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Abstract: Gold has long been recognized as a safe-haven asset and a hedge against inflation, especially during times of economic 

uncertainty. This study aims to forecast gold prices using time series analysis, drawing on historical data from 2019 to 2024. Multiple 

forecasting models- ARIMA, SARIMA, Exponential Smoothing, and Prophet- were evaluated to determine the most reliable method. 

Given the presence of significant market volatility and outliers in the dataset, the Prophet model was selected for its robustness to 

irregularities and ability to model complex seasonality. The data underwent preprocessing. The final model forecasted daily gold prices 

for 2025, revealing a projected upward trend. This aligns with current macroeconomic indicators such as persistent inflation, geopolitical 

instability, and ongoing global conflicts- factors historically known to increase demand for gold. The study concludes that gold prices are 

likely to rise in 2025, reinforcing gold’s role as a strategic investment asset. These insights can support better investment decision-making 

in uncertain economic climates. 
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1. Introduction  
 

1.1 Importance of Gold in Financial Markets 

 

Gold has been a symbol of dignity, wealth and prestige of a 

family for thousands of years. Beyond that, gold acts as a 

financial asset and an indicator of a good economy of the 

country, contributing to the GDP of countries like India. 

Gold acts as a hedge against inflation i.e, it maintains or 

increases its value over time, offsetting the effects of 

inflation and making it a reliable and resilient long-term 

investment. It is also regarded as a safe-haven asset i.e, 

investors tend to move their capital into gold to preserve 

wealth at the time of economic uncertainty. Gold acts as a 

universal currency in times of crisis, when paper currencies 

lose trust. 

 

1.2 Objectives of the Study  

 

The primary objective of this study is to analyze the trends 

and patterns in gold prices in the past and develop a time 

series forecasting model to predict future price trends over 

the next five years. Given the intrinsic volatility in the value 

of gold, the study aims to provide insights that can help 

investors, who view gold as a safe-haven asset, identify 

optimal time of investment and enhance their decision-

making.  

 

1.3 Future Scope of Research 

 

Future work can expand the model by incorporating 

macroeconomic indicators such as inflation, exchange rates, 

and global gold reserves to improve forecasting accuracy. 

Additionally, exploring ensemble models or deep learning 

approaches like LSTM may yield better long-term results. 

 

2. Literature Review 
 
2.1 Historical Trends in Gold Prices 
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Graph by: https://goldprice.org/gold-price-history.html 

 

Between 2010 and 2020, the average annual gold price in 

India saw a significant rise. In 2010, the lowest average was 

recorded at ₹18,500 per 10 grams, while by 2020, it had 

increased to an average of ₹48,651 per 10 grams. 

 

2.2 Factors Affecting Gold Prices 

 

• Over the past decades, gold prices have exhibited 

significant fluctuations due to macroeconomic and 

geopolitical conditions, the pace of inflation, the amount 

of reserves, currency fluctuations, supply and demand 

considerations, and the cost of mining and refining gold. 

• Gold prices have a positive correlation with its demand. 

When inflation is high, gold prices tend to rise as 

investors turn towards gold as they look for a safe-haven 

asset to protect their purchasing power and as an inflation 

hedge against the loss of value in traditional investments 

like bonds or savings. Gold prices rose in 1970 due to 

high inflation and economic uncertainty. 

• Gold is priced in USD globally. When the dollar 

strengthens, gold becomes more expensive in other 

currencies and vice versa.  

• During high geopolitical tensions gold prices tend to rise 

as investors look for a hedge against uncertainty. In the 

2000s, gold prices rose steadily driven by geopolitical 

tensions and financial crises. In 2011, prices peaked due 

to global economic concerns, then declined as conditions 

stabilized. In the 2020s, gold prices reached new highs in 

response to the COVID-19 pandemic and subsequent 

economic uncertainties. 

• Usually gold and stock markets follow a negative 

correlation. When stocks fall, gold often rises because 

investors shift towards safer assets such as gold. 

However, in the early 2020s (especially around 2020–

2022), both gold and stock markets rose at the same time 

because during a global pandemic, COVID19, there was 

economic uncertainty, therefore, investors turned towards 

gold thereby increasing its price.  

• Regional conflicts in the Middle East and the Russia-

Ukraine war in the early 2020s was a period of global 

uncertainty which contributed to an increase in gold 

prices.  

 

2.3 Previous Models Used to Predict Gold Prices and 

Their Drawbacks 

 

2.3.1 Linear Regression Models-  

• Use Period: 1970s- 2000s 

• Application: To predict gold prices by assuming a 

constant linear relationship between gold prices and 

economic factors like inflation, demand and interest rates. 

• Limitation: Gold markets are nonlinear, affected by 

global uncertainty and geopolitical shocks that linear 

models can’t handle. 

 

2.3.2 AR (Auto-Regressive Model) 

• Use Period: 1970s – Present 

• Application: Predicts future gold prices based on past 

price values. 

• Limitation: Ignores external factors like inflation or 

geopolitical events; assumes past price patterns will 

persist. 

 

2.3.3 MA (Moving Average Model) 

• Use Period: 1970s – Present 

• Application: Models gold prices using the average of past 

forecast errors. 

• Limitation: Oversimplifies price movements and fails to 

capture market complexities. 

 

2.3.4 ARIMA (Auto-Regressive Integrated Moving 

Average) 

• Use Period: 1980s- 2010s  

• Application: Made predictions based on past price 

patterns and autocorrelation 

• Limitation: It assumed stationarity and stable trends.  
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2.3.5 SARIMA (Seasonal Auto-Regressive Integrated 

Moving Average) 

• Use Period: 1990s – Present 

• Application: Forecasts gold prices with seasonal patterns 

in addition to trend and noise components. 

• Limitation: Assumes seasonality in gold prices, which 

may not always be present or significant. 

 

2.3.6 SES (Single Exponential Smoothing) 

• Use Period: 1950s – Present 

• Application: Forecasts gold prices by giving more weight 

to recent observations.  

• Limitation: Ineffective for data with trends or seasonal 

patterns; assumes a constant level over time. 

 

2.3.7 DES (Double Exponential Smoothing /Holt’s Linear 

Trend Method) 

• Use Period: 1960s – Present 

• Application: Extends SES by incorporating a trend 

component, making it more suitable for data with upward 

or downward movement like trending gold prices. 

• Limitation: Fails when data has strong seasonality; cannot 

adjust for recurring annual or monthly cycles in demand 

or prices. 

 

2.3.8 Holt-Winters Exponential Smoothing (Triple 

Exponential Smoothing) 

• Use Period: 1970s – Present 

• Application: Models level, trend, and seasonality in gold 

prices; can handle complex patterns in time series data. 

• Limitation: Assumes seasonal patterns repeat 

consistently; may underperform during irregular 

economic shocks or structural breaks like financial crises. 

 

3. Research Methodology 
 

3.1 Time Series Analysis  

 

Time series analysis is a way of analysing a sequence of 

observations collected through repeated measures of time 

over a very long period of time. It helps you understand the 

change in the past and present and what we can predict about 

the future. The basic aim is to summarize and study casual 

trends and patterns across a dataset(descriptive); study the 

impact of a single event (explanatory); and to forecast future 

trends and behaviours using historical data (predictions).  

 

3.2 Data Collection 

 

The data for this research has been collected from a publicly 

available dataset on Kaggle. It contains historical gold prices 

records over a span of 5 years, including daily values for 

attributes such as Open, High, Low, Close prices, and dates. 

https://www.kaggle.com/datasets/nisargchodavadiya/daily-

gold-price-20152021-time-series -link to dataset 

 

The data was chosen due to its reliability, 

comprehensiveness, and suitability for time series 

forecasting tasks. It was downloaded in CSV format and 

includes information that allows for exploration of 

seasonality, trends, and price volatility over time. 

3.3 Data Cleaning and Processing  

 

To ensure the integrity and accuracy of forecasting results, 

data preprocessing is a crucial step in time series analysis. 

Each aspect of this phase is to prepare the dataset for robust 

and reliable model training and evaluation. 

 

3.3.1 Handling Missing Values  

Time series models require a continuous and consistent 

sequence of observations. Missing values are problematic 

because they disrupt the evaluation. Missing data is handled 

by imputation, i.e., forward fill (replacing the missing values 

with the last known value), backward fill (replacing the 

missing values with the next known value), linear 

interpolation (estimating missing values by drawing a 

straight line between the nearest known values before and 

after the gap) or removal. 

