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Abstract: In this study, we present a forward numerical simulation approach to investigate seismic wave propagation in attenuative and 

heterogeneous geological media. Using a finite difference method to solve two-dimensional viscoelastic wave equations, the research 

evaluates the effects of attenuation on wave amplitude and dispersion. By comparing lossy and non-lossy models, the study highlights how 

attenuation alters seismic waveforms and how compensation techniques can restore energy loss. Numerical tests in both homogeneous 

and heterogeneous media, including a modified Barnett Shale model, demonstrate the model's ability to replicate realistic seismic 

scenarios. This suggests that the proposed approach is a valuable tool for improving seismic interpretation, particularly in contexts where 

wave attenuation complicates imaging processes. 
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1. Introduction 
 

The propagation of seismic waves through geological 

structures represents a pivotal area of investigation in the 

comprehension and mitigation of seismic activity (Kerato et 

al., 2008; Russo & Silver, 1994). Seismic wave propagation 

correlates with geophysical structures (Virieux & Operto, 

2009; Zhu et al., 2020). Analyzing stress-wave propagation is 

crucial in understanding mechanical properties (Brossier et 

al., 2009; Tromp, 2020). One of the most prevalent 

methodologies in the field of seismic-wave studies is the 

inversion of seismic waves (Harris et al, 2018; Pageot et al., 

2013). This technique functions in a manner analogous to a 

geophysical X-ray, utilizing data derived from the Earth’s 

surface to construct a comprehensive image of the underlying 

geological structures (Chi et al., 2014; Zhu et al., 2020). 

Seismic-wave inversion has become a standard practice in the 

oil and gas industry for mapping the subterranean terrain, due 

to its high degree of accuracy (Harris et al., 2018; Zhang & 

Toksöz 1998; Taillandier et al., 2009).  

 

In the field of seismic-wave inversion, numerical simulations 

have become an indispensable tool for advancing scientific 

understanding (Almuhaidib &Toksoez (2015); Kristeková et 

al., (2009); Shragge & Konuk (2020)). Seismic wave 

simulations offer valuable insights into earthquake-induced 

activity, helping quantify potential surface disruptions (Zang 

et al., 2021). The incorporation of parameters that accurately 

reflect the characteristics of the medium of the Earth into 

seismic-wave simulations has the potential to enhance our 

theoretical understanding of these phenomena Zang et al., 

(2021). These simulations are not just tools; they provide 

insight into the propagation of seismic waves, thereby 

improving the accuracy of seismic-wave inversion techniques 

Etienne (2010).  

 

One of the fundamental properties of wave propagation is the 

conversion of elastic energy into heat. Anelastic effects, 

quantified by the quality factor Q, can lead to amplitude 

reduction and wavelet distortion. As an example, the presence 

of low saturation gas in sediments can cause strong 

attenuation of seismic P-waves. The attenuation effects result 

in a dimming of migrated amplitudes below the gas. Since the 

high-frequency components of seismic data are more strongly 

attenuated than the low-frequency ones, the effects also 

reduce resolution in the image. Consequently attenuation 

compensation is necessary to improve structural imaging and 

interpretation. 

 

Given a Q model, a viscoelastic mechanical model consisting 

of standard linear solids (SLSs) provides a powerful tool to 

model real earth materials (Robertsson et al., 1994). One SLS 

consists of a spring in parallel with a spring and a dashpot in 

series. It can approximate a constant Q within a defined 

frequency band. A series of SLSs connected in parallel can 

yield a quite general mechanical viscoelasticity (Day and 

Minster, 1984). In an SLS the stress-strain relationship is 

expressed as a causal time convolution of a stress relaxation 

function with the strain rate (Liu et al., 1976; Day and 

Minster, 1984; Carcione, 2001; Robertsson et al., 1994). This 

time dependence of the relaxation mechanism is governed by 

the stress and strain relaxation times. They describe the 

physical dissipation mechanism that the real earth materials 

have on wave propagation. Finite-difference wavefield 

extrapolations implemented on staggered grids have shown 

that the SLSs can simulate wave propagation well 

(Robertsson et al., 1994). Carcione (1999) derived the time-

domain viscoelastic equation for wave propagation in a 

heterogeneous VTI medium. Wave equation for forward 

modeling and its adjoint, is solved by finite-different methods 

on centered grids to estimate velocity and Q models in 

viscoelastic waveform. In the equations memory variables 

simulate viscosity. 

