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Abstract: Blood management is a critical healthcare operation, yet its workforce planning remains challenging due to unpredictable 

demand and limited staffing. This case study examines Hospital X in Vietnam, where persistent overtime and uneven shift allocations 

affect staff wellbeing and operational sustainability. To address these challenges, the study proposes a Mixed-Integer Linear Programming 

model to optimize schedules and minimize overtime. Additionally, a Genetic Algorithm is employed as a heuristic to generate feasible 

solutions efficiently. The methodology was validated using both synthetic data and real operational data from Hospital X. Results indicate 

improved workload balance and reduced overtime, offering a practical framework for workforce planning in blood preparation and dis-

tribution units. 
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1. Introduction 
 

Blood is a valuable and irreplaceable resource that relies en-

tirely on human donation. Blood and blood products play a 

critical role in medicine, contributing to the survival of mil-

lions of patients each year suffering from life-threatening con-

ditions and enabling complex medical and surgical proce-

dures. However, blood and its derivatives are also highly sus-

ceptible to spoilage, contamination, and infection [1]. Blood 

products refer to any therapeutic substance derived from hu-

man blood, including whole blood, blood components for 

transfusion, and plasma-derived medicinal products. Trans-

fusable components obtained from donated blood include red 

blood cells, platelets, plasma, cryoprecipitate AHF (cryo), 

and granulocytes. The processes of receiving, transporting, 

and storing blood are essential to maintaining the quality and 

availability of blood for transfusion. These interconnected ac-

tivities form what is known as the Transfusion Blood Supply 

Chain, as illustrated in Figure 1. 

 

 
Figure 1: Transfusion blood supply chain 

 

There is currently a lot of research and investment in the use 

of smart technologies, artificial intelligence, and robotics to 

reduce errors in the process of collecting, managing, preserv-

ing, and using blood, especially automating some steps and 

processes, to increase safety and efficiency for blood banks 

([2] and [3]). Despite these advancements, significant chal-

lenges persist in blood bank operations. One critical issue is 

the frequent need for staff to work overtime. According to Vi-

etnamese labor law, there is a legally defined annual limit on 

overtime hours to prevent labor exploitation. However, staff 

in this department often exceed this limit, resulting in many 

unpaid overtime hours. Furthermore, employees have ex-

pressed concerns about substantial disparities in their weekly 

and monthly working hours, largely due to inefficient sched-

uling. 

 

This study addresses three key challenges in operational plan-

ning and human resource allocation in blood banks: (1) devel-

oping a model to determine the required workforce to meet 

blood production demands; (2) optimizing staff schedules for 

accurate and efficient allocation; and (3) assigning tasks ef-

fectively to align with available resources and minimizing 

overtime and scheduling imbalances. The significance of this 

study lies in its potential to enhance workforce sustainability 

and operational efficiency in healthcare services, particularly 

in critical blood production units facing staffing constraints. 

 

The remainder of the paper is organized as follows: Section 2 

reviews relevant literature; Section 3 presents a detailed prob-

lem description and mathematical model; Section 4 intro-

duces the experimental design and case study at Hospital X; 

and Section 5 concludes with key findings, implications, and 

recommendations. 

 

2. Related literature 
 

Scheduling and rostering involve allocating human, material, 

financial, and temporal resources to effectively achieve or-

ganizational objectives. In the healthcare sector – particularly 

hospitals – this has long been a key research area, with major 

benchmarks such as the International Nurse Rostering Com-

petitions (INRC-I in 2010 and INRC-II in 2014). 

 

Many studies focus on single-objective models due to the 

complexity of the constraints. A common objective is mini-

mizing penalty costs for soft constraint violations, as seen in 

works such as [4]–[11]. Others, like [12], aim to reduce labor 
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costs (e.g., base wages, overtime), while [13] target minimiz-

ing unmet staff change requests. 

