
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 7, July 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

A Comparison of Various Robust Estimators in 

Mahalanobis Depth 
  

Surabhi S Nair 
 

KNM Govt. Arts and Science College, Kanjiramkulam, Thiruvananthapuram, Kerala, India 

Email: surabhinair93[at]gmail.com 

 

 

Abstract: One of the fundamental ideas in multidimensional data analysis is data depth. The phrase data depth refers to the depth of a 

specific point within a large multivariate data cloud. The sample points can be ranked from the center outward rather than the usual 

smallest to biggest rank. This is one method for identifying a good representation across the entire data. The Mahalanobis Depth (MD) 

approach, which is one of the most used depth methods, is based on the standard mean vector and covariance matrix. If certain 

presumptions are valid, conventional MD should function quite well; nevertheless, while a few of these assertions are false, traditional 

MD may not be reliable. Anomalies are very likely to occur in both the sample mean vector and covariance matrix. Due to this, the classic 

Mahalanobis depth is unable to produce accurate findings when the data contains abnormalities. As a result, this work proposed a set of 

robust Mahalanobis depths for location estimation namely Robust MD based on M-estimator (RMD - M), MM estimator (RMD - MM), 

and Minimum Regularized Covariance Determinant estimator (RRMD- Robust Regularized Mahalanobis Depth). All the proposed depth 

functions work well and give reliable location when the data is not high-dimensional, the variable number p is less than sample size n. 

But in the high dimensional data set, where variable number p is greater than sample size n, some of the proposed MD cannot be 

determined. Even with high-dimensional and corrupted data, one of the proposed depth functions RRMD produces credible findings when 

compared to existing approaches and other proposed depth functions in this study. In comparison to other depth functions that have been 

suggested, this study demonstrates that RRMD is successful in locating a central point even in high-dimensional data sets with real data 

study and simulation study up to a specific level of contamination. 
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1. Introduction 
 

The nonparametric approach to multidimensional data 

analysis revolves around the idea of data depth. The idea of 

data depth was initially put forward by [17] to visualize two-

dimensional data sets, and it has since been expanded by [3] 

to include multidimensional data sets. Instead of using density 

or linear ordering to represent data distribution, a statistical 

technique called data depth uses center-outward ordering 

[11]. According to [6], the idea of data depth is used for 

statistical analysis with several variables because it offers a 

nonparametric way. Numerous researchers have developed 

various depth preliminary notions that have been documented 

in the literature. 

 

To solve the problem of sensitivity issues in complex data 

analysis, researchers are seeking for answers in robust depth 

processes. In addition, robust estimators like M-estimators 

[4], MM-estimators [18] Minimum Covariance Determinants 

(MCD) estimators [5], Minimum Volume Ellipsoids (MVE) 

estimators [16], and Minimum Regularized Covariance 

Determinants (MRCD) [1] can be used to replace the classical 

estimators in robust depth procedures to deal with the 

presence of outliers. 

 

An assortment of RMDs is suggested in this article for 

determining the measure of location, particularly in high 

dimensions. They are based on taking into account various 

combinations of reliable location and covariance matrix 

estimators, namely the M estimator, MM estimator, and 

MRCD estimator. There is a requirement for regularization in 

the estimators because some of the recommended techniques, 

with the exception of RRMD, are unable to find Mahalanobis 

depth in multidimensional data. It is investigated that the 

suggested RRMD technique for location estimation in data 

with high dimensions gives reliable results regardless of 

whether the data is corrupted using different types of 

simulations and two real datasets. 

 

The basic structure of the paper is as follows. Section 2 

provides descriptions of conventional Mahalanobis depth, the 

employed robust estimator, and the proposed strategy. 

Section 3 will present the findings and discussions 

constructed on the real data and simulated study. The final 

portion will include the conclusion. 

 

2. Methods 
 

Huge volumes of data are produced and tainted by noise in 

many industries nowadays. A crucial topic is the creation of 

training methods that are resilient to data inconsistencies and 

disturbances. In this section, the principles of controlled 

learning, including the conventional Mahalanobis Depth, 

robust estimators used, and the suggested depth process, are 

discussed. 

 

2.1 Mahalanobis Depth 

 

From Mahalanobis distance, [6] initially explained 

Mahalanobis depth (MD). Generalized distance is a statistical 

concept introduced by [7] that may be estimated using a 

traditional mean vector and covariance matrix. The 

Mahalanobis distance is used to calculate the Mahalanobis 

depth of an observation. Mahalanobis depth is the contrary of 

the inverse of Mahalanobis distance. For an observation about 

a d-dimensional data with the form 𝑦 ∈  𝑆 ⊂ 𝑅𝑑  

 

The Mahalanobis depth (𝑀𝐷) is given by  
𝑀𝐷(𝑌, �̅�, 𝑆) = [1 + 𝐷(𝑌, �̅�, 𝑆)]−1 
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and 𝐷(𝑌, �̅�, 𝑆) = (𝑌 − �̅�)′𝑆−1(𝑌 − �̅�) is the squared 

Mahalanobis distance (𝐷), where �̅� and S are the mean vector 

and sample covariance matrix. Since it is reliant on non-robust 

parameters like the mean and dispersion matrix, this algorithm 

lacks to be reliable. 