• If missing values are isolated and sparse, imputation is 

generally safe.  

• If only a few values are missing, linear interpolation or 

forward fill are appropriate to use.  

• If a large part of the data is missing, especially in 

significant segments, the data may be unreliable for 

modeling. 

• If the missing data occurs in a non-target or less relevant 

feature, dropping the column altogether is safe. 

 

In my dataset, there were null columns that served no 

purpose and were therefore dropped. There were no missing 

values in critical columns such as the target variable. 

 

3.3.2 Outlier Detection and Treatment  

Outliers in time series can result from anomalies, data entry 

errors, or true rare events. Traditional models like ARIMA 

and exponential smoothing are sensitive to outliers.  

They can be handled using several methods: 

• Winsorization involves capping extreme values at a 

defined percentile (e.g., 5th and 95th percentiles). This 

limits their influence without removing them entirely and 

is useful when the outliers are valid. It can distort actual 

trends or dynamics. 

• Removal based on statistical thresholds often uses the 

Interquartile Range (IQR) method, where values lying 

beyond 1.5 times the IQR from the first or third quartile 

are considered outliers. This is commonly used when the 

outliers are likely due to error or are inconsistent with the 

rest of the data. 

• Transformation techniques like logarithmic or square 

root transformation compress the scale of the data and 

reduce the disproportionate impact of outliers. These are 

effective when data is highly skewed. It does not remove 

any outliers, compresses all values proportionally and 

stabilizes variance, which improves model assumptions 

and forecasting accuracy. 

 

I examined the dataset for outliers using the IQR method, but 

due to the presence of numerous outliers, reflecting actual 

market volatility in gold prices, it was not practical to remove 

them without losing valuable information. Therefore, no 

outliers were dropped. 

 

Code for Checking Outliers 
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# IQR method to check for outliers in 'Close_Diff' 

Q1 = data.quantile(0.25) 

Q3 = data.quantile(0.75) 

IQR = Q3 - Q1 

lower_bound = Q1 - 1.5 * IQR 

upper_bound = Q3 + 1.5 * IQR 

# Identify outliers 

outliers = data[(data < lower_bound) | (data > upper_bound)] 

Output: 

Number of outliers: 1258 

 

3.3.3 Date Parsing and Indexingi 

Date-time formatting and proper indexing are essential to 

effectively capture temporal dependencies, trends, seasonal 

patterns, and maintain chronological order. The 'Date' 

column must be parsed into a recognized datetime format and 

set as the DataFrame index. 

 

I ensured that the 'Date' column was converted into Python’s 

datetime format and set as the index. 

 

Code for Date Parsing and Indexing 

 

# Convert 'Date' to proper datetime format (with UTC if needed) 

data['Date'] = pd.to_datetime(data['Date'], utc=True) 

 

# Remove timezone info but keep it as datetime64 (not .date) 

data['Date'] = data['Date'].dt.tz_convert(None) 

 

# Set 'Date' as index for time series operations 

data.set_index('Date', inplace=True) 

 

3.3.4 Normalization 

Scaling is important when using models sensitive to input 

ranges. Without normalization, features with larger numeric 

values may disproportionately influence the model. 

 

Min-Max Scaler- Rescales the data to a fixed range [0, 1]. 

The minimum becomes 0 and the maximum becomes 1. It is 

sensitive to outliers.  

xscaled = (x – xmin) / (xmax – xmin) 

 

where,  

• xscaled is the standardized value. 

• x is the actual value. 

• xmin is the minimum value of that attribute.   

• (xmax – xmin) is the range.  

 

Standard Scaler- Transforms the data to have mean equal to 

0 and standard deviation equal to 1. It is sensitive to outliers.  

xscaled = (x−μ) / σ 

where,  

• xscaled is the standardized value. 

• x is the actual value. 

• μ is the mean of the feature. 

• σ is the standard deviation of the feature. 

 

Robust Scaler- Robust Scaler instead uses the median and 

interquartile range (IQR) to scale the data, making it robust 

to outliers, i.e., it is not heavily affected by extreme values. 

xscaled = (x − Median) / IQR 

 

where,  

• xscaled is the standardized value. 

• x is the actual value. 

• Median is the medium of the feature. 

• IQR is the interquartile range of the feature. 

 

I used the Robust Scaler. Unlike Min-Max Scaler or Standard 

Scaler, which can be heavily influenced by outliers, Robust 

Scaler uses the interquartile range to scale features. This 

makes it effective for gold prices time series, where sharp 

spikes and drops are common, by reducing the influence of 

outliers.  

 

Code for Robust Scaler 

 

scaler = RobustScaler() 

scaled_values = scaler.fit_transform(data1[numerical_cols]) 

Gold Prices Scaling- excel sheet  

 

3.4 Concept of Time Series 

 

3.4.1 Stationarity 

A time series is said to be stationary if its statistical properties 

such as mean, variance, and autocovariance, do not change 

over time. 

 

Why is Stationarity Important? 

It makes the data more predictable and easier to model 

accurately. Without stationarity, any relationships or patterns 

observed may be unreliable, as the behavior of the series 

could shift unpredictably.  

• Models that require stationarity - ARIMA, SARIMA, and 

Simple Exponential Smoothing (SES) 

• Models that handle non-stationarity internally- Holt’s 

Linear Trend Method, Holt-Winters Method, Prophet 

 

Test for Stationarity- A unit root in a time series indicates 

that the series is non-stationary – its statistical properties 

change over time. To check for a unit root, a simplified 

AR(1) model without the intercept c is used. It captures the 

persistence of the previous value.  
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Mathematical equation: 

 

Yt =  ρYt−1 + ϵt 

where, 

• Yt is the current observation. 

• Yt-1  is the previous observation.   

• ρ is the autoregressive coefficient.  

• ϵt represents the error term at time t (white noise). 

 

Case 1: |ρ| < 1  

The process is stationary, each value depends on the past but 

is pulled back toward the mean over time. This ensures that 

the effect of a shock ϵt diminishes as time passes and the 

variance of Yt stabilizes to a finite value.  

 

Case 2: ρ = 1 

The process has a unit root and becomes: 

 

Yt =  Yt−1 + ϵt 

This is a random walk. Shocks ϵt do not fade as time passes, 

instead they accumulate and the series wanders without 

settling around a fixed mean and variance. Therefore, it is 

non-stationary. 

 

Case 3: |ρ| > 1 

The series is explosive.  

Yt =  ρt Y0 + i=1Σt  ρt-i  ϵt 

 

ρ grows exponentially with t so both the mean and variance 

blow up as time increases. Even small shocks are magnified 

rapidly. 

 

 

There are three tests to check for stationarity.  

 

a) Augmented Dickey-Fuller (ADF) Test 

It checks for unit root. It finds out if the value today is just a 

continuation of yesterday's value (a random walk), or if it 

tends to return to a stable mean over time (stationarity). 

 

Hypothesis  

Null Hypothesis (H₀) is the default assumption ⇒ Non-

Stationarity 

Alternate Hypothesis (H1) is what you want to test for ⇒ 

Stationarity 

 

Mathematical Equations: 

Δyt = α + βt + γ yt−1 + i=1∑p δi Δyt−i + ϵt 

 

Where,  

• Δyt is the first difference of the series. 

• α is the constant term (drift). 

• βt is the time trend. 

• γ is the coefficient of the lagged level term yt−1. γ = p-1. 

• δi is the coefficients of lagged differenced terms. 

• p is the number of lag terms added to account for 

autocorrelation. 

• ϵt is the error term. 

 

Adding a drift term or intercept α allows us to check for 

stationarity around a constant level, not necessarily zero. If 

the data has a long-term upward or downward slope, adding 

a trend term βt captures that. This helps us test whether the 

residual series is still stationary, even if the level changes 

over time. By adding lagged values of Δy, we capture the 

autocorrelation shown by residuals (the difference between 

actual and predicted values) and remove it, making the test 

statistically sound. If autocorrelation exists, it means that the 

error today is influenced by the error in the past.  

 

If γ < 0, then the series is stationary.  

 

b) Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test 

The KPSS test is a statistical test used to check whether a 

time series is stationary around a mean (level) or a 

deterministic trend.  