 

In contrast, some researchers have pursued integrated objec-

tive functions, simultaneously addressing staff assignment 

and task allocation ([14]–[16]). Although more complex, this 

approach is gaining popularity thanks to advances in solving 

simpler and sequential formulations. 

 

Given the NP-hard nature of rostering problems [17], exact 

methods such as MILP are practical only for small to medium 

instances ([12], [18]). For larger datasets, researchers rely on 

metaheuristics, rule-based heuristics, and AI methods. Nota-

ble examples include the rolling horizon algorithm and itera-

tive shift selection algorithm [14], and a column generation 

approach [13], which offer efficient and scalable perfor-

mance. Hybrid algorithms have shown great potential by 

combining exact and heuristic techniques. For example, [8] 

and [19] integrated MILP, constraint programming, and vari-

able neighborhood search for greater accuracy. Similarly, [7] 

introduced a multi-phase method combining Fix-and-Relax, 

Simulated Annealing, and Fix-and-Optimize, yielding several 

best-known solutions.  

 

Other innovative hybrid approaches include the Artificial Bee 

Colony with Hill Climbing [9],  and Sequence-based Selec-

tion Hyper-Heuristics [20]. Recently, machine learning and 

artificial intelligence have emerged as powerful tools. For in-

stance, [6] developed a neural network–based method to au-

tomate heuristic design, combining deep neural networks 

(DNNs) and recurrent neural networks (RNNs) to guide re-

construction and escape local optima – outperforming several 

deep reinforcement learning baselines. 

 

Recent studies show a shift in human resource planning from 

single- to multi-objective problem solving. While multi-ob-

jective models are more complex, metaheuristics, rule-based 

heuristics, and AI methods offer practical solutions, espe-

cially for large or uncertain datasets. Hybrid approaches com-

bining these techniques improve both flexibility and accu-

racy. However, many existing methods are still complex and 

not easily adaptable for planners. Integrating AI with heuris-

tics offers a promising, flexible, and stable approach – capa-

ble of adjusting to changing objectives and delivering high 

quality solutions efficiently. 

 

Consequently, this research including the MILP and metaheu-

ristics (GA) to address the problem of the case study at Hos-

pital X. 

 

3. Problem Description 
 

3.1 Mathematical model 

 

To address the challenges of workforce scheduling and task 

allocation in blood banks, we define the following sets and 

constraints to represent the problem mathematically and 

guide model formulation. 

 

Let E= {1, …, e} be the set of employees, J = {1, …, j} be the 

set of tasks to be accomplished, D = {1, …, d} be the set of 

days that constitutes the time horizon, S = {1, …, s} be the set 

of shifts and W  = {1, …, w} be the set of week in month. 

Each employee is assigned exactly one role, but a role can 

encompass multiple tasks. For instance, a regular staff mem-

ber may be responsible for receiving, preparation, labeling, or 

evaluation. However, to simplify the problem, staff roles will 

be assigned manually, as there are only two types of staff. 

Each employee is assigned to only one shift per day. There-

fore, the parameter ESes will define if staff can work in shift 

or not. Additionally, some tasks are restricted to specific days 

of the week. For example, transporting blood to external lo-

cations may only be possible on Monday, Wednesday, or Fri-

day afternoons, or on Tuesday, Thursday, or Saturday morn-

ings. Such shipments occur only when requested. The shifts 

in the problem may overlap with each other. For example, 

regular staff shifts are divided into two shifts. The first shift 

runs from 7:30 a.m. to 4:30 p.m., while the second shift begins 

at 10:00 a.m. and ends at 7:00 p.m. Each task, represented by 

j in J, each shift, represented by s in S, each day, represented 

by d in D, and each week, represented by w in W requires a 

specific number, denoted as Requirementjsdw. These require-

ments form the task execution constraints. 

 

An employee must have a full day off after working an on-

duty shift. For example, if a regular staff member works a 24-

hour shift on Monday, they must rest on Tuesday. These re-

strictions are collectively referred to as rest constraints. 

