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Abstract: Pharmacokinetic (PK) modeling plays a crucial role in developing and optimizing drug therapies, enabling the prediction of 

drug concentration in the plasma over time and thus informing dosage regimens for maximum efficacy with minimal toxicity. Traditional 

PK models, while useful, often rely on discrete and linear representations that may not fully capture the complex dynamics of drug 

interaction within the human body. This limitation is particularly evident in scenarios involving multiple doses where the interactions 

between successive doses can significantly influence overall drug behavior. Neural Ordinary Differential Equations (NODEs) provide a 

novel computational approach by modeling the continuous dynamics of biological systems through a deep learning framework. Unlike 

traditional discrete models, NODEs integrate the derivative of the state with respect to time, offering a flexible and powerful tool for 

continuously simulating biological processes. This study presents a NODE-based model specifically tailored for the pharmacokinetics of 

multi-dose drug administration. The proposed NODE model utilizes a single-layer neural network with 50 neurons in the hidden layer, 

focusing exclusively on drug concentration without direct time input. This design ensures that the model remains invariant to shifts in 

time, enhancing its applicability across varied clinical settings. Simulated pharmacokinetic profiles with double dosing were generated, 

incorporating Gaussian noise to mimic real-world measurement variations and biological variability. After 1000 epochs, the NODE 

demonstrated high accuracy in predicting pharmacokinetic profiles, indicating its potential as a robust tool in pharmacology. The success 

of this NODE model in accurately simulating double-dose scenarios showcases its capability to enhance the precision of drug dosing 

guidelines, ultimately improving patient outcomes by tailoring therapies to individual pharmacokinetic responses. 
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1. Introduction 
 

Modern medicine is one of, if not the most, significant 

contributors to the rapid growth of the average lifespan of 

humans. Of medicine's most important inventions are drugs, 

synthetic or natural chemicals designed to interact with and 

control the human body's chemical composition. 

Pharmacology is the field studying the design, use, and effects 

(intended and unintended) of these drugs, and today is one of 

the most invested-in areas of study. Pharmacodynamics (PD) 

and pharmacokinetics (PK) are two subfields of 

pharmacology that examine the mechanisms of drug activity 

in the body. PK studies drugs' kinetics (“movement”) through 

the body, particularly their absorption, distribution, 

metabolism, and excretion. Conversely, PD looks at the 

dynamics (“change over time”) of drugs and their 

physiological effects. It is important to note that although 

some use PK and PD interchangeably, the terms are distinct. 

 

Recently, many studies in pharmacology have been focused 

on implementing computational methods to improve the 

analysis of data and modeling of drug-body systems. Many of 

these computational methods include improvements to 

existing mathematical methods, which include differential 

equations, algebraic systems, and small-step approximations. 

These mathematical models create deterministic, exact 

predictions. Parameters used in these mathematical models 

are often estimated or fitted to real-world data. Other 

computational models used in pharmacology include 

molecular dynamics simulations, statistical models, and 

network models. 

 

However, a new computational modeling field, machine 

learning (ML), has emerged. ML methods use models that are 

(canonically) trained to fit purely real-world data and make 

predictions about some systems. One of the most commonly 

used types of ML models is the neural network (NN), which 

has various derivative models that emerge in various use 

cases.  

 

Neural networks are universal approximators and, according 

to the Universal Approximation Theorem, can approximate a 

real-valued, differentiable function across a closed domain. 

Neural networks are composed of neurons arranged in layers: 

an input layer that receives the data, one or more hidden layers 

that process the data, and an output layer that produces the 

final prediction. Each neuron in a layer is connected to several 

others in the previous and next layers, and these connections 

are weighted. During the training phase, the neural network 

uses a dataset to adjust these weights based on the prediction 

errors, typically using a method called backpropagation. The 

network learns to reduce error through iterative adjustments, 

refining its model of the underlying data patterns. This 

process allows neural networks to make predictions or 

classifications based on input data, making them incredibly 

useful for complex problems ranging from image recognition 

to drug discovery. 