 

Hypothesis 

Null Hypothesis (H₀) ⇒ Stationarity 

Alternate Hypothesis (H1) ⇒ Non-Stationarity 

 

Mathematical Equation: 

The KPSS model breaks a time series into three parts: 

 

yt = rt + δt + ϵt 

 

Where,  

• yt is the observed time series at time t. 

• δt is the deterministic trend. 

• ϵt is the stationary error term (white noise). 

• rt is the random walk, defined as: 

(rt = rt−1 + ut) 

where,  

ut is the stationary error in the random walk component. 

 

We need to test whether the random walk component rt is 

present. If it's not (i.e., variance of ut is zero), the series is 

considered stationary. 

 

KPSS test is used to confirm whether the resulting series is 

now stationary. 

 

KPSS = (1 / T2) t=1∑T St
2 / σ2 

 

Where,  

• St is the cumulative sum of residuals from the regression 

of the time series yt, either on a constant (if you're 

checking for level stationarity), or on a trend line (if 

you're checking for trend stationarity). 

• St
2 is to emphasize the magnitude of deviation. 

• σ2 is the estimate of long-run variance of residuals.  

• T is the total number of observations.  

 

t=1∑T St
2 measures the drift in the residuals over time.  A 

higher value of St
2 means that on average, the residuals have 

strayed away from zero consistently. σ2 scales this by how 

much variability we expect (i.e., the long-run variance). 

Dividing by T2 normalizes the test statistic. 

 

A lower value of St
2 means the series is stationary. 

 

c) Phillips–Perron (PP) Test 

The PP test is used to test for unit roots in time series data, 

just like the ADF test. However, it takes a non-parametric 

approach, i.e., it keeps the model simple but fixes the 

problems after running the regression by modifying the 
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calculated t-statistic, instead of introducing lagged difference 

terms, to handle: 

• Autocorrelation (when errors are correlated over time) 

• Heteroscedasticity (when error variance is not constant 

over time) 

 

This makes it more robust when the error terms are not well-

behaved. 

 

Hypothesis  

Null Hypothesis (H₀) ⇒ Non-Stationarity 

Alternate Hypothesis (H1) ⇒ Stationarity 

 

Mathematical Formula: 

Δyt = α + γ yt−1 + ϵt 

 

Where: 

• Δyt is the change in the series (first difference). 

• yt−1 is the lagged level of the series. 

• α is the constant or drift term. 

• γ is the coefficient used to test for unit root. 

• ϵt is the error term. 

 

If γ < 0, then the series is stationary.  

 

Code for Test for Stationarity 

 

adf_result = adfuller(data_diff) 

if adf_result[1] <= 0.05: 

   print("ADF Result: Dataset is stationary") 

else: 

   print("ADF Result: Dataset is not stationary") 

 

kpss_result = kpss(data_diff, regression='c', nlags='auto') 

if kpss_result[1] <= 0.05: 

   print("KPSS Result: Dataset is not stationary") 

else: 

   print("KPSS Result: Dataset is stationary") 

 

Output: 

ADF Statistic: -26.054054485962343 

p-value: 0.0 

ADF Result: Dataset is stationary 

KPSS Statistic: 0.18464855795378315 

p-value: 0.1 

KPSS Result: Dataset is stationary  

 

The p-value for ADF test is < 1, therefore, the dataset is 

stationary. To validate this finding, KPSS test was also 

conducted. The p-value for KPSS test is also < 1, therefore, 

the dataset is stationary. 

3.4.2 White Noise 

It is a completely random error with no predictable structure. 

White noise in time series refers to a sequence of random 

variables that have a mean of zero, constant variance and are 

uncorrelated with each other.  

 

Code for Noise Detection 

acf_vals = acf(residual.dropna(), nlags=30) 

significant_autocorr = any(abs(acf_vals[1:]) > 0.2) 

is_pure_noise = not significant_autocorr 

 

3.4.3 Trends 

A long-term direction in which the data is moving. In the case 

of gold, the gradual increase or decrease in the price of gold 

due to fluctuations in demand and supply.  

 

Code for Trend Detection 

trend = result.trend.dropna() 

has_trend = trend.var() > 0.001 

 

3.4.4 Seasonality 

A short-term repetition of patterns at fixed periods. In India 

and certain other countries, gold prices increase sharply 

during festive seasons.  

 

Code For Seasonality Detection 

# Decompose the time series 

result = seasonal_decompose(close_series, model='additive', 

period=30) 

seasonal = result.seasonal.dropna() 

has_seasonality = seasonal.var() > 0.001 

 

3.4.5 Cyclic Variations 

Recurring, long-term fluctuations in the data, typically 

lasting more than a year. Gold prices rise during global crises 

(e.g., 2008 financial crisis, COVID-19) when investor 

confidence in other markets falls, and decline when 

economic confidence and interest rates rise. 

 

Code for Cyclic Variations Detection 

rolling_mean = 

close_series.rolling(window=90).mean().dropna() 

has_cyclicity = rolling_mean.var() > 0.001 

 

3.4.6 Noise 

Unpredictable or irregular variations in the data that cannot 

be attributed to trend, seasonality, or cycles. Sharp changes 

in the price of gold due to sudden geopolitical events. 

 

 
Models Trend  Seasonality  Cyclic Variation Noise  White Noise  

ARIMA        (if periodic)     

SARIMA   (with seasonality)   (with trend)       

Simple Exponential Smoothing            

Holt’s Linear Trend Method            

Holt-Winters Method 
  (with seasonality)    (additive) (with trend- 

additive and multiplicative) 

     

  

  

  

Prophet 
  (with seasonality or cyclic 

variation) 

  (with trend)        
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3.5 Data Analysis  

 

3.5.1 Analysing Time Series Components 

It is very important to analyse your data to understand which 

model will work best on your dataset. I analyzed the structure 

and components of the time series data - trend, seasonality, 

cyclic patterns, and residual noise - to better understand the 

behavior of gold prices over time and work out the best 

model for my data.  

 

Time Series Components in My Data 

• Trend Present       : True 

• Seasonality Present : True 

• Cyclicity Present   : True 

• Pure Noise          : False 

 

Graph 

 

 

 
 

3.5.2 Correlation Matrix  

Additionally, I constructed a correlation matrix to investigate 

the linear relationships between different features in the 

dataset. This helped identify which variables may be 

influential in predicting gold prices and ensured there was no 

multicollinearity among the predictors, i.e., two or more 

independent variables (features) in your dataset are highly 

correlated with each other which can be a problem in 

predictive modeling. 

 

Code for Computing Correlation Matrix 
#Define the numerical columns 

numerical_cols = ['Open', 'High', 'Low', 'Close', 'Volume'] 

 

#Calculate the correlation matrix 

correlation_matrix = data1[numerical_cols].corr() 

 

 

Output: 

Correlation matrix: 

            Open      High       Low     Close    Volume 

Open    1.000000  0.999473  0.999334  0.998779 -0.094791 

High    0.999473  1.000000  0.999232  0.999433 -0.083908 

Low     0.999334  0.999232  1.000000  0.999500 -0.110670 

Close   0.998779  0.999433  0.999500  1.000000 -0.098528 

Volume -0.094791 -0.083908 -0.110670 -0.098528  1.000000 
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The relationship among Open, High, Low and Close is a 

strong positive correlation as the day's opening, highest, 

lowest and closing price are all strongly linked. There is a 

weak negative correlation between Volume and Price 

columns (Open, High, Low, Close). There is a slight 

tendency that when volume increases, prices might slightly 

fall. 

 

3.6 Train-Test Split 

 

Before building forecasting models, the dataset was divided 

into a training set and a testing set to evaluate the 

performance of the models on unseen data. The training set 

is used to fit the models, while the testing set is reserved to 

assess forecasting accuracy. Since time series models rely 

heavily on learning temporal patterns, it is important that the 

training set covers a larger portion of the data. Therefore, my 

dataset was split in an 80:20 ratio—80% for training the 

model and 20% for testing its predictive accuracy.  

 

Code for Train-Test Split 

# Get split index 

split_index = int(len(data) * 0.8) 

 

# Split the data 

train = data.iloc[:split_index] 

test = data.iloc[split_index:] 

 

3.7 Forecasting Models  

 

3.7.1 ARIMA Model 

ARIMA model stands for Autoregressive Integrated Moving 

Average Model. It is a forecasting algorithm that only uses 

the information in the past values of the time series to predict 

the future values.  