 

The work schedule for each employee follows shift-based as-

signments; however, not all shifts have fixed start and end 

times. Instead, shifts are defined by constraints on the number 

of hours an employee can work per day or week, rather than 

the total number of shifts assigned per week. Fmax represents 

the maximum number of times slots an employee e can work 

in a week. These weekly working hour constraints ensure a 

balanced workload among employees and are referred to as 

workload constraints. 

 

Assumptions: 

a) The number of weeks is concerned in the problem is 4 

weeks. 

b) Because the working shift between regular staff and ra-

diation staff are different, also there are four different 

shifts: on duty (24 hours continuous working), adminis-

trative shift, blood transporting, and preparation shift, 

there will be a total of 8 shifts, set of Shifts = {1, 2, 3, 4, 

5, 6, 7, 8}. In detail: 

• S1: Shift 1 of regular staff, starts from 7:30 to 16:30. 

• S2: Shift 2 of regular staff, starts from 10:00 to 19:00. 

• S3: Shift 1 of radiation staff, starts from 8:00 to 16:30. 

• S4: Shift 2 of radiation staff, starts from 11:00 to 

19:00. 

• S5: blood transportation shift, morning from 7:30 to 

11:30, afternoon from 13:00 to 17:00.  

• S6: preparation shift from 18:00 to 19:00. 

• S7: administrative shift 

• S8: on duty shift – 24 hours continuous working. 

c) The working time for each shift will be 18, 18, 17, 16, 8, 

2, 16, 48 for shift 1 to 8, respectively. However, the time 

for shift 7 is not considered as we will not compare the 

working time of staff and management. 

d) Weekends and holidays are not considered in this case. 

e) The required employees for job each day on the schedule 

is based on the description when interviewing the sched-

uler. 
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However, this value is based on blood demand. For  example, 

if the need for blood is higher, then the requirement of 

employees is higher. In this case, the requirement is set at the 

average number as the scheduler gives. 

 

Table 1: Notation 
Sets 

E Set of employees 

J Set of tasks 

D Set of days 

S Set of shifts 

W Set of weeks in month 

ERegular Subset of regular staff 

ERadiation Subset of radiation staff 

EAdmin Subset of admin 

Parameters 

Rjsdw Number of employee requirement for job j in shift s on day d in week w 

ESes Suitability of employee e for shift s; e ∈ E, s ∈ S 

times The time slots of each shift (1 unit = 30 minutes) 

Fmax The maximum number of time slots employees can work in a week (1 unit = 30 minutes)  

BigM A very large number 

Decision variables 

xejsdw 1 if employee e performs task j in shift s on day d in week w; e ∈ E, j ∈ J, s ∈S, d ∈ D, w ∈ W; 0 otherwise 

u Auxiliary variable, used for linearization constraint, 𝑢 ∈ {0,1} 

wtew The total working time of employee e in week w; e ∈ E, w ∈ W  

z(e1)(e2)w Auxiliary variable, define the difference time between the employees in week; e1 ∈ E, e2 ∈ E, w ∈ W, e1≠e2 

yedw 1 if employee e work on day d in week w; e ∈ E, d ∈ D, w ∈ W; 0 otherwise 

T1 Integer variable, the value presented for the total differences in total time of regular staff in absolute value 

T2 Integer variable, the value presented for the total differences in total time of radiation staff in absolute value 

ke 1 if employee e is used; e ∈ E; 0 otherwise. 