 

The anisotropic forward modeling is based on lossy and non-

lossy elastic VTI wave equations derived from first 

principles, without any other approximation than the acoustic 

VTI approximation itself. This approach leads to a set of first 

order differential equations in the components of the particle 

velocity vector and two independent stress components and 

has a number of clear advantages: All involved variables have 

a clear physical meaning, the variable density case is handled 

in a natural way, and C-PML absorbing boundaries are easily 

incorporated. 
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The primary purpose of this research is to develop and 

validate a numerical simulation model for analyzing seismic 

wave propagation in attenuative and anisotropic 

heterogeneous media using finite difference methods. 

 

This study is significant because it provides computational 

tools for more accurate seismic imaging in complex 

geological settings, aiding applications in earthquake 

analysis, oil and gas exploration, and subsurface mapping. 

 

2. Equations for simulating the propagation of 

seismic waves 
 

2.1 Elastic wave equation in VTI anisotropic medium 

 

We examine wave propagation in a two-dimensional medium 

in this paper. The stress-strain relation is derived from the 

constitutive relations of the transversely isotropic medium, 

where x and z stand for the horizontal and vertical 

components, respectively (Carcione, 1988) and it is written 

as, 
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where σij and εij are stress and strain components of the 

medium, and cij are the elasticities of the medium. 

The constitutive relation and momentum conservation are 

used to describe the propagation of waves (Carcione, 1988). 

For a continuous medium, the linearized equation of motion 

is provided by 
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Where u(x,t) is the displacement field, Σ(x,t) is the stress 

tensor, f(x,t) represents the body forces, and ρ(x) is the 

density. For two-dimensional solid, equation (1.2) is written 

as: 
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where the components of displacements and body forces are 

denoted by ux and uz and fx and fz respectively. Using the strain-

displacement relation and replacing the constitutive relation 

in equations of motion (1.3-1.4), we obtain, 
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Equations (1.5-1.6) are a particular example of the equations 

of motion for vertical transverse isotropic (VTI) media. It 

follows that, 
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2.2 Viscoelastic wave equation in VTI anisotropic medium 

 

Carcione (1999) derives the time-domain viscoelastic 

equation for wave propagation in a heterogeneous VTI 

medium. The following constitutive equations provide a 

complete description of the two-dimensional velocity-stress 

formulation for anelastic propagation in the (x,z)-plane, 

where one relaxation mechanism is attributed to dilational 

anelastic deformations (v=p) and another to shear anelastic 

deformations (v=s): 
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where e1, e2  and e3 are memory variables, while c11, c13, c33 

and c44 are unrelaxed stiffness coefficients, vx and vz are the 

particle velocities;  σij  are the stress components.  
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The material relaxation times, represented by the values τσ 

and τε correspond to shear and dilational deformations, 

respectively. The equations for the memory variable are 
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3. Methods 
 

3.1 Finite difference scheme 

 

For the finite-difference model, a velocity-stress formulation 

of the first order is selected. The discretization of the stress-

strain relation and the equations of motion for a viscoelastic 

wave, found in Equations (1.11–1.13), results in a set of first-

order partial differential equations. The three unknown stress 

components σxx, σxz, σzz, as well as the two unknown particle 

velocities vx and vz, are the only non-zero field components 

because only field components in the x-z plane are stimulated. 

A set of five partial differential equations thus fully describes 

the motion of the waves: 
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For instance, Equations (1.25) and (1.27), which introduce the 

finite differences in space (Δx and Δz) and time (Δt), can be 

discretized as 
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Here, the numerical values of the correspondent field component at a specific point in time and space are denoted by Vi and σij.
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Similarly, 
1+k

xx  is obtained from Equation (1.31): 
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Discrete equations for each of the field components can be 

generated in the same way. It is crucial to stress that the 

velocity and stress components are offset by Δt/2 in time and 

by Δx/2 and Δz/2 in space, and are not known at the same 
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location in both space and time. As a result, the leapfrog 

algorithm and staggered grid are introduced. The field 

components in this technique are updated in time in a 

sequential manner. In other words, the velocity components 

are computed first, followed by the stress components, the 

velocity components again using the stress components, and 

so on. Therefore, the field components for all subsequent 

times t>t0 may be found by knowing the field components 

across the entire space at times t0 and t0  + 0.5Δt, respectively. 

