilities and Phase Transitions: Perhaps
the most fascinating aspect of scaling behavior that has emerged
is the phenomenon of threshold effects, where capabilities
like multi-step reasoning, code generation, tool use, and
sophisticated mathematical problem-solving appear suddenly
at specific model scales [18]. The 2024-2025 landscape has
revealed even more dramatic examples: the emergence of
agentic behavior in models like Claude-3.5 and GPT-40, the
breakthrough mathematical reasoning capabilities of OpenAlI’s

ol model, and the sophisticated multimodal understanding
demonstrated by systems like Gemini Ultra.

These threshold effects challenge simple power-law formu-
lations and suggest phase transitions in model capabilities that
require more sophisticated theoretical frameworks. Current
research indicates that these emergent capabilities often corre-
late with specific parameter counts (around 70B, 175B, and
500B+ parameters), but the precise mechanisms remain partially
mysterious. Understanding these transitions has become crucial
for organizations planning model development timelines and
capability expectations.

c) The Critical Role of Data Quality and Curation:
Data quality has emerged as perhaps the most transformative
insight in scaling law understanding. The development of
sophisticated data curation frameworks—from constitutional
Al training to LL.M-assisted data filtering—has shown that
high-quality data can yield performance gains equivalent to
order-of-magnitude increases in model size [9], [12]. The 2024-
2025 period has witnessed the emergence of training approaches
where careful data curation and constitutional training methods
achieve superior results at dramatically lower computational
costs.

Organizations like Anthropic have demonstrated that con-
stitutional Al training approaches can achieve frontier-level
capabilities with substantially smaller models when combined
with sophisticated data quality techniques. This insight has
profound implications for democratizing Al development, as it
suggests pathways to high-capability models that don’t require
the enormous computational resources traditionally associated
with frontier performance.

d) Evaluation Methodology Evolution: The maturation of
evaluation methodologies represents another crucial develop-
ment in our understanding of scaling laws. The limitations of
traditional metrics like perplexity have driven the development
of comprehensive evaluation frameworks that assess models
across multiple dimensions: capability, safety, alignment, ro-
bustness, and efficiency [10], [14]. The 2024-2025 evaluation
landscape features sophisticated frameworks like HELM, Azure
Al evaluation systems, and Constitutional Al assessment tools
that provide holistic views of model performance.

Current evaluation approaches recognize that scaling laws
must account for multiple performance dimensions simultane-
ously. A model’s scaling behavior for mathematical reasoning
may differ dramatically from its scaling patterns for creative
writing or ethical reasoning. This multidimensional perspective
has become essential for practical applications where models
must perform reliably across diverse tasks and contexts.

e) Economic Reality and Practical Constraints: The
economic dimension of scaling laws has evolved from a
secondary consideration to a primary driver of development
decisions. The dramatic escalation in training costs—from
GPT-3’s $4.6 million to the $100-200 million required for
current frontier models—has forced a reckoning with the
economic sustainability of pure scaling approaches [2], [11].
The relationship between scale, performance, and cost creates
complex trade-offs that organizations must navigate carefully.
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The emergence of sophisticated cost optimization techniques
has shown that the economic equation extends far beyond raw
training costs. Inference optimization techniques can reduce
deployment costs by 10-50x, human resources often exceed
infrastructure costs by 3-5x, and total cost of ownership
frameworks reveal hidden expenses that can dwarf obvious
computational investments [17]. Understanding these economic
scaling relationships has become as important as understanding
performance scaling for practical Al development.

B. Implications for Research and Practice

These insights fundamentally reshape both research direc-
tions and practical applications of generative Al, creating new
opportunities while highlighting persistent challenges.

1) For Researchers: Expanding Frontiers: The current state
of scaling laws research points to several transformative
directions for future investigation:

a) Theoretical Foundation Development: The need for
robust theoretical explanations of observed scaling patterns
has become urgent, particularly for emergent capabilities and
threshold effects. Current mathematical frameworks inade-
quately explain why specific capabilities emerge at particular
scales, or why some scaling patterns exhibit smooth power-
law behavior while others show sharp transitions. Developing
unified theories that encompass both gradual improvements and
sudden capability jumps represents a crucial research frontier.

b) Architecture Innovation Beyond Scale: Creating model
architectures that improve parameter efficiency or exhibit more
favorable scaling properties has become essential for sustainable
Al development. The success of Mixture-of-Experts architec-
tures, which achieve large-model performance with sparse
activation patterns, suggests that architectural innovation may
provide more efficient paths to capability than pure parameter
scaling. Research into neuromorphic architectures, retrieval-
augmented systems, and hybrid computational approaches
offers promising alternatives to traditional scaling strategies.