 

A mathematical model has been developed based on the con-

straints referenced from the study by [21]. However, this 

study adopts a different objective function from that of Masini 

et al., as the research objectives of the two studies differ. The 

mathematical model is presented as follows: 

 

min 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒  = 𝑇1 + 𝑇2 (1) 

 

subject to 

𝑇1 = ∑ ∑ ∑ 𝑧(𝑒1)(𝑒2)𝑤𝑤∈𝑊𝑒2∈𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑒1∈𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟
 ∀𝑒1 > 𝑒2 (2) 

𝑇2 = ∑ ∑ ∑ 𝑧(𝑒1)(𝑒2)𝑤𝑤∈𝑊𝑒2∈𝐸𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛𝑒1∈𝐸𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
 ∀𝑒1 > 𝑒2 (3) 

z(e1)(e2)w ≥ 𝑤𝑡(𝑒1)𝑤 − 𝑤𝑡(𝑒2)𝑤  ∀𝑒1, 𝑒2 ∈ 𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟 , 𝑤 ∈ 𝑊, 𝑒1 > 𝑒2 (4) 

z(e1)(e2)w ≥ 𝑤𝑡(𝑒2)𝑤 − 𝑤𝑡(𝑒1)𝑤∀𝑒1, 𝑒2 ∈ 𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟 , 𝑤 ∈ 𝑊, 𝑒1 > 𝑒2 (5) 

z(e1)(e2)w ≥ 𝑤𝑡(𝑒1)𝑤 − 𝑤𝑡(𝑒2)𝑤  ∀𝑒1, 𝑒2 ∈ 𝐸𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 , 𝑤 ∈ 𝑊, 𝑒1 > 𝑒2 (6) 

z(e1)(e2)w ≥ 𝑤𝑡(𝑒2)𝑤 − 𝑤𝑡(𝑒1)𝑤∀𝑒1, 𝑒2 ∈ 𝐸𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 , 𝑤 ∈ 𝑊, 𝑒1 > 𝑒2 (7) 

𝑤𝑡𝑒𝑤 = ∑ ∑ ∑ 𝑥𝑒𝑗𝑠𝑑𝑤 × 𝑡𝑖𝑚𝑒𝑠𝑑∈𝐷𝑠∈𝑆𝑗∈𝐽 ∀𝑒 ∈ 𝐸, 𝑤 ∈ 𝑊 (8) 

∑ 𝑥𝑒𝑗𝑠𝑑𝑤 × 𝐸𝑆𝑒𝑠𝑒∈𝐸 = 𝑅𝑗𝑠𝑑𝑤     ∀𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (9) 

∑ ∑ ∑ 𝑥𝑒𝑗𝑠𝑑𝑤𝑠∈𝑆 𝑗∈𝐽𝑒∈𝐸 = ∑ ∑ 𝑅𝑗𝑠𝑑𝑤𝑠∈𝑆𝑗∈𝐽     ∀𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (10) 

∑ ∑ 𝑥𝑒𝑗𝑠𝑑𝑤𝑠∈𝑆𝑗∈𝐽 ≤ 1      ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (11) 

∑ 𝑥𝑒18𝑑𝑤 × 𝐸𝑆𝑒8𝑒∈ERegular
= ∑ 𝑥𝑒18𝑑𝑤 × 𝐸𝑆𝑒8𝑒∈ERadiation

 ∀𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (12) 

∑ 𝑥𝑒18𝑑𝑤 × 𝐸𝑆𝑒8𝑒∈ERegular
+ ∑ 𝑥𝑒18𝑑𝑤 × 𝐸𝑆𝑒8𝑒∈ERadiation

= 𝑅18𝑑𝑤  ∀𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊(13) 

𝑥𝑒𝑗8𝑑𝑤 × 𝐸𝑆𝑒8 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢1) ∀𝑒 ∈ 𝐸, 𝑑 ∈ {1, … , 𝐷 − 1}, 𝑤 ∈ 𝑊 (14) 

∑ ∑ 𝑥𝑒𝑗𝑠(𝑑+1)𝑤𝑠∈𝑆𝑗∈𝐽 ≤ 𝐵𝑖𝑔𝑀(1 − 𝑢2)∀𝑒 ∈ 𝐸, 𝑑 ∈ {1, … , 𝐷 − 1}, 𝑤 ∈ 𝑊 (15) 

𝑢2 ≥ 𝑢1 (16) 

