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Abstract: This article offers a comprehensive review of experimental design methodologies and their statistical underpinnings across 

diverse scientific domains. It examines classical models such as Randomized Blocks, Latin Squares, Split Plots, and Nested Designs, 

discussing their core principles, advantages, and limitations. The paper highlights how these methodologies address challenges like 

heterogeneity and missing data, enhancing research quality. Through multidisciplinary examples from engineering, healthcare, 

agriculture, and education, the study underscores the adaptability and critical importance of experimental designs in contemporary 

research. 
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1. Introduction 
 

People have always been interested in the events and objects 

around them. This interest varies in degree and level from 

person to person. Therefore, people have always been 

interested in conducting experiments and utilizing the results 

of those experiments. Thus, the concepts of experimentation 

and research have gained common ground. When planning 

experiments, the goal is to obtain the most reliable results in 

the shortest time and at the lowest cost. However, it is not 

always possible to achieve these goals. The accuracy of the 

results obtained is made possible by the application of 

statistical methods. 

 

The most important aspect of scientific research is the 

planning, execution, and conclusion of the research using 

scientific methods. Research that is not based on scientific 

objectives may not be useful and may even produce harmful 

results. For this reason, the applicability of experimental 

studies must always be determined by the validity of 

statistical methods. 

 

In recent years, developments in computer technology have 

made significant contributions to the creation of effective 

experimental designs and the computational and interpretive 

techniques used to analyze the data obtained from these 

designs [1]. These developments have become an important 

tool in meeting the needs of those working in the fields of 

science, engineering, health, and agricultural research [2]. 

The techniques used demonstrate the same usefulness in 

different scientific disciplines with practical applications. 

 

Every experimental research problem requires the selection 

of a unique experimental design [3]. In this selection, it is 

appropriate to choose the simplest design that can meet the 

requirements of the experimental studies. In modern 

experimental design models, three basic principles 

(replication, randomization, and blocking) and the 

relationships between them are taken into account. These 

principles were developed by R.A. Fisher and his colleagues 

and are the most important concepts to consider in effective 

experimental designs [4]. According to Fisher, in order to 

calculate experimental error, the experiment must be 

repeated and the subjects must be completely randomly 

assigned to the experimental units. Without these conditions, 

the experimental error cannot be calculated correctly. 

 

In addition to the measures taken in experimental design, 

increasing the number of repetitions reduces experimental 

error. Considering the research areas used, the problems to 

be addressed, and the strengths and weaknesses of each 

design will provide significant benefits to the researcher [5]. 

These insights are particularly timely, given the growing 

reliance on data-driven methodologies and the demand for 

reproducible and efficient research practices across 

disciplines. Relevant literature reviews are current studies 

between 2019 and 2025, and evaluations have been made for 

studies belonging to different scientific fields. 

 

2. Experimental Designs and Statistical 

Analysis 
 

In this section, the characteristics of experimental design 

models, their areas of application, and their uses in different 

fields are explained with examples. 

 

2.1 Randomize Block Design 

 

Randomized block design is one of the most preferred 

experimental designs in field trials and other agricultural 

research [6]. It is widely used, especially when the aim is to 

examine the effect of two different factors on the dependent 

variable. For example, it is preferred in studies where the 

effects of fertilizer types and soil types on productivity must 

be evaluated together. In such cases, the factors contribute to 

the results not only through their individual effects but also 

through their combined effects. This combined effect is 

defined as “interaction” in the literature. Additionally, this 

method makes variance analysis more economical and 

meaningful. 
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In field experiments, the experimental area is divided into 

multiple blocks of equal size and similar characteristics. The 

number of blocks is determined to be equal to the number of 

replicates conducted. Each block is divided into plots of 

equal size corresponding to the number of treatments. For 

example, if there are t treatments and r replicates, r blocks 

are formed, each consisting of t plots. Thus, the experiment 

is conducted on a total of t × r plots. This design is suitable 

for cases where heterogeneity in the field exists along a 

single axis, which this design aims to reduce. Blocks are 

considered homogeneous within themselves, and this 

approach is expected to yield more reliable results. 

 

In randomized block designs, apart from the effect of the 

treatments being tested, there may be cases where 

observation values cannot be obtained from some 

experimental units for various reasons. In such cases of 

missing observations, the relevant observation value is 

estimated using the missing observation formula. The 

following formula is used for this purpose: 
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In the above formula;   :B  is the sum of the other elements in 

the block with missing observations, :M  is the sum of the 

other observations in the treatment with missing 

observations,  :b  is the number of blocks, :m  is the number 

of treatments, and :G  is the sum of the observation values 

belonging to other experimental units. If there are more than 

one missing observations, estimation is performed using 

average values in place of all but one of the missing 

observations. This process continues until the estimated 

value remains unchanged. Here, the degrees of freedom for 

the missing observation are adjusted by subtracting one from 

the total sum of squares for the general and error terms. The 

model equation for the randomized block design is as 

follows. 

