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1. Introduction

In 1940, S. M. Ulam [17], delivered a notable presentation to
the Mathematics Club at the University of Wisconsin, where
he addressed several significant unsolved problems. One of
them was concerned with the stability of group
homomorphism and in 1941, D. H. Hyers [5] provided a
partial solution to this problem. Thereafter number of authors
have studied the  stability of solutions of differential
equations [3, 6, 7, 16] and partial differential equations ,
9, 15]. This is now known as Hyers-Ulam (HU) stability and
its various extensions has been named with additional word.
One such extension is Hyers Ulam Rassias (HUR) stability.
HURstability for linear differential operators of n order with
non-constant coefficients was studied in [10] and [11]. HUR
stability for special types of non-linear equations have been
studied in[1, 2, 12,13]. HUR stability of second order partial
differential equation have been studied in [14]. In 2011,
Gordji et al. [4], proved the HUR stability of non-linear partial
differential equations by using Banach’s Contraction
Principle. In this paper, by using the result of [4], we prove the
HUR stability of second order partial differential equation:

p(x’ t)uxx(x) t) +Px(x: t)ux(x) t) + ‘I(x’ t)”tx(x, t) + ‘I(x’
Hux(x, )+ qu(x, Yu(x, 1) = g(x, t, u(x, t)). (1.1)

Herep, g : J xJ — R™ be a differentiable function at least
once w. r. t. both the arguments and p(x, ) #0, g(x, ) 0V x,
t €J,g:J xJ xR — R beacontinuous function and .J
= [a, b] be a closed interval.

if the following holds:

Letp: J xJ — (0, ©) be a continuous function. Then there

exists a continuous function

Y:J x J — (0, o), which depends on ¢ such that whenever

u: J x J — R s a continuous function with

(X, Yua(x, 1) + px(X, Yun(x, ) + q(x, Yun(X, )+ q(x, Yux(x,

D+ qu(x, Yu(x, 1)- g(x, 1, u(x, )| < o(x, 1),

(2.1)there exists a solution ug : J xJ — R of (1.1) such that
[u(x, ©) —uo(x, )| <P(x, f), V(x, £) €J xJ.

We need the following.

Banach Contraction Principle:

Let (Y, d) be a complete metric space, then each
contraction map 7: Y — Y has aunique fixed point, that
is, there exists b € Y such that Th = b. Moreover,

d(b,w) < rla)d(w,rw), VWEY and0<a<1.

Following the results from Gordji et al. [4], we establish the
following result.

3. Main Result

In this section we prove the HUR stability of first order

partial differential equation (1.1).

Theorem 3.1: Letc €J. Letp, ¢ and g be as in (1.1) with

additional conditions:

) p(x,)>1,Vxt €J

2) ¢:J xJ— (0, ) be a continuous function and M: J X
J — [1, ©) be an integrable function.

3) Assume that there exists a, 0 < a < 1 such that

Defiqition 1.1:. A function u: JXJ—>. R is called a sglution of fx M (1,)p(1, t)dt < a @(x,t). (.1)
equation (1.1) if u € C*(JxJ) and satisfies the equation (1.1). ¢
2. Preliminaries
Definition 2.1: The equation (1.1) is said to be HUR stable
Leth(c, t) = — {p(c, hu,(c, t) + q(c, t)u.(c, t) + q(c, t)ulc, t)} 3.2)
And
X
K(x, t,u(x, t)) = —{p(x,t)}? {q(x, u,(x, t) + q(x, Hulx, t) + h(c,t) — J’ q,(t, u.(zr,t) dt
x c
—f g(t, t,u(z,t)) dr}.

c

(3.3)
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Suppose that the following holds:
Cl: |K(z, t, Iz, £)) —K(z, t, m(z, 1))| S M (g, )i(z, ) —m(z, £), YV, t €J and [, m € C(J xJ).
C2: u : J xJ — R be a function satisfying the inequality (2.1).

Then there exists a unique solution u : J xJ — R of the equation (1.1) of the form

uy(x, t) = ulc,t) + fo(T, t,uy(x, t))d‘r

[

such that
[u(x,t) — up(x, )] <

a
(l_a)<p(x, t), Vx,te]j.

Proof: Consider
| D%, Dttalx, 1) + pal, Duus(x, O+ G, Duislx, 1) + G(x, Yu(x, O+ Gulx, Yu(x, - (., 1, u(x, 1)|
= {p(x, Duxlx, ) + q(x, Yudx, )+ q(x, Hu(x, O}« - gu(x, Yuux, 1) - g(x, ¢, u(x, 1))|

From the inequality (2.1), we get

[ {p(x, Duxlx, 0) + q(x, Yudx, )+ q(x, Hulx, D}x - gu(X, Yui(x, ) - g, 1, u(x, H)| < p(x, 1).
= — p(x, 1) <{p(x, D, OFq(x, Yunlx, O+ qOx, DU, D)} - gulx, D, 1) - (., 1, u(x, 1)
<o 0. 3.4

= {p(x, Dux(x, )+q(x, Yux, )+ q(x, Du(x, )}« - gu(x, Yuux, 1) - (X, 1, u(x, 1)) < p(x, ).

Integrating from c to x we get,
[pCx, Dux(x,8) + q(x, ue(x, 1) + qCx, ulx, )] — [pe, Duy (e, ©) + q(c, ue (e, t) + q(c, Hulc, )]

— fqu(‘[, u.(r,t)dt — fxg(r, t,u(r,t))dr < fxw(r, t)dr.