𝑥𝑒𝑗87𝑤 × 𝐸𝑆𝑒8 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢3) ∀𝑒 ∈ 𝐸, 𝑤 ∈ {1, … 𝑊 − 1} (17) 

∑ ∑ 𝑥𝑒𝑗𝑠1(𝑤+1)𝑠∈𝑆𝑗∈𝐽 ≤ 𝐵𝑖𝑔𝑀(1 − 𝑢4) ∀𝑒 ∈ 𝐸, 𝑤 ∈ {1, … 𝑊 − 1} (18) 

𝑢4 ≥ 𝑢3 (19) 

∑ ∑ 𝑥𝑒𝑗𝑠𝑑𝑤𝑠∈𝑆𝑗∈𝐽 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢5) ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (20) 

yedw = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢6) ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (21) 

𝑢6 ≥ 𝑢5 (22) 

𝑥𝑒𝑗4𝑑𝑤 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢7) ∀𝑒 ∈ 𝐸𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 , 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (23) 

∑ ∑ 𝑥𝑒𝑗4(𝑑+𝑡1)𝑤
7−𝑑
𝑡1=1 𝑗∈𝐽 ≤ 𝐵𝑖𝑔𝑀(1 − 𝑢8) ∀𝑒 ∈ 𝐸𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 , 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷, 𝑤 ∈ 𝑊 (24) 

𝑢8 ≥ 𝑢7 (25) 

𝑥𝑒75𝑑𝑤 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢9) ∀𝑒 ∈ 𝐸, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷\{7}, 𝑤 ∈ {1, … 𝑊 − 2} (26) 
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∑ 𝑥𝑒75(𝑑+𝑡1)𝑤
7−𝑑
𝑡1=1 + ∑ 𝑥𝑒75(𝑡2)(𝑤+1)

7
𝑡2=1 + ∑ 𝑥𝑒75(𝑡3)(𝑤+2)

𝑑
𝑡3=1 ≤ 𝐵𝑖𝑔𝑀(1 − 𝑢10) ∀𝑒 ∈ 𝐸, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷\{7}, 𝑤 ∈

{1, … 𝑊 − 2} (27) 

𝑢10 ≥ 𝑢9 (28) 

𝑥𝑒226𝑤 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢11) ∀𝑒 ∈ 𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟 ∪ 𝐸𝐴𝑑𝑚𝑖𝑛 , 𝑤 ∈ {1, … 𝑊} (29) 

𝑥𝑒227𝑤 ≤ 𝐵𝑖𝑔𝑀(1 − 𝑢12) ∀𝑒 ∈ 𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟 ∪ 𝐸𝐴𝑑𝑚𝑖𝑛 , 𝑤 ∈ {1, … 𝑊} (30) 

𝑢12 ≥ 𝑢11 (31) 

𝑥𝑒227𝑤 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢13) ∀𝑒 ∈ 𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟 ∪ 𝐸𝐴𝑑𝑚𝑖𝑛 , 𝑤 ∈ {1, … 𝑊 − 1} (32) 

𝑥𝑒226(𝑤+1) ≤ 𝐵𝑖𝑔𝑀(1 − 𝑢14) ∀𝑒 ∈ 𝐸𝑅𝑒𝑔𝑢𝑙𝑎𝑟 ∪ 𝐸𝐴𝑑𝑚𝑖𝑛 , 𝑤 ∈ {1, … 𝑊 − 1} (33) 

𝑢14 ≥ 𝑢13 (34) 

𝑤𝑡𝑒𝑤 ≤ 𝐹𝑚𝑎𝑥  ∀𝑒 ∈ 𝐸, 𝑤 ∈ 𝑊 (35) 

𝑥𝑒𝑗𝑠𝑑𝑤 ∈ {0, 1}    ∀ 𝑒 ∈ 𝐸, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷𝑗 , 𝑤 ∈ W (36) 

yedw ∈ {0, 1}   ∀  𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷𝑗 , 𝑤 ∈ W (37) 