 

Expanding the capabilities of traditional computational 

models, Neural Ordinary Differential Equations (NODEs) 

offer a novel approach by integrating concepts from 

differential equations and deep learning. NODEs utilize a 

neural network to parameterize the derivative of a hidden 

state with respect to depth, effectively treating the depth of 

the network as the time variable in a dynamic system. This 

setup allows the model to learn continuous-time dynamics, 

providing a flexible and adaptive framework that is 

particularly well-suited for modeling time-dependent or 

sequential data. The continuous nature of NODEs makes 

them an excellent tool for simulating biological systems and 

other dynamic environments. 

 

NODEs are particularly useful in pharmacokinetic (PK) 

modeling. Their continuous modeling approach enables 
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capturing intricate drug behaviors in various biological 

environments, leading to more precise predictions of drug 

concentration-time profiles in individual patients. NODE 

modeling can facilitate the tailoring of dosing regimens and 

enhance the predictive accuracy of pharmacokinetic studies, 

significantly improving personalized medicine strategies and 

optimizing therapeutic outcomes. 

 

Distinct from existing research on the application of Neural 

Ordinary Differential Equations (NODEs) in 

pharmacokinetic (PK) modeling, this study aims to pioneer 

the development of a low-dimensional NODE framework 

tailored specifically for multi-dose scenarios (Fig. 1). In these 

scenarios, the drug of interest is administered multiple times, 

in contrast to a single dose situation. This repeated 

administration poses unique challenges, including the 

complexities of drug accumulation, interaction between 

doses, and the body's adaptive responses over time, which can 

significantly influence efficacy and safety. The proposed 

NODE framework aims to accurately capture and model these 

dynamics, providing a more nuanced understanding of drug 

behavior across multiple dosing events, which is crucial for 

optimizing therapeutic strategies and improving patient 

outcomes. 

 

 
Figure 1: Pharmacokinetic Plot for a Multi-Dose System 

 

Figure 1: Plot of the concentration of a drug with ideal 

behavior against time, in a case where the drug is 

administered 4 times, with an equal space between each 

injection. The periodic peaks, with growing height, are 

characteristic of multi-dose pharmacokinetics 
 

To validate and refine this novel framework, this work will 

focus on creating and employing an NODE specifically 

designed for modeling the dynamics of a double-dose 

scenario to elucidate the extension of the NODE framework 

to multi-dose cases. This model will then be fit to 

synthetically generated double-dose data. Modeling these 

multi-dose scenarios with NODEs allows for increased 

pharmacokinetics study depth. It would be a valuable 

resource for those in the medical and professional fields. 

 

a) Traditional Pharmacokinetic Models 

Traditional pharmacometrics models, such as compartmental 

models, have been widely used to describe drugs' PK profiles. 

These models typically divide the body into compartments 

(e.g., central and peripheral), with differential equations 

describing the transfer of drugs between compartments. For 

instance, a two-compartment model might include equations 

for the central compartment (representing the bloodstream) 

and the peripheral compartment (representing tissues) [1]. 

 

Mechanistic models, another class of traditional 

pharmacometric models, incorporate detailed biological 

mechanisms into their equations. These models can include 

enzyme kinetics, receptor binding, and other physiological 

processes. Despite their complexity and ability to provide 

deep insights, mechanistic models can be limited by their 

reliance on well-defined biological mechanisms and 

parameters, which are not always available [2]. 

 

b) Neural Networks 

Neural networks (Fig. 2) are computational models loosely 

inspired by the structure of biological brains. The most basic 

form of a neural network consists of multiple layers, which 

are each composed of nodes. The first layer of the network is 

the input layer, in which each node is some numerical input 

to the neural network. The last layer of the network is the 

output layer, which returns the network outputs. Layers 

between the input and output are called hidden layers. The 

nodes of each layer are connected to all other nodes in 

neighboring layers by edges. The number of nodes in each 

layer, as well as the number of hidden layers, is arbitrary and 

is often chosen based on the requirements of the network. 