 

Purpose: It works best with univariate time series data, 

especially when the data is non-seasonal and can be made 

stationary, and the objective is to model future values based 

only on past observations and past errors. 

 

Order Parameters: 

These models are specified by three order parameters: (p, d, 

q) 

where,  

• p is the order of the AR term. It is calculated by PACF 

plot.   

• d is the number of times the observations are differenced 

to make the time series stationary  

• q is the order of the MA term. It is calculated by ACF 

plot.  

 

ACF (Autocorrelation Function) 

ACF measures how correlated the current value of a time 

series is with its past values (lags). It helps detect repeating 

patterns, seasonality, and whether the series is stationary. 

ACF is mainly used to identify the MA (Moving Average) 

component. Significant spikes indicate lagged error 

correlations. 
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PACF (Partial Autocorrelation Function) 

PACF measures the correlation between the current value 

and a lag, after removing the effect of intermediate lags. 

PACF helps identify the AR (Autoregressive) component. 

Significant spikes indicate direct dependence on past 

observations. 

 

Code for plotting ACF and PACF  

 

plot_acf(series, lags=40, ax=plt.gca(), alpha=0.05) 

plot_pacf(series, lags=40, ax=plt.gca(), alpha=0.05, method='ywm') 

 

 
 

The ACF and PACF plots for the training data show that after lag 0, all spikes lie within the confidence interval (blue shaded 

region). This indicates that there is no significant autocorrelation or partial autocorrelation in the data, suggesting that the series 

is already stationary or behaves close to white noise. Consequently, the AR and MA components are likely very weak or 

negligible, meaning p and q values should be close to zero. Therefore, the order of ARIMA suggested by the plots is (0,0,0).  

 

Code for finding the Best ARIMA Model via Hit and Trial 

for p in range(0, 4): 

   for q in range(0, 4): 

       try: 

           model = ARIMA(data_diff, order=(p, 0, q)) 

           model_fit = model.fit() 

           aic = model_fit.aic 

           if aic < best_aic: 

               best_aic = aic 

               best_order = (p, 0, q) 

               best_model = model_fit 

       except: 

           continue 

 

Output  

Best ARIMA Order: (2, 0, 2) 

 

I used the order of ARIMA as (2, 0, 2) because the code 

performs an objective and data-driven evaluation, unlike 

ACF and PACF plots.  

 

Mathematical Equation: 

In mathematical terms ARIMA(p,d,q) model can be 

expressed as: 

 

Yt′ = c + ϕ1Yt−1′  + ϕ2Yt−2′  +......+  ϕpYt−p′  + ϵt + 

θ1ϵt−1 + θ2ϵt−2  +.....+ θqϵt−q 

 

• Yt′ is the differenced and stationary time series at time t. 

• ϕi are AR coefficients. 

• c is constant or mean of the differenced series. 

• θ1 are MA coefficients. 

• ϵt is white noise. 

 

AR stands for Autoregression. It is a regression model that 

signifies the dependence of the current observation on its 

previous values. The value of p refers to the use of past values 

in the regression equation.  

 

Mathematical equation: 

 

Yt = c + j=1Σp  ϕj Yt−j + ϵt 

OR  

 Yt =c + ϕ1Yt−1 + ϕ2Yt−2  +…+ ϕpYt−p + ϵt 

where, 

• Yt is the current observation. 

• Yt-j  are the past values  

• c is a constant (intercept).  

• ϕi are the autoregressive parameters.  

• ϵt represents the error term at time t (white noise). 
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Derivation: 

Step 1: Assume that the current value of a time series Yt is a 

linear function of its past values and a random error term ϵt. 

This leads to the general autoregressive model of order p: 

Yt= f(Yt−1,Yt−2,…,Yt−p) + ϵt                     …(i) 

 

Step 2: Assume f as a linear combination of past values. A 

linear combination is a mathematical expression made by 

multiplying each term by a constant or a coefficient and 

adding the results and a constant. Therefore,  

f(Yt−1,Yt−2,…,Yt−p) = c + ϕ1Yt−1 + ϕ2Yt−2  +…+ ϕpYt−p    

   …(ii) 

 

Step 3: Substitute the value of (ii) in (i) 

Yt =c + ϕ1Yt−1 + ϕ2Yt−2  +…+ ϕpYt−p + ϵt 

 

I stands for Integration. It indicates the number of times the 

observations are differenced to transform a non-stationary 

time series into a stationary one by differencing consecutive 

observations. Differencing involves the subtraction of the 

current values of a series with its previous values d number 

of times. 

 

Mathematical Equation: 

 

Yt′ = Yt – Yt−1 

 

Differencing is done by subtracting the previous value from 

the current value. If needed, this differencing is repeated d 

times until the series becomes stationary. 

 

MA stands for Moving Average. It indicates the dependence 

of the current observation on the previous forecast errors. 

The value of q refers to the past values of the process that 

influence the current value.  

 

Mathematical Equation: 

 

Yt = c + ϵt + θ1ϵt−1 + θ2ϵt−2  +.....+ θqϵt−q 

 

Derivation: 

Step 1: Assume that the current value of the series depends 

on past error terms instead of past values of Y.  

Yt= ϵt  + f(ϵt−1 + ϵt−2  +.....+ ϵt−q)                                      …(i) 

Step 2: Take the linear combination of past forecast errors.  

       f(ϵt−1 + ϵt−2  +.....+ ϵt−q) = μ + θ1ϵt−1 + θ2ϵt−2  +.....+ 

θqϵt−q                       …(ii) 

Step 3: Substitute the value of (ii) in (i) 

Yt = c + ϵt + θ1ϵt−1 + θ2ϵt−2  +.....+ θqϵt−q 

 

Limitations of ARIMA Model:  

• ARIMA does not handle seasonality well for that, 

SARIMA is used.  

• It requires the series to be made stationary, which can 

sometimes remove meaningful trends. 

• There is complex parameter tuning.  

• It may underperform on non-linear data as it assumes 

linear relationships.  

• It cannot handle irregular seasonality.  

• It is sensitive to outliers. 

• It is not suitable for long-term forecasting. 

 

Code for ARIMA Model 

# Train the model 

model = ARIMA(train, order=(2, 0, 2)) 

model_fit = model.fit() 

 

# Forecast in differenced space 

forecast_diff = model_fit.forecast(steps=len(test)) 

forecast_original.index = date_test 

true_test = data['Close'][split_index:split_index + len(forecast_original)] 

 
The ARIMA model performed poorly in forecasting due to 

its sensitivity to outliers, which distorted its ability to capture 

the underlying patterns in the data. 

 

 

3.7.2 SARIMA Model  

 

SARIMA Model stands for Seasonal Autoregressive 

Integrated Moving Average Model. It extends the ARIMA 

model by incorporating seasonality 
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Purpose: It is suitable for time series data with repeating 

seasonal patterns. Its objective is to forecast data which 

shows predictable seasonal effects that ARIMA alone cannot 

capture. 

 

Order Parameters: 

These models are specified by three order parameters: (P, D, 

Q, s) 

 

Where,  

• P is the order of the SAR term.  

• D is the number of seasonal differences needed to make 

the series stationary.   

• Q is the order of the seasonal SMA term. 

• s is the order of length of the seasonal cycle. 

 

Code for finding the Best SARIMA Model via Hit and Trial 

 

for p in p_values: 

   for d in d_values: 

       for q in q_values: 

           for P in P_values: 

               for D in D_values: 

                   for Q in Q_values: 

                       try: 

                           model = SARIMAX( 

                               train, 

                               order=(p, d, q), 

                               seasonal_order=(P, D, Q, s), 

                               enforce_stationarity=False, 

                               enforce_invertibility=False 

                           ) 

                           results = model.fit(disp=False) 

                           if results.aic < best_aic: 

                               best_aic = results.aic 

                               best_params = ((p, d, q), (P, D, Q, s)) 

                       except Exception: 

                           continue 

 

Output 

Best SARIMA Order: ((0, 0, 2), (0, 0, 1, 7)) 

 

Mathematical Equation: 

(1 − ϕ1B)(1 − Φ1Bs)(1 − B)d(1 − Bs)D yt = (1 + θ1B)(1 + 

Θ1Bs) ϵt 

where, 

• B is the backward shift operator, representing the lag 

operator. 