 

𝑌𝑖𝑗 =  𝜇 + 𝜏𝑖  +  𝛽𝑗 + 𝜀𝑖𝑗                         (2) 

 

Where 𝑌𝑖𝑗  is the observation value from treatment i in block 

j. The observation value from process i in block j., 𝜇 is the 

overall mean, 𝜏𝑖 is the effect of process i. The effect of 

transaction i (fixed effect), 𝛽𝑗 is the effect of block j, and 𝜀𝑖𝑗 

is the error term (random, 𝑁(0, 𝜎2) distribution). The main 

purpose of the randomized block design is to collect data and 

ANOVA is used to examine the differences between the 

data. 

 

2.1.1 Advantages and Disadvantages of Random Block 

Design 

It is known that random blocks have a highly compatible 

structure in experimental design. Since differences between 

blocks can be attributed to experimental error, it is not 

necessary for the blocks to be physically adjacent to each 

other [7]. Even if a repetition or an observation value for a 

subject cannot be obtained, no significant difficulties arise in 

terms of statistical analysis. However, as blocks grow larger, 

processes such as block folding becomes necessary due to 

greater material variability between plots within the same 

block. When there are a large number of subjects, the 

“Incomplete Blocks Experimental Design” is preferred. This 

design offers a highly balanced and easy-to-calculate 

structure, as each block contains all of the experimental 

subjects. 

 

This experimental design ensures more accurate results 

compared to random plot distribution by grouping plots into 

blocks. There is no fundamental limitation on the number of 

subjects and blocks. If additional repetition is required for 

some subjects, it can be applied to multiple plots. Analysis 

can be performed even if there is a loss of observation in a 

block or specific subjects. In the event of a few missing 

plots, the Missing Plots method can be used to resolve the 

issue. However, if the number of missing observations 

increases significantly or becomes widespread across 

different blocks, this design is considered less tolerant than 

the Random Plots design [8]. Additionally, if the error 

variance is higher for certain subjects compared to others, it 

is possible to calculate the independent error variance to 

evaluate the averages for subjects other than those with 

higher error variance. A disadvantage of the design is that 

the experimental error value increases when there are 

significant differences in soil, slope, and productivity 

between plots in the same block. This situation is particularly 

noticeable when the number of plots is high. 

 

2.2 Latin Square Design 

 

The Latin square design plan is preferred in cases where the 

test material exhibits heterogeneity in both the horizontal and 

vertical directions [9]. In this design, the number of rows, 

columns, and treatments must be equal; ideally, the number 

of treatments should be between 5 and 12. In 4×4 or smaller 

Latin squares, it is not recommended to use this design 

because the degree of error freedom will be low [10]. Care 

must be taken to arrange the plots in a square-like manner. In 

this design, each treatment appears only once in each row 

and column, so the effects of rows, columns, and treatments 

are independent of each other, and there is no interaction 

effect. Therefore, statistical analyses are simpler to perform, 

but analysis becomes difficult if a row or column is 

completely missing [11] . 

 

From a standard Latin Square, many different Latin Squares 

can be created by changing the positions of rows and 

columns. For example, 576 different arrangements can be 

obtained from a 4×4 Latin Square. One of these 

arrangements should be randomly selected for distribution; 

however, this process can often be challenging in practice. In 

standard Latin squares, the first row and column typically 

contain the same values. When the number of treatments is 

insufficient, the Latin square can be repeated to increase the 

degree of error freedom. 

 

If an observation is missing for any reason other than 

treatment effects, the value to be substituted is calculated 

using the following formula in the Latin square experimental 

design. 
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In the above formula, k = number of transactions, R = sum of 

other observations in the row where the missing observation 
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is located, C = sum of other observations in the column 

where the missing observation is located, M = sum of other 

elements of the transaction to which the missing observation 

belongs, and G = sum of all other recorded observations 

except for the missing observation. 

 

In the case of two missing observations, the average of the 

averages of the row, column, and transactions to which one 

of the missing observations belongs is first assigned as a 

temporary value in place of that observation. The value of 

the other missing observation is calculated using the above 

equation. The estimated value found is assigned to the 

relevant observation, and then a new value is calculated 

according to the equation by subtracting the temporary value. 

This process is repeated until the values for both 

observations are fixed. 