 

 

 

 

4. Result and discussion 
 

4.1 Forward simulations 

 

4.1.1 Homogeneous medium 

In Figure 1.3 (a-d), we show the snapshots of horizontal 

component wave fields of viscoelastic wave propagation at 

time, t = 0.6 s, in a homogeneous medium with different 

quality factors, ε = 0.24, δ = 0.1. The grid spacing for the 4000 

m by 4000 m model is Δx = Δz = 10 m. Density 3.0 g/cm3, 

S-wave velocity vs = 1930 m/s, and P-wave velocity vp = 

2500 m/s. 15 Hz is used as the reference frequency to define 

the phase velocities. A Ricker wavelet with a dominating 

frequency of 25 Hz is excited by an explosive source 

positioned in the middle of the model. 

 
Figure 1.3: Wavefield snapshots at 600 ms in a homogeneous medium including (a) elastic VTI; (b) attenuative isotropic 

medium with Qp = Qs = 40; (c) attenuative VTI medium with Qp = Qs = 40 and ε = 0.24, δ = 0.1; and (d) attenuative VTI 

medium with Qp = Qs = 100, ε = 0.24, δ = 0.1. 

 

With attenuation Q-factors of Qp = 100 and Qs = 80 for P-

wave and S-wave attenuations, respectively, a receiver 

positioned at (3000 m, 1500 m) in the simulation model 

captures the waveform for anisotropic viscoelastic wave 

propagation without attenuation compensation (viscoelastic 

vti) and for anisotropic viscoelastic wave propagation with 

attenuation compensation (viscoelastic_TR). These recorded 

waveforms are compared to the recorded waveform of the 

reference anisotropic elastic wave propagation in the same 

model. In Figure 1.4, it can be seen that the amplitude of the 

waveform received for anisotropic viscoelastic wave 

propagation (viscoelastic vti) is more attenuated compared to 

the reference anisotropic elastic wave propagation, which has 

zero attenuation. The amplitude of S-wave in the viscoelastic 

vti waveform is more attenuated than the amplitude of P-wave 

of the same waveform. This is because of the attenuation Q-

factor of S-wave which has higher attenuation value than that 

of P-wave. 
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Figure 1.4: Comparison of anisotropic elastic waveform (black line) and anisotropic viscoelastic waveform (grey line). 

 

Anisotropic viscoelastic wave propagation with attenuation compensation corrects for the loss of energy during propagation 

(Fig. 1.5). The waveform recorded by the same receiver in the model show the amplitude closely matches that of the reference 

anisotropic elastic wave propagation, with zero attenuation. 

 

 

 
Figure 1.5: Comparison of anisotropic elastic waveform (black line), anisotropic viscoelastic waveform (grey line) and 

anisotropic viscoelastic waveform with attenuation compensation (broken grey line). 

 

4.1.2 Heterogeneous medium 

With a low velocity shale layer surrounded by high velocity 

strata, we create a synthetic seismogram using a modified 

Barnet Shale model (Maxwell, 2009) (Fig. 1.6). There are 400 

x 400 gridpoints in the discretized model. A time-varying 

Ricker wavelet with a peak frequency of 100 Hz is injected as 

a point source, beginning with a single source situated at (200 

m, 200 m). With the horizontal and vertical axes grid spaced 

as follows: Δx = Δz = 1.0 m, a time step of 0.1 ms is 

employed. 36 receivers are placed 10 meters apart at depths 

between 50 and 400 meters. In Figure 1.6, the source-receiver 

geometry is displayed. A forward modeling anisotropic 

viscoelastic code employing finite differences produced 

synthetic data. Figures 1.7 and 1.8, respectively, display the 

horizontal stress components that resulted from the reference 

anisotropic elastic and anisotropic viscoelastic seismograms. 
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Figure 1.6: Source-receiver geometry on modified Barnet Shale velocity model. 

 

 

 
Figure 1.7: Seismograms recorded at the receiver array, as determined by an elastic (anisotropic) solver. 
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Figure 1.8: Seismograms recorded at the receiver array, as determined by an anisotropic viscoelastic solver. 

 

One benefit of the time reversal approach is its ability to tolerate noise. Numerical simulations of anisotropic viscoelastic media 

are possible. Figure 1.9 illustrates the addition of Gaussian random noise to the original signal following the vertical array's 

recording of the signal from the source (Fig. 1.8).  

 
Figure 1.9: Recorded seismogram contaminated with Gaussian noise. 

 

5. Conclusion 
 

This research demonstrates that attenuation significantly 

alters both the amplitude and phase of seismic waveforms in 

heterogeneous and anisotropic media. The use of numerical 

simulation techniques, particularly those compensating for 

attenuation, proves effective in restoring wave energy profiles 

to those of non-attenuative models. In my view, this suggests 

a promising pathway for improving subsurface imaging in 

geophysics, where accurate representation of wave behavior 

is crucial for interpretation and decision-making. 
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