• ϕ1 is the non seasonal autoregressive coefficient. 

• Φ1 is the seasonal autoregressive coefficient. 

• s is the seasonal period.  

• yt  is the observed time series at time t. 

• θ1  is the non seasonal moving average coefficient. 

• Θ1 is the seasonal moving average coefficient. 

• ϵt  represents the error term at time t (white noise). 

 

Derivation: 

Step 1: Apply differencing to make the data stationary 

yt’ = (1 − B)d(1 − Bs)D yt 

where,  

• Bkyt = yt-k is the backshift operator which shifts the series 

back by k periods 

• (1 − B) is the non seasonal differencing 

• (1 − Bs) is the seasonal differencing 

Step 2: Multiply the differencing terms with AR and MA 

parts.  

• Non seasonal AR- (1 − ϕ1B) 

• Seasonal AR- (1 − Φ1Bs) 

• Non seasonal MA- (1 + θ1B) 

• Seasonal MA- (1 + Θ1Bs) 

 

Step 3: Combine all the components.  

(1 − ϕ1B)(1 − Φ1Bs)(1 − B)d(1 − Bs)D yt = (1 + θ1B)(1 + 

Θ1Bs) ϵt 

 

Limitations of SARIMA Model: 

• It requires the series to be made stationary, which can 

sometimes remove meaningful trends. 

• There is complex parameter tuning.  

• It may underperform on non-linear data as it assumes 

linear relationships.  

• It cannot handle irregular seasonality.  

• It is sensitive to outliers. 

• It is not suitable for long-term forecasting. 

 

Code for SARIMA Model 

 

model = SARIMAX ( 

   train, 

   order=(0, 1, 2), 

   seasonal_order=(0, 1, 2, 30), 

   enforce_stationarity=False, 

   enforce_invertibility=False ) 

 

# Fit the model  

model_fit = model.fit() 

 

# Forecast  

forecast = model_fit.forecast(steps=len(test)) 

forecast.index = test.index  # To ensure dates match 
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The SARIMA model performed poorly in forecasting due to 

its sensitivity to outliers, which distorted its ability to capture 

the underlying patterns in the data. 

 

3.7.3 Exponential smoothing 

Exponential smoothing assumes that future patterns will be 

similar to recent observations. More weight is given to the 

more recent observations than reduces exponentially as the 

distance from the observation rises. The more recent the data 

point, the higher its weight in the forecast. It is especially 

useful for short-term forecasting when the data shows 

patterns but no strong seasonality or trend.  

 

Purpose: It is suited for series which are stationary and have 

random short-term variations but no long-term upward or 

downward movement. The objective is to smooth out short-

term fluctuations in data, capture trends or seasonality, and 

generate reliable forecasts. 

 

Types: There are three types of exponential smoothing, each 

suitable for different kinds of time series data.  

 

a. Simple Exponential Smoothing (SES) 

This method of forecasting is used when there is no trend or 

seasonality present in the time series data. In this type of 

smoothing, the smoothing parameter 𝛼 (alpha) controls how 

much weight should be give to each more recent observations 

as compared to later. The value of 𝛼 ranges between 0 to 1. 

It helps balance stability vs sensitivity in forecasts. 

• A higher value of 𝛼 signifies that the gives more weight 

to recent data. This makes the forecast more sensitive to 

recent changes, but also more unstable or reactive. 

• A lower value of  𝛼 signifies that more weight is given 

to past estimates, This makes the forecast more stable, 

but it reacts slowly to sudden changes.  

 

Mathematical Equation: 

st = 𝛼xt  + (1 – 𝛼) st-1  

where, 

• st is the current smoothed value or the forecast.  

• xt is the current actual observation.   

• st-1 is the previous smoothed value or the previous 

forecast. 

• 𝛼 is the smoothing parameter. 

• t is the time period.  

 

Derivation: 

The forecast of the next value is made by combining the 

current actual observation and the previous smoothed value. 

A smoothed value is an estimate of the current data point that 

reduces the effect of noise.  

 

Therefore, by definition: 

st = 𝛼xt  + (1 – 𝛼) st-1  

 

This equation shows that current actual observation xt is 

given more weight while the previous forecast st-1 is given 

less weight.  

 

Code for Exponential Smoothing: Simple Exponential 

Smoothing  

 

# Fit SES model  

model = SimpleExpSmoothing(train, initialization_method='estimated') 

model_fit = model.fit(optimized=True) 

# Forecast  

forecast = model_fit.forecast(steps=len(test)) 

forecast.index = test.index  # <-- IMPORTANT FIX 
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The SES method assumes that the data has no trend and no 

seasonality. It focuses only on smoothing past observations 

to predict a constant average level. In the case of gold price 

data, which exhibits strong upward trends and fluctuations, 

SES fails. As shown in the graph, the forecast line remains 

nearly flat, reflecting the method’s limitation in capturing 

trending or volatile behavior, resulting in poor predictive 

accuracy. 

 

b. Holt’s Trend Method 

This method of forecasting, also known as double 

exponential smoothing, is used when there is a trend but no 

seasonality present in the time series data. It extends single 

exponential smoothing by also accounting trends in the time 

series in the data. In this type of smoothing, two parameters 

𝛼 (alpha) and β (beta) are used. β is the trend smoothing 

parameter that controls how quickly the model responds to 

recent changes in the trend. A higher value of β gives more 

weight to recent changes, making the model respond faster 

to trend shifts. A lower β gives less weight to recent changes, 

making it smoother and slower to react.  

This method can handle both additive and multiplicative 

trends, i.e., it can handle both linear and exponential increase 

or decrease in the data.    

 

Mathematical Equations: 

 

i. Level equation 

lt = 𝛼xt + (1 – 𝛼) (lt-1 + bt-1) 

 

Where, 

• lt is the estimated level at time t. 

• 𝛼 is the smoothing parameter. 

• xt is the current actual observation. 

• bt-1 is the estimated trend at time t-1.   

 

ii. Trend Equation 

bt = β (lt – lt-1) + (1−β)bt-1 

 

Where, 

• bt is the estimated level at time t. 

• β is the trend smoothing parameter. 

 

iii. Forecast Equation  

x̂t+m = lt + mbt 

 

Where, 

• x̂t+m is the forecasted value of the time series for time t+m.  

• m is the number of periods.  

 

Derivation: 

Step 1: Assume the forecast is a combination of the current 

level and trend. Level refers to the  estimated base value of 

the time series at a given time, assuming no trends or 

seasonality. 

x̂t+1 = lt + bt 

Step 2: Combine the current actual observation xt with the 

previous forecasted level lt-1 and trend bt-1. Give more weight 

to current observations xt than past ones lt-1 + bt-1.  

 

lt = 𝛼xt + (1 – 𝛼) (lt-1 + bt-1) 

 

Step 3: Compare the current level lt with the previous level 

lt-1 to get an idea of how much the base value is changing.  

 

bt = β (lt – lt-1) + (1−β)bt-1 

 

Step 4: For forecasting, the level equation and the trend 

equation are added.  

 

x̂t+m = lt + mbt 

 

Code for Exponential Smoothing: Holt’s Trend Model  
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#Fit Holt’s Trend Method 

model = ExponentialSmoothing( 

   train, 

   trend='add',         # 'add' for additive trend, 'mul' for multiplicative 

   seasonal=None, 

   initialization_method='estimated' 

) 

model_fit = model.fit(optimized=True) 

 

# Forecast 

forecast = model_fit.forecast(steps=len(test)) 

forecast.index = test.index  # align forecast with test index 

 
The forecast line follows a smooth and gradual upward trend, 

failing to adapt to the rapid fluctuations in the actual prices. 

This results in overall poor predictive accuracy for highly 

volatile market behavior. 

 

c. Holt-Winters Method 

This method of forecasting is used when there is trend and 

seasonality present in the time series data. It extends Holt’s 

trend method by also accounting seasonality in the time 

series in the data. In this type of smoothing, two parameters 

𝛼 (alpha), β (beta), and γ (gamma) are used. γ is the 

smoothing parameter for seasonality and controls how 

quickly the model responds to recent changes in the seasonal 

pattern. It determines how much weight is given to the most 

recent seasonal observation. A higher value of γ gives more 

weight to recent seasonal patterns, making the model respond 

faster to seasonal adjustment. A lower γ gives less weight to 

recent seasonal patterns, making it smoother and slower to 

react.  