 
2.2.1 Strengths and Weaknesses of the Latin Square 

Design 

In this design, the requirement to repeat the experiment as 

many times as the number of subjects is considered the main 

limitation. This design is particularly recommended for 

experiments with more than eight subjects. The most 

commonly used Latin squares are between 5×5 and 8×8. It 

can also be applied to designs smaller than 5×5; however, 

effective statistical analyses cannot be performed in these 

designs due to the low degree of freedom associated with 

experimental error. For example, there is no degree of 

freedom associated with experimental error in a 2×2 design, 

while this value is 2 in a 3×3 design and only 6 in a 4×4 

design. Generally, when the degrees of freedom for error are 

below 10, a reliable F-test cannot be performed. However, in 

cases where, when smaller designs like 2×2 or 3×3 must be 

used arranging two Latin squares side by side is proposed as 

an alternative solution. 

 

2.3 Nested or Hierarchial Designs 

 

In certain multifactorial experiments, the levels of one factor 

(e.g., factor B) may be similar to each other; however, the 

levels of another factor (e.g., factor A) may differ. Such 

arrangements are referred to as nested or hierarchical designs 

[12] [13]. In these designs, the levels of factor B are nested 

within the levels of factor A. 

 

For example, consider a company that sources its raw 

materials from three different locations. The company wants 

the purity of the raw materials to be the same across all three 

sources. Let each supplier's raw material be divided into four 

clusters of links, and let three different purity measurements 

be taken from each link. Such a situation is illustrated in 

Figure 1 [14]. 

 

This is a two-stage nested or hierarchical design with clusters 

grouped under each supplier. If these factors are crossed, the 

representatives of the first, second, and third links should be 

considered in that order. However, since each connection 

belongs to a specific seller, the situation is unclear. For 

example, there is no relationship between the first connection 

of seller 1 and the first connection of seller 2. This applies to 

all other connections of the sellers as well. 

 

To emphasize that the ties of the sellers are different from 

each other, when the ties of seller number 1 are renumbered 

as 1, 2, 3, 4; the ties of seller number 2 as 5, 6, 7, 8; and the 

ties of seller number 3 as 9, 10, 11, 12, Figure 1 is obtained. 

 

 
Figure 1: Two-Stage Nested Design 

 

Sometimes it is not possible to make a definitive judgment as 

to whether a factor has been interchanged or nested. If the 

experiments for the factor in question are randomized and 

renumbered as shown in Figure 1, that factor is evaluated 

with its nested structure. 

 

2.4 Split Plot Design 

 

Split-plot design is used in two-factor experiments [15]. One 

of these factors is expected to have more experimental units 

than the other [16]. In alloy production, an experiment can be 

planned to compare the effects of different levels of 

temperature with casting molds. In this experiment, when the 

materials obtained from each furnace are divided into 

different types of casting molds, it is assumed that there are 3 

levels of the furnace (A) and 4 levels of the casting mold (B). 

The randomized split-plot design is shown in Figure 2 below 

with 3 replicates. Each replicate consists of 3 large units, 

where each large unit represents the type of furnace, and 

each large unit is divided into 4 plots, with each plot 
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representing the type of casting mold. 
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Figure 2: Split Plot Design 

 

In field trials, this design causes additional factors to emerge 

in the experiment due to the division of each block into 

multiple plots. In this design, it is assumed that factor A is 

tested at three levels. Dividing each unit into four parts for 

factor A requires factor B to be expanded to four levels. 

Within each unit of factor A, the 4 levels of factor B are 

created in 4 random parcels. The situation after 

randomization is observed in a manner similar to the above 

plan. In split-plot designs, the largest units are called main 

plots, and the smallest units are called subplots. The concept 

of randomness is addressed in two stages. It occurs in the 

allocation of main plot experiments to the main plot and the 

division of subplot experiments into subplots within each 

main plot. In the classical split-plot design, the main plots are 

arranged in randomly placed blocks. In main plot designs, 

alternative designs such as Incomplete Randomized Blocks 

or Latin Squares can also be used. The following 

explanations are based on the assumption that the main plots 

have a random design [17]. The appropriate mathematical 

model for this design is provided below. 

 

ijkjkkijjiijky  ++++++= )(    (4) 

 

In the above formula, ri ,...,2,1= ,  aj ,...,2,1= , bk ,...,2,1=

, 
:
 are taken as mass average, 

:i  as block/repeat effect, 
:j  as main plot trial effect, 

:ij
 as error rate of main plot 

effects, 
:k  as sub-plot trial effect, 

:)( jk
as main plot 

trial*sub-plot trial interaction effect, 
:ijk
 as random sub-

plot error. 