= [plx, u,(x, t) + g, u(x, t) + qlx, t)ulx, t)] + h(c,t) — fqu(r, u.(r,t) dt — fxg(r, t,u(t, t)) dt

X
< f @(t, t)dr.
Cc

where h(c,t) is given by (3.2).

= p(x,t) [ux(x, t)
+ {p(x, )} ! {q (e, Ou(x, t) + qlx, ulx, t) + h(c,t) — qux (z,)u.(r, t) dr

— fxg(‘r, t,u(t, t)) dr }] < fqu(r, t)dr.

X

= [ux(x, t) + {p(x,t)}? {q (e, Ou(x, t) + qlx, ulx, t) + h(c,t) — qux (z,)u(r,t) dt — J g(t, tu(t,t))dr }]

< {px, )} J o(z, t)dr.

ES [ux(x, t) + {p(x,t)}? {q(x, Ou.(x, t) + q(x, Hulx, t) + h(c,t) — qux(r, u.(t,t) dt

_jxg(‘[,t,u(r,t)) dr}] ijgo(r,t)dr,
(= p(r6) = 1) : : )
= {u(x, t) — K(x, t,ulx, 1))} Sf o(1,t)dr.

where K(x, t,ux t)) is given by equation (3.3).
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Since M: J xJ — [1, ©) be an integrable function, we have
= {u () —K(x, t,ulx t))} < J-XM(T, He(r, t)dr.
Using inequality (3.1) we have, ‘
{ux(x, t) — K(x, t,u(x t))} < fo(T, te(t, t)dt

c

< ap(x,t).
{ur(x, 6) = K(x, t,u(x t))}
{ur(x,0)

< ap(x,t).
- K(x, t,ulx t))} < o(x,t).(3.5)

Again, integrating from c to x we get,

u(x,t) —u(c,t) — fo(‘r, t,u(t, t))d‘r < fx¢(r, t)dr.

Since M: J xJ — [1, ©) be an integrable function, we have
u(x, t) —ulc, t) — fcx K(z,t,u(r,t))dr <

fcx M(z,t)e(T, t)dr.

Using inequality (3.1) we have,

u(x,t) —ule,t) — [ K(r,t,u(r,0))dr <

JIM@ D9, t)dr < agp(x,t).

= u(x,t) —ulet) — foK(T, tu(r,t))dr < ag(x,t).
(3.6)

In a similar way, from the left inequality of (3.4), we obtain
— [u(x, t) — [ulc, t) + foK(T, t,u(r, t))dr]] < ap(x,t).
3.7

From the inequalities (3.6) and (3.7) we get,
lux, t) = [ulc,t) + foK(T, t,u(x £))dz]| < agp(x, o).
(3.8)

Let Y be the set of all continuously differentiable functions y
:J xJ — R. We definea metric d and an operator 7 on Y as
follows: For,m € Y

d(l,m) = SUPy re; It —m@Ext)

Qxt)
and the operator

(Tm)(x,t) = [u(c, t) + jxl((r, t,m(z, t))d‘r] .(3.9)

Consider,
Tl(x,t) — Tm(x,t)
(71 T = s gy {PLE0=T0)
(T1,Tm) = supy ey {7001
foK(T,t,l(r,t)) dr — foK(T,t,m(T,t)) dt }
p(xt) ’
fcxll((r,t,l(r,t)) - K(t,t;m(t,t)| dt }
P(xt) '

By using condition C1 we get,

X
A(TLTm) < supsre; {fC{M(T,t)Il(T,t) m(‘r.l’)|}d'r}.

Px.t)
Il(ft) m(z,0)|
= B R e |
= SUPyxtejy T
M(‘r )(T.t)XsUPr ey (W)} .
S SUPyteg e .
<

A(TLTm) < d(l,m) X sups.e, {“M(”—"’(”}d}

p(xt)

By using inequality (3.1) we get,

d(T,Tm) < ad(l,m).

By using Banach contraction principle, there exists a unique
uo € X such that
Tuo = uy, that is

X

[u(c, t) + f K(r, t, uy(t, t))d'r = uy(x, t),
c

(By using equation (3.9))

and

d(ug,u) < a

Now by using inequality (3.8) we get,
lu(x,t) — (Tw)(x, t)| < a p(x,t).
luCx,t) — Tw(x, bl
=> <a

p(xt) B
L s, D = WG
x,te] (p(x, t) ==
Thus
diu,Tu) £ a.(3.11)
Again

ug(x,t) —u(x,t)
@(xt)

d(ug,u) = SUDx tegy

From equation (3.10) we get,
1

d(ug,u) < ﬁd(u, Tu).

up(x, t) — u(x,t)
SUDyx tejy 205 0)

Ug(x,t) — u(x,t)

@(x,t)

< a- a)d(u, Tu).
up(x, t) — u(x,t)

< SUPyteg (6 0)

L.
_(1 )uu

[uo(x, t) — u(x,t)
| o(x,t)

| <= a)d(u,Tu).

From equation (3.11) we get,

uo(x,t) — u(x,t) < 1
0@, 0) -
fuGe, ) = uo(x, O < %5 P, L),
.

Vxt €

Hence the result.
4. Conclusion

In this paper we have proved the HUR stability of the second
order partial differential equation(1.1) by employing Banach’s
contraction principle.
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