𝑤𝑡𝑒𝑤 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀  𝑒 ∈ 𝐸, 𝑤 ∈ W (38) 

z(e1)(e2)w ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ∀  𝑒1, 𝑒2 ∈ 𝐸, 𝑤 ∈ W (39) 

𝑇1, 𝑇2 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (40) 

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11, 𝑢12, 𝑢13, 𝑢14 ∈ {0,1} (41) 

 

The objective function of this problem is to minimize the total 

difference in working hours among regular staff (T1) and ra-

diation staff (T2). Constraints (2) – (8) handle the computa-

tion of T1 and T2. Constraints (9) – (34) ensure that all sched-

uling requirements are met. Constraints (9) and (10) are to en-

sure that the number of assigned employees matches the re-

quired workforce. This is achieved by multiplying x with ES 

to guarantee that employee e is assigned only to shifts they 

are eligible to work. Constraint (11) ensures that each em-

ployee is assigned to exactly one shift for one job per day. 

Constraints (12) and (13) enforce the on-duty shift will have 

one regular staff and one radiation staff. Constraints (14) – 

(19) ensure that if an employee is assigned to an on-duty shift 

on day d, they must have the following day off. Specifically, 

constraint (14) – (16) applies this rule to weekdays, while 

constraint (17) – (19) extends it to the end of the week. Con-

straint (20) – (22) introduced to count the number of employ-

ees scheduled for workforce planning. Constraint (23) – (25) 

help rotationally assign radiation staff to their shift 2. Con-

straint (26) – (28) is for delivery tasks, which all employees 

rotate this job. Constraints (29) – (34) are the same as con-

straint (23) – (25), but for the regular staff and admin on the 

weekend. Constraint (35) restricts weekly working hours for 

each employee. Finally, constraints (20) – (44) facilitate the 

transformation of the problem from a MINLP model to a 

MILP model through linearization of nonlinear constraints. 

Finally, Constraints (36) – (41) define the ranges of the vari-

ables of the problem. 

 

To address overtime concerns, a new objective function esti-

mates the minimum staffing required to meet operational 

needs without excessive workloads. This helps determine the 

minimum workforce needed to meet operational demands and 

ensures the main scheduling model receives adequate human 

resource input. A supporting mathematical sub-model is thus 

developed to estimate staffing needs and enable feasible, ef-

fective scheduling. 

min 𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠  =
∑ 𝑘𝑒𝑒∈𝐸  (42) 

subject to 

(9) – (41) 

∑ ∑ ∑ ∑ 𝑥𝑒𝑗𝑠𝑑𝑤𝑤∈𝑊𝑑∈𝐷𝑠∈𝑆𝑗∈𝐽 = 1 +

𝐵𝑖𝑔𝑀(1 − 𝑢15) ∀𝑒 ∈ 𝐸 (43) 

𝑘𝑒 = 1 + 𝐵𝑖𝑔𝑀(1 − 𝑢16)∀𝑒 ∈
𝐸 (44) 

𝑢16 ≥ 𝑢15 (45) 

𝑘𝑒 ∈ {0, 1}    ∀ 𝑒 ∈ 𝐸 (46) 

𝑢15, 𝑢16 ∈ {0, 1}   (47) 

 

3.2 Genetic Algorithm 

 

As genetic algorithms are considered, which can be used for 

applications of sample data and large real-case data. Although 

the genetic algorithm is widely used, there are some essential 

modifications that need to be made to be suitable for the case 

concerned. The flow chart below shows the step for solving 

the problem by GA. 

 

The GA illustrated in Figure 2 follows a standard evolution-

ary process – starting with a generated initial population, eval-

uating fitness, applying selection, crossover, and mutation op-

erations, and iteratively updating the population until a termi-

nation condition is met. At each stage, a feasibility check is 

performed to ensure that the final solution remains valid upon 

termination. The first stage, Initial Population, creates a pop-

ulation of feasible solutions rather than purely random ones. 