There are two variations: 

• Additive Seasonality: used when seasonal fluctuations 

are approximately constant,  regardless of whether the 

overall level of the series is high or low. 

• Multiplicative Seasonality: used when seasonal 

variations grow or shrink proportionally with the level of 

the series. 

 

 

 

 

 

Mathematical Equations: 

 

Additive Model: 

i. Level equation 

lt = 𝛼(xt – st-L) + (1 – 𝛼) (lt-1 + bt-1) 

where, 

• lt is the estimated level at time t. 

• 𝛼 is the smoothing parameter. 

• xt is the current actual observation. 

• bt-1 is the estimated trend at time t-1. 

• L is the season length. 

• st-L is the seasonal factor observed exactly one season ago. 

 

ii. Trend Equation 

bt = β (lt – lt-1) + (1−β)bt-1 

 

Where, 

• bt is the estimated level at time t. 

• β is the trend smoothing parameter. 

 

iii. Seasonal Equation 

st = γ(xt – lt) + (1 – γ) st-L 

where, 

• st is the seasonal component at time t. 

• γ is the seasonal smoothing parameter. 

 

iv. Forecast Equation  

x̂t+m = lt + mbt + st-L+m 

where, 

• x̂t+m is the forecasted value of the time series for time 

t+m. 
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• m is the number of periods. 

 

Derivation: 

 

Step 1: Assume the forecast is a combination of the current 

level, trend, and seasonal component. 

 

x̂t+1 = lt + bt + st+1-L 

 

Where, 

• st+1-L refers to the same position in the previous seasonal 

cycle. 

 

Step 2: Combine the de-seasonalized actual observation xt – 

st-L with the previous forecasted level and trend lt-1 + bt-1. 

Give more weight to current observations xt – st-L than past 

ones lt-1 + bt-1.  

 

lt = 𝛼(xt – st-L) + (1 – 𝛼) (lt-1 + bt-1) 

 

Step 3: Compare the current level lt with the previous level 

lt-1 to get an idea of how much the base value is changing.  

 

bt = β (lt – lt-1) + (1−β)bt-1 

 

Step 4: Compare the seasonally adjusted residual xt – lt with 

the previous seasonal estimate st-L. xt – lt is the part of the 

current observation that is not explained by the current level 

due to seasonality. Give more weight to current residual xt – 

lt than past seasonal estimate st-L.  

 

st = γ(xt – lt) + (1 – γ) st-L 

 

Step 5: Combine the last known level, trend, and the 

corresponding seasonal component. 

x̂t+m = lt + mbt + st-L+m 

 

 

Multiplicative Model: 

 

i. Level equation 

lt = 𝛼(xt /st-L) + (1 – 𝛼) (lt-1 + bt-1) 

where, 

• lt is the estimated level at time t. 

• 𝛼 is the smoothing parameter. 

• xt is the current actual observation. 

• bt-1 is the estimated trend at time t-1. 

• L is the season length. 

• st-L is the seasonal factor observed exactly one season ago. 

ii. Trend Equation 

bt = β (lt – lt-1) + (1−β)bt-1 

where, 

• bt is the estimated level at time t. 

• β is the trend smoothing parameter. 

 

iii. Seasonal Equation 

st = γ(xt / lt) + (1 – γ) st-L 

where, 

• st is the seasonal component at time t. 

• γ is the seasonal smoothing parameter. 

 

iv. Forecast Equation  

x̂t+m = (lt + mbt) st-L+m 

where, 

• x̂t+m is the forecasted value of the time series for time t+m.  

• m is the number of periods.  

 

Derivation: 

Step 1: Assume the forecast is a combination of the current 

level, trend multiplied by the seasonal component. 

x̂t+1 =(lt + bt ) st+1-L 

 

Where, 

• st+1-L refers to the same position in the previous seasonal 

cycle. 

 

Step 2: Combine the de-seasonalized actual observation xt / 

st-L with the previous forecasted level and trend lt-1 + bt-1. 

Give more weight to current observations xt – st-L than past 

ones lt-1 + bt-1.  

lt = 𝛼(xt / st-L) + (1 – 𝛼) (lt-1 + bt-1) 

 

Step 3: Compare the current level lt with the previous level 

lt-1 to get an idea of how much the base value is changing.  

 

bt = β (lt – lt-1) + (1−β)bt-1 

 

Step 4: Compare the seasonally adjusted residual xt / lt with 

the previous seasonal estimate st-L. This measures how much 

of the current observation is due to seasonality. Give more 

weight to current residual xt / lt than past seasonal estimate 

st-L.  

st = γ(xt / lt) + (1 – γ) st-L 

 

Step 5: Combine the last known level, trend, and the 

corresponding seasonal component. 

 

x̂t+m = lt + mbt + st-L+m 

 

 

Code for Exponential Smoothing: Holt-Winters Method 

# Fit Holt-Winters model  

seasonal_period = 30  

model = ExponentialSmoothing(train, trend="add", seasonal="add", seasonal_periods=seasonal_period, 

initialization_method='estimated') 

 

model_fit = model.fit(optimized=True) 

 

# Forecast  

forecast = model_fit.forecast(steps=len(test)) 
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The Exponential Smoothing: Holt-Winters Method assumes 

smooth and gradual changes over time. Given the sharp 

spikes and market volatility in the gold price data, 

exponential smoothing could not adapt effectively, leading to 

inaccurate predictions. 

 

Limitations of Exponential Smoothing: 

• It assumes linear relationships and may underperform on 

non-linear data. 

• It is sensitive to outliers. 

• It gives more weight to recent data, making it less suitable 

for long-term forecasting. 

• It does not consider external or causal variables, i.e., it is 

purely univariate. 

• It cannot handle irregular or changing seasonality well. 

• Parameter tuning (α, β, γ) requires careful selection to 

avoid overfitting or underfitting. 

. 

3.7.4 Prophet Model  

Prophet is a forecasting model, developed by Facebook, that 

can handle data with strong seasonal effects, missing values, 

and outliers.  

 

Purpose: This model is best suited for data having clear 

seasonality. It is very flexible, easy to use, and can handle 

missing values and outliers.  

 

Mathematical Equations: 

y(t) = g(t) + s(t) + h(t) + ϵt 

 

Where, 

• y(t) is the observed value at time t.  

• g(t) is the trend function.  

• s(t) is the seasonality function.  

• h(t) is the holiday effect.  

• ϵt is the error term.  

 

Derivation: 

 

i. Trend Component 

There are two types of trend components: 

 

 

a. Piecewise Linear Trend 

It allows the trend to change at specified points. These points 

are known as changepoints. It assumes that before a 

changepoint, the growth rate is constant while after each 

changepoint, a shift is added in the slope.  

 

Mathematical Equation: 

g(t) = (k + a(t)Tδ) (t – t0) + (m + a(t)T γ)  

 

Where, 

• k is the slope or the initial growth rate. 

• a(t) is a vector of length S that controls how much each 

changepoint affects time t. 

• S is the total number of changepoints. 

• δ is the change in the growth rate (slope) after 

changepoint. 

• (t – t0) is the time that has passed since the starting point 

of the series. 

• m is the intercept or offset term. It shifts the entire trend 

up or down, without changing its slope. 

• γ is a vector used to adjust the intercept.  

 

Derivation: 

Step 1: Equation of a basic linear trend 

g(t) = k(t – t0) + m 

 

Step 2: Add an adjustment for each changepoint. After each 

changepoint tj, the slope increases by δj. If δj > 0, the slope 

increases after tj whereas if δj < 0, the slope decreases after tj

.  

g(t) = k(t – t0) + m + j=1∑S δj⋅(t – tj) ⋅ 1[t > tj]   …(i) 

 

Where,  

• S is the total number of changepoints. 

• (t – tj) is the amount of time that has passed since 

changepoint tj. 

• [t > tj] is called an indicator function. If t > tj, meaning 

the current time t is after the changepoint tj, then 1[t > tj] = 

1 otherwise 0.  