 

In a 4×3 factorial experiment, Randomized Block Design can 

be used instead of Split-Plot Design, and both approaches 

have their own advantages. Randomized Block Design 

controls all main effects and interactions equally, while 

Split-Plot Design generally controls B and A×B interactions 

more effectively. In Split-Plot Design, the degrees of 

freedom for the error term used to compare the main plot 

factor (A) are lower. When evaluated overall, the mean error 

variance for both designs is similar; therefore, Split-Plot 

Design does not provide a significant advantage in terms of 

overall precision. However, the Split-Plot Design provides 

higher sensitivity in B and A×B effects; this advantage is 

achieved at the expense of ignoring some details in the A 

factor. 

 

The greatest advantage of the Split-Plot Design is that it 

allows topics requiring large plots to be studied together with 

topics that can be conducted in small plots in the same 

experiment [18]. Thus, additional factors can be included in 

the experiment at a lower cost by using smaller plots. 

However, one of the weaknesses of this design is that its 

statistical analysis is more complex due to its reliance on two 

different error terms. This complexity increases, especially in 

cases of missing data. Additionally, testing the main plot 

factor with an error term that has a lower degree of freedom 

can lead to some imbalances. For example, small differences 

at the subplot level may be statistically significant, while 

larger differences at the main plot level may not be 

significant. 

 

3. Overview of Multidisciplinary Applications 

in Experimental Design 
 

Experimental designs are an indispensable part of research 

processes in many disciplines, ranging from engineering to 

social sciences, health to agriculture. Through a 

multidisciplinary approach, this study will examine how 

methods are adapted to various fields, which statistical 

techniques are preferred, and the effects of design strategies 

on research quality, all under separate subheadings. This will 

enable an investigation into the universal validity and 

adaptability of experimental design. 

 

3.1 Science and Engineering 

 

Experimental designs are widely used in science and 

engineering to improve product quality, reduce process 

variability, and optimize resource utilization. In particular, 

the Randomized Block Design (RCBD) stands out as a 

powerful tool for reducing systematic errors. Karthikeyan 

and colleagues investigated an optimization method for 

bending copper plates using RCBD to systematically 

evaluate the effects of various experimental conditions [19]. 

The integration of block designs in an engineering context 

exemplifies the adaptability of RCBD beyond traditional 

research areas and facilitates sophisticated evaluations in 

materials engineering. 

 

Tian and colleagues used a method they called PFMECA in 

diesel engine production [20]. The researchers discussed the 

reliability assessment of the method in question. Another 

study examining the effectiveness of RCBD was conducted 

by Kasianova and colleagues [21] [20]. The researchers 

investigated the capacity of experimental designs to enhance 

power in multi-armed trials that adapt to response dynamics. 

The impact of the experimental learning skills developed by 

Fardillah and colleagues on industrial engineering students 

was observed, and it was shown that they are important in 

developing statistical reasoning skills [22]. They revealed 

that statistical designs in engineering have an important 

educational dimension. 

In conclusion, experimental designs are widely preferred in 
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science and engineering to improve product quality, reduce 

process variability, and optimize resource utilization. In 

particular, the Randomized Block Design (RCBD) stands out 

as a powerful tool for reducing systematic errors. It is 

accepted as a fundamental design strategy in experimental 

research methodologies. 

 

3.2 Health and Clinical Sciences 

 

When examining studies in the field of health and clinical 

research in recent years, it has been observed that statistical 

experimental designs are used to support effective decision-

making processes. Statistical experimental design can 

support researchers in interpreting scientific results aimed at 

understanding health outcomes in many studies. One of the 

fundamental principles of the statistical experimental design 

approach is to prioritize results with high scientific 

significance rather than focusing solely on simple statistical 

thresholds such as p-values. Reynolds emphasizes that 

experiments should be structured in line with answerable 

scientific questions and that problems should be addressed 

with in-depth experimental designs [23].  Karahan and 

Karaağaoğlu highlight the importance of receiving 

appropriate biostatistical support from the outset of the 

research process in their study [24]. The researchers note that 

experimental designs have the potential to increase the 

reliability of data produced in treatment methods, 

particularly drugs and vaccines. 

 

Levin and Kratochwill define single-case intervention 

experimental designs as a valuable method for evaluating 

intervention effects at the individual level [25]. These 

designs can be used particularly in the fields of 

psychological and behavioral health. These experimental 

designs, which include single-case interventions, can reveal 

details that traditional large-sample designs cannot capture 

by taking individual differences into account. This allows for 

better results regarding patient responses that cannot be 

generalized from collective data. 