¢) Data-Centric Intelligence: Exploring how data charac-
teristics influence scaling behavior represents perhaps the most
promising research direction. Understanding why certain data
examples provide disproportionate learning value, developing
methods to identify and leverage high-value training instances,
and creating frameworks for optimal data allocation across dif-
ferent capability domains could revolutionize training efficiency.
Constitutional Al and preference-based training represent early
examples of this data-centric approach.

d) Evaluation Framework Evolution: Designing evalu-
ation methodologies that remain discriminative as models
approach human-level performance presents ongoing challenges.
Current benchmarks saturate quickly as models improve, creat-
ing a need for adaptive evaluation frameworks that can assess
increasingly sophisticated capabilities. Developing evaluation
approaches that measure alignment, safety, robustness, and real-
world utility—rather than just capability—has become crucial
for responsible Al advancement [13], [14].

e) Interdisciplinary Connections: Drawing connections
between scaling laws in Al and similar patterns in complex

systems across physics, biology, and economics could yield
transformative insights. Phase transitions in neural networks
may share mathematical foundations with critical phenomena
in statistical mechanics, while emergent intelligence might
parallel self-organization principles observed in biological and
social systems.

2) For Practitioners: Strategic Applications: Organizations
developing or deploying generative Al can leverage scaling
laws insights across multiple dimensions of their operations:

a) Strategic Resource Allocation: Using scaling laws to
predict performance improvements from investments in model
size, training data, or computational resources enables informed
budget decisions and development roadmaps. Organizations
can model trade-offs between training larger models, investing
in data quality, or developing optimization techniques to find
optimal resource allocation strategies.

b) Architecture and Scale Selection: Choosing model
architectures and sizes appropriate for specific applications
based on performance requirements, resource constraints, and
deployment contexts has become a sophisticated optimization
problem. Understanding how different capabilities scale allows
organizations to right-size models for particular use cases,
avoiding over-engineering while ensuring adequate perfor-
mance.

c) Data Strategy Optimization: Investing in data quality
and curation rather than focusing exclusively on quantity has
proven particularly valuable for domain-specific applications.
Organizations can achieve significant performance improve-
ments through strategic data investments that cost substantially
less than computational scaling, especially when combined
with constitutional training approaches.

d) Deployment and Optimization: Applying advanced
techniques like quantization, distillation, speculative decoding,
and intelligent caching to optimize inference costs while
maintaining acceptable performance enables sustainable large-
scale deployment. Understanding how optimization techniques
interact with scaling relationships allows organizations to
achieve optimal cost-performance trade-offs.

e) Economic Planning and Sustainability: Developing
comprehensive total cost of ownership models that account
for training costs, inference expenses, human resources, and
operational overhead across the full lifecycle of Al systems
enables sustainable business models. Organizations must bal-
ance capability aspirations with economic realities to create
viable long-term Al strategies.

C. Challenges and Open Questions

Despite remarkable progress in understanding scaling laws,
fundamental challenges and open questions continue to shape
the field’s trajectory:

1) Scaling Limits and Fundamental Boundaries: Whether
performance improvements will continue indefinitely with scale
or eventually reach fundamental limits remains one of the
most consequential uncertainties in Al development. Current
evidence suggests different capabilities may have different
scaling limits, with some showing continued improvement
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while others plateau. Identifying these boundaries—if they
exist—would profoundly impact Al development strategies and
resource allocation decisions.

2) Emergent Capability Prediction: Developing reliable
methods to predict when and how new capabilities will
emerge at scale thresholds represents a critical challenge
for organizational planning [18]. Current approaches can
identify scaling patterns for known capabilities but struggle to
predict entirely new emergent behaviors. Organizations need
frameworks for anticipating capability jumps to plan effectively
for technological transitions and competitive dynamics.

3) Data Exhaustion and Quality Constraints: As models
grow larger and training datasets expand, finding sufficient
high-quality training data becomes increasingly challenging.
Estimates suggest that available high-quality text data may limit
scaling within the next 3-5 years, forcing the development
of synthetic data generation, data augmentation techniques,
or entirely new training paradigms. Understanding how data
limitations might constrain future scaling represents a critical
research priority.

4) Evaluation Evolution and Benchmark Saturation: Creat-
ing evaluation methodologies that remain meaningful as models
approach human-level performance on many tasks presents
ongoing challenges [13], [14]. Current benchmarks saturate
rapidly, and developing new assessment frameworks that
can discriminate between increasingly sophisticated systems
requires continuous innovation in evaluation methodology.

5) Economic Sustainability and Access: Determining
whether the economics of ever-larger models are sustainable,
particularly as training costs escalate exponentially while
inference costs accumulate over deployment lifetimes, will
shape the future trajectory of Al development [11]. The
concentration of advanced Al capabilities among well-resourced
organizations raises important questions about technological
accessibility and democratic participation in Al advancement.

6) Environmental Impact and Responsibility: Addressing
the growing energy consumption and carbon footprint of large-
scale Al training and deployment has become essential for
responsible technological advancement. Developing frame-
works that balance capability improvements with environmental
sustainability will influence scaling strategies and regulatory
approaches.