 

Step 3: Define vector a(t) of length S.  

aj(t) = 1[t > tj] ⋅ (t – tj)  
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Therefore, sum becomes the dot product of the two vectors 

a(t) and δ.  

j=1∑S δj ⋅ aj(t) = a(t)T δ …(ii) 

 

Step 3: Substituting the value of (ii) in (i). 

g(t) = k(t – t0) + m + a(t)T δ 

 

Step 4: Grouping the slope-like terms together as both k and 

a(t)Tδ depend on (t – t0) to get the effective slope. Replace 

the initial intercept m with m’ to ensure the trend line does 

not jump at any changepoint and the overall curve remains 

continuous. Adding a(t)T γ to m compensates for the 

cumulative effect of slope change at each changepoint. 

g(t) = (k + a(t)Tδ) (t – t0) + m’ 

m’ = m + a(t)T γ 

 

Step 5: Substituting the value of m’. 

g(t) = (k + a(t)Tδ) (t – t0) + (m + a(t)T γ)  

 

b. Logistic Growth Trend 

Logistic Growth is a way to model how something grows 

rapidly at first, then slows down, and eventually levels off.  

Mathematical Equation: 

g(t) = C / (1 + exp( – (k + a(t)T δ) (t – t0))) 

where, 

• C is the carrying capacity, i.e., the maximum value the 

trend can reach.  

• exp is the exponential function, i.e., shorthand for ex. 

• k is the growth rate.  

• a(t) is a vector of length S that controls how much each 

changepoint affects time t. 

• S is the total number of changepoints. 

• δ is a vector that defines the change in the growth rate 

(slope) at each changepoint. 

• t0 is the offset time or the midpoint. 

 

Derivation: 

Step 1: Equation of standard logistic growth  

g(t) = C / (1 + exp( –k (t – t0))) 

Case 1: For early times, t << t0 

exp( –k (t – t0)) >> 1  

⇒ g(t) = C/(large number) ≈ 0 

So the growth starts near zero. 

 

Case 2: when t = t0 

exp( –k (t – t0)) = 1  

⇒ g(t) = C/2 

The growth rate is fastest  

Case 3: when t >> t0 

exp( –k (t – t0)) → 0  

⇒ g(t) → C 

The growth rate slows down and eventually stops increasing 

as it reaches the maximum limit C.  

 

Step 2: Adjusting the equation in accordance to 

changepoints. The slope becomes k + a(t)T δ .  

Therefore, the equation becomes: 

g(t) = C / (1 + exp( – (k + a(t)T δ) (t – t0))) 

 

ii. Seasonality Component  

Fourier series is used to model the periodic effects in the data. 

It is a way to represent any repeating (periodic) function as a 

sum of sines and cosines. 

Mathematical Equation: 

s(t) = X(t)T β  

where: 

• X(t) is a feature vector of seasonal components. 

• β is a vector of coefficients. 

 

Derivation: 

Step 1: Represent seasonality as a fourier series.  

s(t) =  n=1∑N (an cos ((2πnt)/P) + bn sin ((2πnt)/P) )  

 

Where: 

• P is the period of seasonality. 

• N is the order of the fourier series. 

• an, bn are the coefficients that are learned from the data. 

They determine how much each wave contributes.  

• t is the time in days. 

 

Step 2: Define X(t) as a feature vector of seasonal 

components and β as a vector of coefficients.  

X(t) = [ cos ((2πt)/P), sin ((2πt)/P), …., cos ((2πNt)/P), sin 

((2πNt)/P) ] 

β = [ a1, b1,....., an, bn ] 

Therefore, 

s(t) = X(t)T β  

 

iii. Holiday Effect  

This effect is to model the impact of special events that 

causes predictable increase or decrease in a time series data.  

 

Mathematical Equation: 

h(t) = Z(t)T 𝛋 

 

Where,  

• Z(t) is a binary vector indicating whether time t is a 

holiday. Each holiday gets its own binary indicator. The 

indicator is 1 if time t is a holiday otherwise 0.  

• 𝛋 is a vector of learned parameters that represent the 

magnitude and direction of the holiday effect. It is 

automatically calculated during training. 

 

Limitations of Prophet Model: 

• It does not work as well for data with no patterns. 

• It may underperform on very complex or highly nonlinear 

data. 

• It needs a lot of historical data to learn from. 

 

Code for Prophet Model 

model = Prophet() 

model.fit(train) 

future = model.make_future_dataframe(periods=len(test)) 

forecast = model.predict(future) 
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Prophet outperformed the other models due to its robustness 

to missing data, outliers, and structural breaks. It captured 

both the trend and seasonal components effectively and 

aligned closely with the actual patterns, making it the most 

reliable model for forecasting gold prices. 

 

3.8 Performance Metrics  

 

3.8.1 MAE (Mean Absolute Error) 

It measures the average of the absolute differences between 

forecasted and true values. It is less sensitive to outliers, 

however, extreme outliers can still influence it. It is scale-

dependent. The value of MAE is always greater than or equal 

to 0, with 0 representing a perfect prediction. It is generally 

used when all errors are required to be treated equally and to 

be in the same units as that of the data. Lower value of MAE 

indicates a better model.  

 

MAE= (1/n) t=1∑n|yt−ŷt| 

 

where, 

● n is the total number of observations 

● yt actual value at time t 

● ŷt is the predicted value at time t 

● |yt−ŷt| is the absolute error at time t (distance 

between actual and predicted) 

 

Code for MAE Calculation 

mae = mean_absolute_error(test, forecast) 

 

3.8.2 RMSE (Root Mean Squared Error) 

It measures the square root of the average of the squared 

differences between the actual values and the predicted 

values. The error term |yt−ŷt| is squared to give higher weight 

to larger errors, making RMSE sensitive to outliers and then 

square rooted to bring the result back to the original scale of 

the data, thus, it has the same unit as the original data. 

Compared to MAE, RMSE penalizes larger errors more 

strongly. Lower value of RMSE indicates a better model. 

 

 

 

RMSE = √( (1/n) t=1∑n|yt−ŷt|2 ) 

 

where, 

• n is the total number of observations 

• yt actual value at time t 

• ŷt is the predicted value at time t 

• |yt−ŷt| is the absolute error at time t (distance between 

actual and predicted) 

 

Code for RSME Calculation 

rmse = np.sqrt(mean_squared_error(test, forecast)) 

 

3.8.3 MAPE (Mean Absolute Percentage Error) 

It expresses the accuracy of the model as a percentage by 

averaging the absolute percentage errors. It is scale-

independent. However, it can be inaccurate if the actual 

values are very small because division by values close to zero 

can lead to very large or undefined percentage errors. Lower 

value of MAPE indicates a better model. 

MAPE= (100/n) t=1∑n| (yt−ŷt)/yt | 

 

where, 

• n is the total number of observations 

• yt actual value at time t 

• ŷt is the predicted value at time t 

• |yt−ŷt| is the absolute error at time t (distance between 

actual and predicted) 

 

Code for MAPE Calculation 

mape = np.mean(np.abs((test.values - forecast.values) / 

test.values))*100 

 

4. Results and Prediction  
 

4.1 Model Evaluation and Comparison 

 

I have evaluated three models- ARIMA, SARIMA, 

Exponential Smoothing (Holt-Winters Method), and 

Prophet. Due to the presence of significant outliers in the 

dataset, I could not remove them without losing important 

information. ARIMA, SARIMA, and Exponential 

Smoothing are sensitive to outliers, which adversely affects 
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their predictive accuracy. In contrast, Prophet is relatively 

more robust to outliers. Therefore, Prophet is the most 

suitable model.  

 

Further, comparing performance metrics such as MAE, 

RMSE, and MAPE across all models.  

 
MODEL MAE  RSME  MAPE 

ARIMA  26.77 32.36 11.84% 

SARIMA 28.22 33.88 12.49% 

Simple Exponential Smoothing 32.52 38.84 14.41% 

Holt’s Trend Model 27.02 37.57 11.95% 

Holt Winter’s Model 33.53 39.44 16.21% 

Prophet 20.27 26.69 8.83% 

  

The table shows that the performance metrics clearly indicate 

that the model's suitability to data characteristics 

significantly affect forecasting accuracy. Prophet’s 

comparatively lower MAE (20.27), RMSE (26.69), and 

MAPE (8.83%) demonstrate its superior ability to capture 

both trend and seasonal components while being robust to 

outliers. 