 

Another method that is increasingly preferred in the 

evaluation of health services is the interrupted time series 

experimental design. Ewusie and colleagues draw attention 

to the existence of many interacting factors in health service 

environments [26].  Researchers state that the interrupted 

time series experimental design can analyze this complexity 

in healthcare settings and that statistical science provides a 

powerful methodological framework. In addition, the 

response surface methodology experimental design (RSM) 

offers a valuable approach to optimizing conditions in health 

research. Ho and colleagues note that the response surface 

methodology experimental design is an effective method for 

evaluating interactions among multiple variables and 

optimizing responses, particularly in comparative studies 

aimed at process improvement [27]. Researchers have 

highlighted that this approach is extremely useful for 

developing new treatment methods or making existing 

protocols more efficient. 

 

In conclusion, the application of statistical experimental 

design in health and clinical research is critical for improving 

research quality, producing valid and reliable findings, and 

developing more effective solutions to complex health 

problems. The integration of experimental designs plays an 

important guiding role in research aimed at interpreting 

health data. 

 
3.3 Agricultural and Food Sciences 

 

Current studies in the field of agricultural and food sciences 

reveal that statistical experimental design applications are 

becoming increasingly important in the optimization of 

agricultural and food science systems. Experimental design, 

one of the prominent methods in agricultural experiments, 

enables the effective use of multivariate analyses. Amiri and 

colleagues noted in their study that experimental design was 

effective in determining the relationships between various 

agricultural parameters such as fertilization and plant 

density, and that it increased the accuracy of yield 

predictions [28]. The researchers emphasized how advanced 

statistical methods can benefit farmers, researchers, and 

policymakers in solving critical problems.  

 

Kim and colleagues, in their research on weed management, 

used balanced experimental designs, took into account the 

variability in agricultural data, and thereby increased the 

statistical power and validity of their hypothesis tests [29]. 

Statistical experimental designs also play an important role 

in applications aimed at the efficient use of agricultural 

inputs. Rodriguez and colleagues demonstrated how they 

optimized soil restoration through statistical models 

developed from experimental data in their study on the 

remediation of hydrocarbon-contaminated soils [30]. The 

study conducted by the researchers showed that statistical 

experimental designs can make important contributions not 

only to yield increases but also to environmental 

sustainability.  

 

In another recent study, Alesso and colleagues conducted 

research on the technical, ergonomic, and economic 

constraints encountered in on-farm research [31]. The 

researchers developed methods to enhance the reliability of 

experiments using spatial statistical approaches. These 

studies demonstrate that statistical experimental design, 

when combined with technology-focused applications, offers 

more innovative and applicable solutions in agricultural 

sciences. Freitas and colleagues, on the other hand, 

conducted a study on low-carbon agricultural practices in 

Brazil [32]. The researchers demonstrated in their study that 

traditional experimental designs can effectively address 

today's agricultural problems by using single and 

multivariate analysis methods. The findings of the study 

support the applicability of sustainable land use and effective 

monitoring systems. 

 

In conclusion, statistical experimental design applications in 

agricultural and food sciences have been observed to guide 

the integration of technological developments into the field 

of agricultural and food sciences and increase productivity. 

Statistical experimental design approaches ensure scientific 

accuracy and pave the way for sustainable agricultural 

practices. 

 
 

3.4 Social and Educational Sciences 
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Recent studies in the fields of social sciences and education 

reveal a growing interest in the application of statistical 

experimental designs with the aim of improving educational 

outcomes, better understanding human behavior, and 

evaluating different pedagogical approaches. Englis and 

Frederiks examine experimental design research methods in 

the fields of natural sciences, social sciences, and 

entrepreneurship education from a historical perspective 

[33]. The researchers emphasize the need for rigorous 

methodologies to effectively evaluate educational 

interventions. They also suggest that experimental designs 

can contribute to a deeper understanding of entrepreneurship 

ecosystems and pedagogical processes. In a similar study, 

Schanz and Giles analyzed the service-learning model using 

an experimental design [34]. The researchers demonstrated 

that the service-learning application had positive effects on 

student attitudes and learning outcomes. 

 

Sukirman and colleagues used a single case study design 

within a quantitative research approach to evaluate the 

effectiveness of blended learning methods [35]. The 

researchers' findings reveal that experimental designs are an 

effective tool for measuring changes in educational 

performance before and after the implementation of new 

teaching strategies. Kükürtçü and Erkan used a quasi-

experimental pretest-posttest design in their study on 

children's rights education [36]. The researchers evaluated 

changes in children's democratic behaviors and demonstrated 

the multifaceted potential of experimental designs in the 

social sciences. 

 

In another study conducted specifically on the education of 

gifted students, Yurtbakan and Batmaz used a pre-post test 

design without a control group to evaluate the effectiveness 

of the support education program [37]. Their findings 

emphasize the role of empirical methods in improving the 

educational experiences of gifted individuals and 

demonstrate the applicability of such experimental research 

designs in different educational contexts. In parallel with 

technological developments in educational practices, Li 

focuses on the development of interactive educational tools 

that integrate data science methods with traditional social 

science education [38]. This approach provides an example 

of how statistical frameworks can be applied in innovative 

ways to increase student participation in the learning process. 