 

 
Figure 2: Graphical Representation of a Neural Network 

 

Figure 2: Above is a neural network with arbitrary input 

(red), output (green), and hidden (blue) layer size and an 

arbitrary number of hidden layers. Each node is connected to 

every node in neighboring layers by edges. 
 

Figure 3: Fundamentally, neural networks are nothing except 

large functions that take numerical inputs and return 

numerical outputs. Typically, the input values "move" and are 

transformed through the layers, starting in the input layer and 

finishing at the output layer. The movement of the input 

values through the network is quantified as activations of each 

node (a term defined more formally later), and results in a 

numerical output of the network. 

 

Below are mathematical representations of each layer's 

activations in vector form, along with matrix-vector 

representations of the network's weight and biases.  
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The activations propagate through layers as follows: 

 

 
      (3) 

 

The full network computation can be summarized as follows: 

 

 
(4) 

 

c) Neural Ordinary Differential Equations (NODEs) 

The development of neural ordinary differential equations 

(NODEs) represents a significant advancement in combining 

the strengths of traditional differential equation models and 

neural networks. NODEs integrate the structure of differential 

equations with the learning capabilities of neural networks, 

allowing for the data-driven modeling of dynamic systems. 

This approach offers a flexible yet interpretable framework 

for pharmacometrics modeling [3].  

 

NODEs have shown promise in various applications, 

including pharmacokinetics. For instance, NODEs have been 

used to model complex PK profiles, such as multi-

compartmental behavior and target-mediated drug 

disposition. These models can learn from data to identify the 

underlying dynamics, making them particularly useful for 

capturing non-linear relationships and complex dosing 

regimens [4].  

 

Below is the mathematical representation of the action of a 

traditional neural network: applying a transformation 

repeatedly to inputs. 

 

 
(5) 

 

In contrast, a NODE is a neural network defined as computing 

the derivative of the input with respect to some variable. In 

most cases, this NODE is simply a one-layer network. This 

can be conceptualized as a neural network replacing one side 

of an ordinary differential equation (ODE). 

 

               (6) 

 

Like ODEs, NODEs must be solved. When NODEs are 

solved (integrated), the resulting values are matched to the 

data. This is how the loss of a NODE is calculated and is 

behind it’s training process. 

        (7) 

 

In the context of pharmacokinetic modeling, the development 

of low-dimensional NODEs represents a strategic 

advancement aimed at enhancing the computational 

efficiency and accessibility of these tools. Low-dimensional 

NODEs simplify the complexity of the models by reducing 

the number of parameters and dimensions involved, without 

significantly compromising their ability to capture critical 

biological processes and dynamics. This reduction is crucial 

in scenarios where computational resources are limited or 

where real-time analysis is required, such as in clinical 

settings or remote monitoring situations. By focusing on 

essential dynamics and minimizing unnecessary complexity, 

low-dimensional NODEs facilitate quicker iterations and 

adaptations, making pharmacokinetic modeling more 

practical and applicable in everyday medical decision-

making. This approach not only streamlines the modeling 

process but also improves the interpretability of the results, 

enabling clinicians and researchers to make informed 

decisions based on clear and concise data representations.  

 

d) NODEs in Single-Dose Scenarios 

Initial applications of NODEs in pharmacokinetics have 

primarily focused on single-dose scenarios. Studies have 

demonstrated that NODEs can accurately model drug 

concentration-time profiles and predict outcomes based on 

single-dose data. For example, Lu et al. (2021) applied 

NODEs to predict the pharmacokinetics of drugs with linear 

and non-linear kinetics, showing that these models could 

handle various PK scenarios effectively. [5] 

 

However, single-dose models do not fully capture the 

complexities of repeated drug administration, which is 

common in clinical practice. Multi-dose scenarios introduce 

additional challenges, such as drug accumulation, varying 

dosing intervals, and changes in pharmacokinetic parameters 

over time. Addressing these challenges requires extending 

NODEs to multi-dose PK modeling. 