 

ARIMA and Holt’s Trend Model perform almost 

comparably, suggesting that the dataset has a strong trend 

component but limited complex seasonal patterns. ARIMA’s 

slightly better RMSE (32.36 vs. 37.57) implies that it 

manages larger deviations. 

SARIMA does not outperform ARIMA, despite its seasonal 

component, which suggests that seasonality may not be 

strongly pronounced. 

 

Simple Exponential Smoothing and Holt Winter’s Model 

perform poorly, confirming that methods assuming a stable 

level (SES) or additive/multiplicative seasonal components 

(Holt-Winter’s) are ill-suited for this dataset.  

 

Therefore, Prophet is the best suited model as it has the 

lowest value of MAE, RMSE, and MAPE out of all six. 

 

4.2 Forecast for the year 2025 

 

# Fit the model 

model = Prophet() 

model.fit(df)  

 

# Create a future DataFrame until the end of 2025 

future = model.make_future_dataframe(periods=365, freq='D')  # 365 for one year if daily data 

 

# Make predictions 

forecast = model.predict(future) 

 

# Filter forecast only for 2025 

forecast_2025 = forecast[forecast['ds'].dt.year == 2025] 

 

 
 

The orange line represents the predicted daily prices, while 

the shaded region indicates the uncertainty interval (upper 

and lower confidence bounds). 

 

From the forecast: 

• Gold prices are expected to continue rising steadily 

throughout 2025. 

• The model captures a moderate upward trend, with 

predicted close prices starting around 260 and potentially 

exceeding 320–360 by the end of the year. 

• The widening of the confidence interval toward the latter 

half of the year reflects increased uncertainty in long-

range forecasts, which is common in time series models. 
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4.3 Strengths and Limitations 

 

Prophet demonstrated several advantages that made it 

particularly well-suited for forecasting gold prices.  

• It is robust to outliers, which is essential given the natural 

volatility and irregularities observed in gold price trends.  

• Unlike ARIMA, SARIMA or Exponential Smoothing, 

Prophet automatically handles holidays and seasonality, 

and allows for flexible trend adjustments using 

changepoints. This was especially useful in capturing 

both long-term trends and recurring seasonal patterns in 

the data.  

 

However, Prophet has few drawbacks.  

• While it handles simple seasonality and changepoints 

effectively, it may underperform in capturing complex 

autocorrelation structures that models like SARIMA are 

explicitly designed for.  

• It assumes additive or multiplicative seasonality by 

default, but this might not always match how the data 

actually behaves. 

• Tuning parameters like the number of changepoints can 

require some trial-and-error and understanding of the 

data. 

• Although Prophet works well with large datasets, it might 

follow random noise in the data too closely, especially if 

there are sudden changes or unexplained fluctuations.  

 

4.4 Interpretation of Forecast Trends  

 

The forecasted increase in gold prices throughout 2025 is 

correlated to current global and economic developments. 

• Escalating Middle East Tensions: The ongoing 

instability involving Iran and Israel is expected to persist 

into 2025, potentially amplifying global economic 

uncertainty. This geopolitical stress typically pushes 

investors toward safer assets like gold, thus increasing its 

price.  

• Global Economic Slowdown Risks: Many major 

economies are slowing down or at risk of recession. As a 

result, people may lose trust in regular investments like 

stocks or bonds, and instead invest in gold for safety. 

• Persistent Inflation Pressures: Even though inflation 

has eased in some countries, core inflation is still high. 

This is leading investors and central banks to hold gold as 

a hedge against future inflation. 

• Increased Central Bank Buying: Countries like China, 

India, and Russia have recently accelerated gold 

accumulation in their reserves. With this trend persisting 

into mid-2025, it has already contributed to stronger 

global demand and a steady rise in gold prices. 

• Currency Devaluation Concerns: As debt levels 

increase globally, concerns about currency stability may 

cause more individuals and institutions to turn to gold as 

a store of value. 

 

Overall, the Prophet model's forecast aligns with real-world 

expectations: increased volatility, persistent inflation, and 

geopolitical risks in 2025. 

  

 

 

5. Summary and Findings 
 

This study aimed to forecast gold prices using time series 

models. After evaluating ARIMA, SARIMA, Exponential 

Smoothing (SES, Holt’s Trend, Holt-Winters), and Prophet, 

using MAE, RMSE, and MAPE, it was found that Prophet 

performed best. Its robustness to outliers and ability to handle 

seasonality and trend shifts, makes it the most suitable time 

series model for predicting gold prices.  

 

Traditional smoothing methods like SES and Holt-Winters, 

assumed gradual changes and failed to capture the sharp 

spikes caused by market volatility. Similarly, ARIMA and 

SARIMA were less effective due to the data’s non-linear 

trend and irregular seasonality. Furthermore, these models 

are sensitive to outliers, unlike Prophet.  

 

The model predicted a continued upward trend in gold prices 

throughout 2025, supported by recent global economic and 

geopolitical instability. The dataset exhibited clear trends, 

seasonal patterns, and cyclic behavior, further validating the 

use of time series forecasting techniques. 

 

6. Conclusion 
 

This research comprehensively focuses on predicting gold 

prices by integrating advanced time series models, and 

explaining the models in detail. Gold, as a safe-haven asset, 

has consistently responded to macroeconomic fluctuations, 

inflationary pressures, currency valuation shifts, and 

geopolitical uncertainties. Historical analysis like the 1970s 

inflationary period, the 2008 global financial crisis, the 2011 

economic concerns, the COVID-19 pandemic, and wars such 

as the Russia-Ukraine war reaffirmed that gold prices rise 

during periods of financial instability by influencing investor 

sentiment. The study also examined the relationship between 

gold and other asset classes, revealing its generally negative 

correlation with stock markets and positive correlation with 

inflation and demand, though exceptions were noted during 

unusual global events. 

 

This study realises the need for accurate forecasts for 

investors, policymakers, and researchers. Using historical 

data spanning 5 years, the research explored 6 forecasting 

models, including ARIMA, SARIMA, Exponential 

Smoothing (Simple Exponential Smoothing, Holt’s Linear 

Trend Model, and Holt Winter’s Model), and Prophet. 

 

The results indicated that traditional statistical models like 

ARIMA and SARIMA struggled to handle the inherent 

volatility and outlier-driven nature of gold prices. These 

models performed poorly due to their sensitivity to sudden 

price fluctuations and their reliance on linear patterns, which 

do not fully capture the non-linear and dynamic behavior of 

gold markets. Exponential Smoothing provided slightly 

better performance but remained limited in detecting sharp 

trend shifts. 

 

Prophet, on the other hand, demonstrated better adaptability 

to trend changes and seasonality, making it more suitable for 

medium to long-term forecasting. Model evaluation using 

performance metrics such as Mean Absolute Percentage 

Error (MAPE), Mean Absolute Error (MAE), and Root Mean 
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Square Error (RMSE) confirmed that Prophet provided the 

most consistent results among the models tested. 

 

The five-year forecast generated through the Prophet model 

suggests a likely upward trend in gold prices. This projection 

aligns with current global economic and geopolitical factors. 

Ongoing high inflation, cautious monetary policies by central 

banks, and global tensions—like the Russia-Ukraine war and 

recent issues in the Middle East involving Iran—are likely to 

keep investors interested in gold as a safe investment during 

uncertain times. Additionally, fears of a potential global 

economic slowdown encourage investors to turn to safer 

assets, further strengthening gold’s position in the financial 

market, leading to a rise in prices.  

 

However, while the predictions offer useful insights, they 

must be interpreted with caution. Forecasting models, 

including Prophet, assume that future trends will broadly 

follow historical patterns, which may not always hold true in 

times of unprecedented market shocks. 

 

Overall, this study demonstrates how different modeling 

approaches interpret historical patterns and project future 

trends. It explains how to carefully select models that can 

handle seasonality, trend changes, and volatility according to 

the data. The comparison of ARIMA, SARIMA, Exponential 

Smoothing, and Prophet shows how modern models like 

Prophet, which are designed to capture trend shifts and 

seasonal effects, can outperform traditional linear models in 

volatile markets. This research also underlines the value of 

data preprocessing steps such as outlier handling, proper 

indexing, scaling, and differencing which are essential for 

improving model accuracy and stability. 
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