 

In conclusion, the current literature demonstrates that 

statistical experimental approaches, including quasi-

experimental designs and randomized controlled trials, 

provide robust methodological frameworks for evaluating 

educational practices in the social sciences. This empirical 

orientation is of critical importance for both policy 

development processes and the improvement of pedagogical 

approaches. Future research is encouraged to explore 

innovative designs, such as citizen social science, that could 

make the empirical research process more participatory. 

 

4. Conclusion 
 

This study examines both the theoretical foundations of 

experimental design and its diversity in practice. The extent 

to which statistical approaches are decisive in the process 

from planning to analyzing experiments has been 

demonstrated in concrete terms with examples from different 

disciplines. Classic designs such as randomized blocks and 

Latin squares remain effective methods for reducing 

heterogeneity in the field and controlling error variance. Split 

plots and nested designs, on the other hand, enable balance to 

be achieved in more complex arrangements. However, issues 

such as missing data problems and the proper management 

of error terms highlight the importance of statistical 

knowledge in this field. 

 

In interdisciplinary studies, the applicability of experimental 

designs varies, but they are not merely theoretical tools; they 

have broad applicability in many fields such as science, 

engineering, health, social sciences, and agricultural 

sciences. The appropriate use of experimental designs in the 

above-mentioned fields will contribute significantly to 

making accurate and effective decisions and developing 

processes that maximize benefits. Considering the prediction 

that integrated experimental approaches with technologies 

such as artificial intelligence and big data will gain more 

importance in the future, the success of an experimental 

study in any scientific field depends on the selection of the 

correct design and support with appropriate statistical 

analysis. In this context, it is of great importance for 

researchers to possess not only statistical techniques but also 

interdisciplinary thinking skills. 

 

References 
 

[1] H. M. van Es, C. P. Gomes, M. Sellmann, and C. L. 

van Es, “Spatially-Balanced Complete Block designs 

for field experiments,” Geoderma, vol. 140, no. 4, pp. 

346–352, Aug. 2007, doi: 

10.1016/j.geoderma.2007.04.017. 
[2] D. J. Street, “Fisher’s Contributions to Agricultural 

Statistics,” Biometrics, vol. 46, no. 4, p. 937, Dec. 

1990, doi: 10.2307/2532439. 

[3] Y. Bek, Araştırma ve Deneme Metodları. Adana: 

Çukurova Üniversitesi Ziraat Fakültesi Ders Notu 

Yayınları No: 92, 1986. 

[4] D. A. Preece, “R. A. Fisher and Experimental Design: 

A Review,” Biometrics, vol. 46, no. 4, p. 925, Dec. 

1990, doi: 10.2307/2532438. 

[5] E. Uysal, “Experimental Designs and Statistical 

Analysis Methods,” Dicle University, Institute of 

Science, Diyarbakir, 2002. 

[6] H. M. van Es, C. P. Gomes, M. Sellmann, and C. L. 

van Es, “Spatially-Balanced Complete Block designs 

for field experiments,” Geoderma, vol. 140, no. 4, pp. 

346–352, Aug. 2007, doi: 

10.1016/j.geoderma.2007.04.017. 

[7] H. N. Mohamed, E. F. Abd-Elfattah, A. Abd-El-

Monem, and A. E.-R. M. Abd El-Raheem, 

“Saddlepoint p-values for a class of location-scale tests 

under randomized block design,” Sci Rep, vol. 14, no. 

1, p. 3092, Feb. 2024, doi: 10.1038/s41598-024-53451-

z. 

[8] D. J. Best and J. C. W. Rayner, “Analysis of ranked 

data in randomized blocks when there are missing 

values,” J Appl Stat, vol. 44, no. 1, pp. 16–23, Jan. 

2017, doi: 10.1080/02664763.2016.1158245. 

[9] A. Hulpke, P. Kaski, and P. R. J. Östergård, “The 

number of Latin squares of order 11,” Math Comput, 

Paper ID: SR25722164208 DOI: https://dx.doi.org/10.21275/SR25722164208 1498 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 7, July 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

vol. 80, no. 274, pp. 1197–1197, May 2011, doi: 

10.1090/S0025-5718-2010-02420-2. 

[10] D. Keedwell, “Critical sets in latin squares: an 

intriguing problem,” The Mathematical Gazette, vol. 

85, no. 503, pp. 239–244, Jul. 2001, doi: 

10.2307/3622009. 