 

e) NODEs in Multiple Dose Scenarios 

Extending NODEs to multi-dose scenarios involves several 

key considerations. The differential equations must be 

adapted to account for repeated dosing and the resulting 

pharmacokinetic profiles. This includes incorporating terms 

representing multiple doses and their cumulative impact on 

drug concentration over time. Additionally, training NODEs 

on multi-dose data is essential to ensure that the models can 

learn the relevant dynamics from empirical data. 

 

Recent studies have started to explore the application of 

NODEs in multi-dose scenarios. For example, Rackauckas et 

al. (2021) developed methods for integrating NODEs with 

mechanistic models to capture complex dosing regimens and 
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drug interactions. These hybrid models combine the 

interpretability of mechanistic models with the flexibility of 

NODEs, offering a robust approach for multi-dose 

pharmacometric modeling. [4] 

 

2. Methodology 
 

This work proposes a general outline for creating a NODE-

based model for multi-dose cases, but only a double-dose case 

is simulated and proven to work. 

 

The NODE proposed here is a single-layer network defined 

by 50 neurons in the hidden layer. Additionally, the only input 

to this network is the current drug concentration. This allows 

the system to rely only upon the current drug dosage and not 

the actual time. Thus, the model is protected from any effects 

in which time being shifted affects the ability of the model to 

make predictions. For example, if the model were initialized 

with data starting at 50 instead of time 0, the model would not 

be affected. This model's lack of time dependence makes it a 

continuous heuristic model. 

 

The Neural ODE's design to exclude explicit time 

dependency in its input layer streamlines the model, focusing 

solely on the pharmacokinetics of drug concentration, 

regardless of the initial time point of administration. This 

approach underscores the model's utility in scenarios where 

the exact timing of dose administration may vary or be subject 

to data entry errors, ensuring its performance remains 

consistent across different starting times. 

 

A robust simulation environment was implemented using 

Python to train and evaluate the NODE. Each 

pharmacokinetic profile was generated through numerical 

integration of a one-compartment model with first-order 

kinetics, describing how the drug concentration decreases 

over time due to metabolism and excretion. For the simulation 

of double dosing, initial conditions for the second dose were 

adjusted to include the residual drug concentration from the 

end of the first dose simulation. This setup mirrors real-life 

treatment courses where subsequent doses are administered 

before the previous dose has been entirely cleared from the 

body. 

 

Upon simulation, Gaussian noise was added to the 

concentration values to simulate real-world measurement 

inaccuracies and biological variability. The noisy dataset thus 

generated was used as the training data for the NODE, where 

the true dynamics of the drug concentration were known and 

could be used to supervise the learning process. 

 

Training the NODE involved optimizing its parameters 

(weights and biases) using the Adam optimizer, a popular 

choice for deep learning applications due to its efficient 

computation of first and second moments of gradients. The 

loss function used was the mean squared error between the 

predicted and true concentrations, which provides a clear 

metric for regression tasks, pushing the model toward precise 

predictions at each time point. 

 

The learning process spanned 1000 epochs, with periodic 

evaluations every 100 to monitor the training progression and 

make adjustments if necessary. This iterative training process 

allows the model to gradually refine its predictions, reducing 

the loss over time as it becomes better at forecasting the 

pharmacokinetic profile after a double dose of medication. 

 

Finally, predictions were plotted against actual data after the 

training period to assess the trained NODE model's 

performance visually. This visual comparison served as a 

qualitative assessment of the model's accuracy. It highlighted 

potential areas for further refinement, such as adjusting the 

network architecture or training duration to improve the fit 

between predicted and observed pharmacokinetic profiles. 