7) Alignment and Safety at Scale: Ensuring that scaled Al
systems remain aligned with human values and controllable as
they become more capable represents perhaps the most impor-
tant challenge facing the field. Current alignment techniques
may not scale effectively to superintelligent systems, requiring
fundamental advances in Al safety and control methodologies.

D. Future Directions and Emerging Paradigms

Looking toward 2025-2030, several transformative trends
may reshape our understanding and application of scaling laws:
1) Hybrid Scaling Architectures: Combining traditional
parameter scaling with retrieval-augmented generation, tool
use capabilities, and specialized computational components
offers more efficient paths to enhanced capabilities. These

hybrid approaches may achieve large-model performance with
substantially lower computational requirements by leveraging
external knowledge sources and specialized processing mod-
ules.

2) Multimodal Scaling Integration: Extending scaling law
understanding to multimodal models that seamlessly integrate
text, images, audio, video, and other modalities represents a
crucial frontier. Early evidence suggests multimodal capabilities
may exhibit different scaling patterns than unimodal systems,
with complex interactions between different modality-specific
parameters.

3) Personalization and Adaptation at Scale: Developing
efficient methods to adapt large foundation models to individual
users, specific domains, or particular contexts without full
retraining could dramatically enhance the utility of scaled
models. Techniques like parameter-efficient fine-tuning, consti-
tutional training, and preference learning may enable massive
personalization while maintaining the benefits of large-scale
pretraining.

4) Continual Learning and Dynamic Scaling: Moving
beyond static pretraining toward models that continuously
update with new information could fundamentally change how
we conceptualize scaling over time rather than just at training
time. Dynamic scaling approaches might enable models to
grow and adapt continuously rather than requiring periodic
complete retraining.

5) Neuromorphic and Alternative Architectures: Brain-
inspired computing approaches and quantum computational
methods might eventually offer alternative scaling patterns
with more favorable efficiency characteristics. These alternative
paradigms could unlock new scaling relationships that bypass
current computational and energy constraints.

6) Regulatory and Governance Integration: Emerging reg-
ulations around AI development, deployment, data usage,
and environmental impact will increasingly influence scaling
strategies. Organizations must anticipate how governance
frameworks will shape acceptable scaling approaches and plan
accordingly.

E. Concluding Thoughts: Toward Sustainable AI Advancement

Scaling laws have emerged as the foundational framework
for understanding and predicting the behavior of generative Al
systems. The relationships between model size, training data
quality and quantity, performance across multiple dimensions,
and comprehensive economic considerations provide crucial
guidance for researchers and practitioners navigating the rapidly
evolving landscape of Al capabilities.

As we continue refining our understanding of these relation-
ships, we gain increasingly sophisticated tools for making
informed decisions about resource allocation, architecture
design, deployment strategies, and sustainable development
approaches. The evolution from simple power-law observations
to multidimensional optimization frameworks reflects the matu-
ration of Al as both a scientific discipline and a transformative
technology.
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The path forward requires balancing the pursuit of enhanced
capabilities through scale with critical considerations of effi-
ciency, accessibility, sustainability, and alignment with human
values. The insights from scaling laws research provide essential
guideposts for this journey, helping us navigate complex trade-
offs between performance aspirations and practical constraints.

Looking toward the future, scaling laws research will
likely evolve toward increasingly sophisticated frameworks that
account for multiple dimensions of scale, quality, efficiency, and
alignment simultaneously. Understanding these relationships
will become even more crucial as Al systems approach
and potentially exceed human-level performance across many
domains.

The principles emerging from our comprehensive analysis
suggest several key imperatives for sustainable Al advancement:
investing in data quality and constitutional training approaches,
developing economically viable optimization strategies, cre-
ating evaluation frameworks that assess alignment and safety
alongside capability, and maintaining accessibility to ensure
broad participation in Al development.

In this dynamic and consequential field, maintaining a holis-
tic perspective that integrates technical innovation, economic
sustainability, ethical considerations, and human values will
be essential. The scaling laws framework provides valuable
tools for this integration, offering quantitative approaches to
complex qualitative challenges.

As we stand at the threshold of potentially transformative
advances in artificial intelligence, the insights from scaling laws
research remind us that the most important scaling challenge
may not be technical or economic, but rather ensuring that
our most powerful Al systems remain beneficial, controllable,
and aligned with human flourishing. The relationships we have
explored between scale and capability must ultimately serve
the broader goal of developing Al systems that enhance rather
than replace human intelligence, augment rather than automate
human creativity, and amplify rather than diminish human
agency.

The future of scaling laws—and of generative Al itself—will
be determined not just by our technical ingenuity or computa-
tional resources, but by our wisdom in applying these powerful
tools responsibly. In this endeavor, the comprehensive under-
standing of scaling relationships provides both the foundation
for continued progress and the framework for ensuring that
progress serves humanity’s highest aspirations.
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