[11] J. S. Kuhl and T. Denley, “On avoiding odd partial 

Latin squares and r-multi Latin squares,” Discrete 

Math, vol. 306, no. 22, pp. 2968–2975, Nov. 2006, doi: 

10.1016/j.disc.2006.05.028. 

[12] P. Goos and B. Jones, “Optimal Experimental Design 

in the Presence of Nested Factors,” Technometrics, vol. 

61, no. 4, pp. 533–544, Oct. 2019, doi: 

10.1080/00401706.2018.1562986. 

[13] P. J. Somerfield, K. R. Clarke, and F. Olsgard, “A 

comparison of the power of categorical and 

correlational tests applied to community ecology data 

from gradient studies,” Journal of Animal Ecology, vol. 

71, no. 4, pp. 581–593, Jul. 2002, doi: 10.1046/j.1365-

2656.2002.00624.x. 

[14] Douglas C. Montgomery, Design and Analysis of 

Experiments Third Edition. Arizone State University , 

1991. 

[15] C. J. Monlezun, D. C. Blouin, and L. C. Malone, 

“Contrasting Split Plot and Repeated Measures 

Experiments and Analyses,” Am Stat, vol. 38, no. 1, pp. 

21–27, Feb. 1984, doi: 

10.1080/00031305.1984.10482865. 

[16] L. Ferryanto and N. Tollefson, “A Split-Split-Plot 

Design of Experiments for Foil Lidding of Contact 

Lens Packages,” Qual Eng, vol. 22, no. 4, pp. 317–327, 

Aug. 2010, doi: 10.1080/08982111003800927. 

[17] W. M. Wooding, “The Split-Plot Design,” Journal of 

Quality Technology, vol. 5, no. 1, pp. 16–33, Jan. 1973, 

doi: 10.1080/00224065.1973.11980566. 

[18] O. Nuga, G. N. Amahia, and F. Salami, “Optimal 

Designs For the Restricted Maximum Likelihood 

Estimators in a Random Split-Plot Model,” Lietuvos 

statistikos darbai, vol. 56, no. 1, pp. 64–71, Dec. 2017, 

doi: 10.15388/LJS.2017.13672. 

[19] P. Karthikeyan, K. Kalaiselvi, M. Pachamuthu, K. 

Karthik, and A. Johnson Santhosh, “An Optimisation 

Method of Construction for Warping Copper Plates and 

Engines Using Complete Block Designs with Some 

Special Types of Graphs,” Advances in Materials 

Science and Engineering, vol. 2023, pp. 1–12, Jan. 

2023, doi: 10.1155/2023/9002743. 

[20] G. Tian, W. Zhang, Z. Ma, H. Zhou, X. Jing, and G. Li, 

“Modeling and Analysis of the Reliability of 

Machining Process of Diesel Engine Blocks Based on 

PFMECA,” IEEE Access, vol. 7, pp. 124759–124773, 

2019, doi: 10.1109/ACCESS.2019.2938625. 

[21] K. Kasianova, M. Kelbert, and P. Mozgunov, 

“Response‐adaptive randomization for multiarm 

clinical trials using context‐dependent information 

measures,” Biometrical Journal, vol. 65, no. 8, Dec. 

2023, doi: 10.1002/bimj.202200301. 

[22] F. Fardillah, O. Sutaagra, Y. Supriani, E. Farlina, and 

N. Priatna, “Developing Statistical Reasoning Ability 

of Industrial Engineering Students Through 

Experiential Learning,” J Phys Conf Ser, vol. 1179, no. 

1, p. 012068, Jul. 2019, doi: 10.1088/1742-

6596/1179/1/012068. 

[23] P. S. Reynolds, “Study design: think ‘scientific value’ 

not ‘ p -values,’” Lab Anim, vol. 58, no. 5, pp. 404–

410, Oct. 2024, doi: 10.1177/00236772241276806. 

[24] S. Karahan and A. E. Karaağaoğlu, “Development of 

Biostatistics: From Past to Future,” Düzce Tıp 

Fakültesi Dergisi, vol. 23, no. 3, pp. 234–238, Dec. 

2021, doi: 10.18678/dtfd.1025314. 

[25] J. R. Levin and T. R. Kratochwill, “Randomized 

Single-Case Intervention Designs and Analyses for 

Health Sciences Researchers: A Versatile Clinical 

Trials Companion,” Ther Innov Regul Sci, vol. 55, no. 

4, pp. 755–764, Jul. 2021, doi: 10.1007/s43441-021-

00274-z. 

[26] J. E. Ewusie, C. Soobiah, E. Blondal, J. Beyene, L. 