 

a) Simulating Data 

In this study, the simulation of pharmacokinetic data was 

achieved using a one-compartment model with first-order 

elimination, representing a simplified yet effective approach 

to understanding drug kinetics. The mathematical framework 

utilized to simulate drug concentration over time employs a 

straightforward ordinary differential equation (ODE), given 

by: 

 

          (7) 

 

This first-order kinetic model assumes that the rate of drug 

elimination is proportional to the drug concentration, a 

common assumption in pharmacokinetics. 

 

For the simulation, initial conditions were set for two 

sequential drug doses. The first dose was initialized by setting 

the initial concentration: 

 

          (8)                                                   

 

The second dose was simulated by considering the 

concentration remaining at the end of the first dose. The initial 

condition for the second dose was thus given by: 

 
(9) 

 

This setup reflects a real-world scenario where a subsequent 

dose is added to the residual drug concentration in the system. 

The simulation for the second dose then proceeded from 24 

to 120 hours. To introduce a realistic component of 

variability, normally distributed noise was added to the 

simulated concentration data from both doses. This method of 

adding noise mimics the measurement errors and biological 

variations typically encountered in pharmacokinetic studies. 

 

The data from both simulation phases were concatenated to 

form a comprehensive profile representing the drug's 

concentration over time due to both dosing events.  

 

3. Results 
 
a) Simulated Pharmacokinetic Data: Single Dose 

Single-dose data was first successfully simulated using the 

one-chamber differential equation model. Adding random 

samples from the Gaussian distribution further increased 
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variability among different curves on the plot. The code used 

to generate this figure was adapted from Bräm et al. (2024). 

 

Graphical Representation of Twenty Simulated Single 

Dose Scenarios 

 

 
Figure 4: 20 simulated profiles from the single dose case. 

 

20 simulated profiles from the single dose case. This 

simulation of single-dose data served as proof of the 

simulation of drug concentrations with the one-chamber 

differential equation. 

 

b) Simulated Pharmacokinetic Data: Double-Dose 

Double-dose data was successfully simulated using a custom-

built model. Introducing an additional administration at a 

specific time interval allowed for the examination of drug 

accumulation effects and the interaction between successive 

doses. The author developed the code to generate this figure 

independently for this specific analysis. This approach 

provided unique insights into the dynamics of double-dose 

pharmacokinetics, showcasing the model’s ability to predict 

complex drug behavior in the plasma over time. 

 

 
Figure 5: 20 simulated profiles from the double dose case. 

 

20 simulated profiles from the double dose case. This 

simulation of double-dose data served as proof of the 

simulation of drug concentrations with the one-chamber 

differential equation. 

 

c) NODE fit of Simulated Double-Dose Data 

Double-dose pharmacokinetic data was successfully 

simulated using a Neural Ordinary Differential Equation 

(NODE) model specifically developed for this analysis. By 

leveraging the continuous dynamics capabilities of NODEs, 

the model adeptly handled the administration of two 

sequential doses at defined intervals, allowing for a detailed 

examination of drug accumulation effects and interactions 

between the doses. This model was built and the simulations 

were carried out using code independently developed by the 

author, tailored to capture the complex behaviors of 

pharmacokinetics in a double-dosing regimen. The NODE 

approach provided unique insights, demonstrating its 

robustness in predicting intricate drug behavior over time. 

 

 
Figure 6: NODE fit of Simulated Double Dose PK Profile 

 

Concentration-time profile predicted by the NODE model for 

a drug administered in two doses (Fig. 5). The blue line 

represents the NODE's prediction, closely matching the 

simulated data points shown in red. The initial peak reflects 

the concentration after the first dose, followed by a second 

peak due to the subsequent dose, effectively capturing the 

pharmacokinetic response to double dosing. This 

visualization validates the accuracy of the NODE model in 

simulating such scenarios and highlights its effectiveness in 

understanding the dynamics of drug distribution and 

elimination over time. 
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4. Discussion 
 