In the selection stage, tournament selection is applied to 

choose individuals for reproduction. Crossover operations re-

combine genetic material, while mutation introduces diversity 

to help avoid premature convergence. This process repeats 

until convergence is achieved or a predefined number of gen-

erations is reached. 
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Figure 2: The flow chart of genetic algorithm 

 

4. Experimental Design 
 

4.1 Case study 

 

To support this study, a comprehensive field survey was con-

ducted at the Blood Preparation and Distribution Department 

of Hospital X. The aim was to collect detailed information on 

the organizational structure, operational practices, shift ar-

rangements, and task execution, which serves as the basis for 

developing a realistic and practical scheduling model. 

 

The department is structured with a Head who oversees all 

activities, supported by a Deputy Head responsible for assist-

ing in management and supervision. A Chief Technician is 

tasked with assigning daily work schedules, while an Ac-

counting Officer manages administrative reports, including 

blood inventory and CPM system records. The Quality Man-

agement team includes two staff members: one focuses solely 

on paperwork and process oversight, while the other com-

bines documentation with technical responsibilities. The core 

workforce consists of 25 professional staff members assigned 

to various operational tasks such as Receiving, Preparation, 

Evaluation and Labelling, Distribution, and Transport. 

 

To ensure uninterrupted service for patients, the department 

operates 24/7. Regular staff follow two main shifts: Shift 1 

runs from 7:30 AM to 4:30 PM, and Shift 2 from 10:00 AM 

to 7:00 PM. Radiation staff also follow two shifts with 

slightly different timing: 8:00 AM to 4:30 PM for Shift 1 and 

11:00 AM to 7:00 PM for Shift 2. Distribution staff follow 

24-hour shifts, typically from 7:30 AM on one day to 7:30 

AM the next. 

 

Workforce assignments vary by task. In Receiving and Prep-

aration, about 12 employees are scheduled daily across two 

shifts, with 7 – 8 in Shift 1 and 4 – 5 in Shift 2. Two staff 

members are also assigned to 24-hour duty shifts for irradia-

tion tasks. In the Evaluation and Labelling unit, around four 

employees are needed daily. The Distribution team includes 

one administrative staff working five days per week and two 

staff (one radiation, one regular) assigned to 24-hour duty on 

a rotational basis. Radiation staff are scheduled once every 

seven days, and regular staff once every fifteen days. Employ-

ees on 24-hour duty receive a compensatory day off. If a staff 

member is unexpectedly absent, the following shift’s duty 

staff take over, or duty assignments are adjusted based on 

availability. 

 

Transportation tasks occur on specific days: Monday, 

Wednesday, and Friday (both morning and afternoon) and 

Tuesday, Thursday, and Saturday (morning only). Two staff 

members accompany the blood truck per session, assigned on 

a rotating basis. As only one truck is available and used based 

on actual demand, staff not involved in transport at a given 

time may be reassigned to support other departments. 

 

The figure 3 shows the weekly master plan and staffing allo-

cation template and figure 4 shows the example of weekly 

master plan and staffing allocation. 

 

  
Figure 3: Weekly master plan and staffing allocation tem-

plate 

 

 
Figure 4: Example of weekly master plan and staffing at 

blood bank 

 

4.2 Computational results 

 

This research paper aims to address the case study at Hospital 

X using Mixed-Integer Linear Programming and Genetic Al-

gorithm approaches. The case study dataset in current system 

is presented in the Table 2. 