Thabane, and J. S. Hamid, “Methods, Applications and 

Challenges in the Analysis of Interrupted Time Series 

Data: A Scoping Review,” J Multidiscip Healthc, vol. 

Volume 13, pp. 411–423, May 2020, doi: 

10.2147/JMDH.S241085. 

[27] L. Ho, O. Thas, W. Van Echelpoel, and P. Goethals, “A 

Practical Protocol for the Experimental Design of 

Comparative Studies on Water Treatment,” Water 

(Basel), vol. 11, no. 1, p. 162, Jan. 2019, doi: 

10.3390/w11010162. 

[28] M. B. Amiri, M. Jahan, and P. R. Moghaddam, “An 

exploratory method to determine the plant 

characteristics affecting the final yield of Echium 

amoenum Fisch. &amp; C.A. Mey. under fertilizers 

application and plant densities,” Sci Rep, vol. 12, no. 1, 

p. 1881, Feb. 2022, doi: 10.1038/s41598-022-05724-8. 

[29] S. B. Kim, D. S. Kim, and C. Magana-Ramirez, 

“Applications of statistical experimental designs to 

improve statistical inference in weed management,” 

PLoS One, vol. 16, no. 9, p. e0257472, Sep. 2021, doi: 

10.1371/journal.pone.0257472. 

[30] D. J. Castro Rodríguez, O. Gutiérrez Benítez, E. Casals 

Pérez, M. Demichela, A. Godio, and F. Chiampo, 

“Bioremediation of Hydrocarbon-Polluted Soil: 

Evaluation of Different Operative Parameters,” Applied 

Sciences, vol. 12, no. 4, p. 2012, Feb. 2022, doi: 

10.3390/app12042012. 

[31] C. A. Alesso, P. A. Cipriotti, G. A. Bollero, and N. F. 

Martin, “Experimental Designs and Estimation 

Methods for On‐Farm Research: A Simulation Study of 

Corn Yields at Field Scale,” Agron J, vol. 111, no. 6, 

pp. 2724–2735, Nov. 2019, doi: 

10.2134/agronj2019.03.0142. 

[32] A. C. R. de Freitas, G. da S. e Souza, E. G. Gomes, F. 

de S. Costa, and D. Klepker, “Performance of low 

carbon intensified agriculture farm in the Brazilian 

Savanna by means of univariate and multivariate 

approaches,” Pesqui Agropecu Trop, vol. 52, 2022, doi: 

10.1590/1983-40632022v5272425. 

[33] B. G. Englis and A. J. Frederiks, “Using Experimental 

Designs to Study Entrepreneurship Education: A 

Historical Overview, Critical Evaluation of Current 

Practices in the Field, and Directions for Future 

Research,” Entrepreneurship Education and Pedagogy, 

vol. 7, no. 1, pp. 93–149, Jan. 2024, doi: 

10.1177/25151274231161102. 

[34] K. Schanz and K. Giles, “Assessing the Impact of 

Service-Learning in a Criminal Justice Statistics 

Class,” International Journal of Research on Service-

Paper ID: SR25722164208 DOI: https://dx.doi.org/10.21275/SR25722164208 1499 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 7, July 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Learning and Community Engagement, vol. 9, no. 1, 

Dec. 2021, doi: 10.37333/001c.31328. 

[35] S. Sukirman, Y. Masduki, S. Suyono, D. Hidayati, H. 

C. A. Kistoro, and S. Ru’iya, “Effectiveness of blended 

learning in the new normal era,” International Journal 

of Evaluation and Research in Education (IJERE), vol. 

11, no. 2, p. 628, Jun. 2022, doi: 

10.11591/ijere.v11i2.22017. 

[36] S. Kent Kükürtcü and N. S. Erkan, “The Effects of 

Children’s Rights and Democracy Education on 

Children’s Democratic Behaviors,” International 

Journal of Progressive Education, vol. 18, no. 1, pp. 

174–193, Feb. 2022, doi: 10.29329/ijpe.2022.426.10. 

[37] E. Yurtbakan and O. Batmaz, “Effectiveness of the 

SACs Support Education Program: Motivation and 

attitude towards primary school level courses designed 

for the gifted,” Journal for the Education of Gifted 

Young Scientists, vol. 11, no. 2, pp. 113–123, Jul. 2023, 

doi: 10.17478/jegys.1258298. 

[38] M. Li, “Teaching beginner-level computational social 

science: interactive open education resources with 

learnr and shiny apps,” Front Educ (Lausanne), vol. 8, 

Jun. 2023, doi: 10.3389/feduc.2023.1130865. 

Paper ID: SR25722164208 DOI: https://dx.doi.org/10.21275/SR25722164208 1500 

http://www.ijsr.net/