This study underscores the utility of Neural Ordinary 

Differential Equations (NODEs) in capturing the dynamics of 

drug concentration profiles in double-dose pharmacokinetic 

simulations. The ability of NODEs to model continuous 

changes over time provides a strong basis for their application 

in more complex multi-dose pharmacokinetic scenarios, 

which are typical in chronic therapy regimens. 

a) Double-Dose Pharmacokinetic Modeling 

The NODE framework has shown promising results in 

simulating double-dose pharmacokinetic scenarios. The 

model effectively captured the primary peaks and troughs 

indicative of consecutive dosing, illustrating its potential 

in pharmacokinetic studies. However, while generally 

decent, the fit demonstrated more than slight 

discrepancies between the predicted and actual data 

points. These notable discrepancies highlight the need for 

further refinement of the model to enhance its ability to 

accurately capture the complex interactions between 

doses and more precisely, reflect the cumulative effects 

of repeated dosing. These results suggest that while the 

NODE model is a robust tool for simulating 

pharmacokinetic profiles, adjustments are necessary to 

improve its precision, especially in complex dose 

regimens. Enhancing the model's accuracy is crucial for 

its application in clinical settings where precise dose 

adjustments are essential for patient safety and efficacy 

of therapy. 

b) Transition to Multi-Dose Studies 

The insights from double-dose simulations are 

instrumental in evolving these models for multi-dose 

applications. Multi-dose pharmacokinetic modeling is 

critical for designing and optimizing dosing regimens in 

chronic disease management, where patients receive 

medication over extended periods. The current model's 

framework will be expanded to include simulations of 

multiple dosing intervals, allowing us to study the impact 

of various dosing strategies on drug accumulation, 

efficacy, and safety. 

c) Future Work and Personalized Medicine 

The ultimate goal of extending the NODE model to 

multi-dose scenarios is to refine a computational tool and 

forge pathways toward personalized medicine. 

Personalized medicine, which tailors medical treatment 

to the individual characteristics of each patient, relies 

heavily on the ability to predict how different patients 

respond to the same drug under various dosing regimens. 

With its capacity to simulate dynamic biological 

processes continuously, the neural ODE model presents 

a unique opportunity to integrate more detailed patient-

specific variables such as genetic makeup, age, weight, 

renal and liver function, and even previous drug exposure 

histories. 

 

Enhancements for Model Precision 

To advance the NODE model towards this goal, several 

specific enhancements are envisioned: 

1) Integration of Patient Data: Incorporating real-world 

patient data into the NODE model will allow for more 

accurate simulations that reflect individual variabilities. 

This data can include patient-specific pharmacokinetic 

and pharmacodynamic parameters, significantly 

influencing drug behavior and therapeutic outcomes. 

2) Complex Regimen Simulation: Expanding the model to 

simulate more complex regimens that involve varying 

dosages, different administration routes, or intermittent 

dosing schedules will make the simulations more 

applicable to real-world therapeutic scenarios, especially 

in chronic disease management. 

3) Advanced Parameter Optimization: Employing 

advanced machine learning techniques for parameter 

optimization, such as genetic algorithms or deep 

learning-based optimization strategies, can enhance the 

model's ability to learn from complex datasets and 

improve its predictive accuracy. 

4) Coupling Pharmacokinetics with Pharmacodynamics 

(PK/PD): Future versions of the NODE model could 

benefit from coupling pharmacokinetic data with 

pharmacodynamic effects, thereby not only predicting 

drug concentration over time but also its therapeutic and 

adverse effects, further personalizing the dosing 

recommendations. 

 

5. Conclusion 
 

The NODE model presents a promising methodological 

advancement for pharmacokinetic studies, with its current 

application to double-dose scenarios laying the groundwork 

for future research into multi-dose regimens. This progression 

is essential for developing personalized medicine and 

optimizing therapeutic strategies across different patient 

populations. With further refinement, NODE models can 

become a cornerstone in the pharmacokinetic modeling of 

drug therapy, enhancing our ability to tailor treatments to 

individual patient needs effectively. 
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