 

The MILP model will be solved on an ASUS Core i5-8250U 

CPU (8 CPUs), 8GB RAM personal computer with IBM 

ILOG CPLEX Optimization Studio Version 12.9.0. Subse-

quently, the problem will be addressed using the GA method, 

implemented in Python. To ensure a robust comparison, the 

GA method will be executed multiple times, and both the av-

erage and best-performing solutions will be analyzed against 

the MILP solution. 
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Table 2: Dataset of case study at Hospital X in current sys-

tem 
Number of  

Radiation staff 

Number of  

Regular staff 

Number of  

Admin 
J S D W 

17 8 2 9 8 7 4 

 

We first solve the sub-model to identify potential infeasibility 

in the primary model. Assuming no overtime (Fmax = 90, or 

45 hours/week), the model indicates that Hospital X would 

need 34 staff, up from the current 27 – an impractical increase 

due to resource constraints. Therefore, staff overtime is nec-

essary to meet operational demands. 

 

Vietnamese labor law allows up to 200 hours of overtime per 

year (about 4 hours/week), so Fmax is adjusted to 98. Under 

this constraint, the sub-model shows that hiring five addi-

tional employees would ensure compliance – a feasible solu-

tion given manageable cost. 

 

Alternatively, removing weekly working hour limits and 

keeping the current workforce size, the model shows that 30 

employees are needed: 1 administrative, 20 radiation, and 9 

regular staff. In reality, Hospital X has only 17 radiation staff, 

8 regular staff, and 2 administrative staff – highlighting a 

workforce shortage that leads to schedule imbalance. 

 

To resolve this, input data will be refined to better match con-

straints, and optimal or feasible schedules will be generated 

using CPLEX and Genetic Algorithm. 

 

Table 3: Dataset of case study at Hospital X 
Number of  

Radiation staff 

Number of  

Regular staff 

Number of  

Admin 
J S D W 

20 9 1 9 8 7 4 

 

After adjusting the input data, we rerun the CPLEX program 

to seek an optimal solution before applying the GA algorithm. 

However, due to the dataset's size and limited computing re-

sources, CPLEX failed to find an optimal solution. As a re-

sult, we have imposed a thirty-minute runtime limit on 

CPLEX to evaluate its output against the sample schedule 

from Hospital X. 

 

Table 4: The technical parameters for Genetic Algorithms 

for solving real case problem 
Population  

size 

Selection  

size 

Mutation  

rate 

Number of  

generations 

20 3 10% 200 

 

The GA produced a result with a solving time of approxi-

mately 400 seconds. When directly compared to the solution 

from the MILP model, this result is relatively poor. Despite 

multiple attempts, the solution quality could not be improved. 

One possible reason for this suboptimal performance is the 

mutation method used. The current mutation approach only 

makes small structural changes within a vast solution space, 

causing the algorithm to get stuck in a local optimum without 

significant improvements. However, we will still compare the 

results from this algorithm with the actual situation to assess 

its practical usefulness. 

 

 

 

 

Table 5: Computation time and performance 

 
Current 

system 

MILP 

(600s) 

MILP 

(1800s) 
GA 

Number of regular – 

radiation staff 
17 – 8 20 – 9 20 – 9 20 – 9 

Obj. 29,040 22,153 22,153 ~ 28,000 

Biggest gap between 

staff (hour/week) 
60 50 50 50 

Run time - 600 s 1800s ~ 250s 

 

Although the solution of GA is not good as the one was given 

by MILP, it is still better than the current system. The gap 

between the staff working most in the week and the staff 

working less in week has gone down. However, this solution 

can be considered as a temporary solution for Hospital X as 

the solution is for 30 employees in total, while the total num-

ber of employees at hospital X is only 27. 

 

5. Conclusion, implications and 

recommendations 
 

This case study presents a practical solution for workforce 

scheduling in blood production, applying MILP and GA 

methodologies to balance workloads and minimize overtime. 

While the MILP model achieved better performance, the GA 

approach provides a faster, albeit suboptimal, alternative for 

real-world application. The research underscores the need for 

adaptable scheduling tools in healthcare logistics, especially 

under resource constraints. Future work should focus on en-

hancing algorithmic performance and integrating predictive 

models for demand forecasting to further optimize staffing 

decisions. 
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