 

2.2 M-Estimator 

 

M estimator was proposed by [4], which expands maximum 

likelihood estimation to minimization of the function  

 
∑ 𝜌𝑛

𝑖=1 (𝑦𝑖 , 𝜃) = 𝑚𝑖𝑛, 𝜃 ∈ Θ                    (1) 

where 𝜌 is a function with specific properties and the solution 

�̂� = arg 𝑚𝑖𝑛𝜃 ∑ 𝜌

𝑛

𝑖=1

(𝑦𝑖 , 𝜃), 𝜃 ∈ Θ 

 

are called M-estimators (M for maximum likelihood type). 

Therefore, maximum likelihood estimators are a particular 

kind of M estimator. Different robust estimators are produced 

by choosing various functions, 𝜌, and each robust estimator's 

robustness is measured by how unaffected it is by outliers or 

deviations from the presumptive statistical model. 

 

For location and scale factors, the M estimator can be created 

in both univariate and multivariate contexts. The maximal 

likelihood estimator of a parametric model, where 𝜌 = {𝑦, 𝜃}, 

is the density function of 𝑃 𝜃, is included in the class of M-

estimators. MLE is the solution of minimization  

 

∑(− log 𝑓(𝑌𝑖 , 𝜃)

𝑛

𝑖=1

) = 𝑚𝑖𝑛, 𝜃 ∈ Θ 

 

The M-estimator, say T, is a root or roots of the equation if 𝜌 

in (1) is differentiable with continuous derivative 𝜑(. , 𝜃). 

 

∑ 𝜑(𝑌𝑖 , 𝜃)

𝑛

𝑖=1

= 𝑚𝑖𝑛, 𝜃 ∈ Θ 

 

From now  
1

𝑛
∑ 𝜑(𝑌𝑖 , 𝑇) = 𝐸[((𝑌𝑖 , 𝑇)]𝑛

𝑖=1 = 0, 𝑇 ∈ Θ            (2) 

 

From (1) and (2) as a resolution of the minimization problem, 

the M function which corresponds to T is defined 

∫ 𝜌(𝑦, 𝐼(𝑃)𝑑𝑃(𝑦) = 𝐸[(𝑌, 𝐼(𝑃)] = 𝑚𝑖𝑛, 𝑇(𝑃) ∈ Θ (3) 

 

The solution of the equation becomes 

∫ 𝜑(𝑦, 𝐼(𝑃)𝑑𝑃(𝑦) = 𝐸[(𝑌, 𝐼(𝑃)] = 𝑚𝑖𝑛, 𝐼(𝑃) ∈ Θ 

 

where the function I(P) is Fisher constant. 

 

The model with shift parameter 𝜃 is a significant specific 

example, in which 𝑦1 , 𝑦2, … , 𝑦𝑛 are independent observations 

with a similar distribution function 𝐹(𝑌 − 𝜃), 𝜃 ∈ Θ, and the 

distribution function F is often unknown. M-estimator of 

location parameter T is defined as a result of minimization  

 

∑ 𝜌

𝑛

𝑖=1

(𝑦𝑖 − 𝜃) = 𝑚𝑖𝑛 

 

And if 𝜌(. ) is differentiable with absolutely derivative 𝜑(. ), 

then T solves the equation 

 

∑ 𝜑

𝑛

𝑖=1

(𝑦𝑖 − 𝜃) = 𝑚𝑖𝑛 

 

Then the solution of the equation is 

 

∫ 𝜑((𝑦𝑖 − 𝜃)𝑑𝑃(𝑦) = 𝑚𝑖𝑛 have unique solution 𝜃 = 0 

 

2.3 MM-Estimator 

 

The class of MM estimator is an estimator with a high 

breakdown value, was invented by [18]. It is the extension of 

the S estimator and was proposed [13]. The determinant of the 

matrix S is defined as the S estimator of location and 

covariance such that it is minimized under the constraints. 

 
1

𝑛
∑ 𝜙√(𝑋𝑖 − 𝜇)′𝑆−1(𝑋𝑖 − 𝜇)𝑛

𝑖=1 = 𝑐            (4) 

 

Where 𝑐 is a constant and 𝜙(𝑋) is the loss function.  

 

According to [15], Tukey's bi-weight function is a frequent 

choice of loss. 

𝜙(𝑋) = {

𝑘2

6
[[1 − (1 −

𝑥

𝑘
)2]]

3

, |𝑥| ≤ 𝑘

𝑘2

6
 , |𝑥| > 𝑘

         (5) 

 

As suggested by [8], the following stages should be taken into 

account while estimating the MM estimator. 

 

Define a loss function 𝜙 to compute the S estimator of 

location �̂� and covariance Σ̂. 

 

Compute σ̂ =  |Σ|1/2𝜙 

 

Determine the MM estimator of the location parameter �̂� and 

shape parameter Γ̂, which minimizes 
1

𝑛
∑ 𝜙1((𝑋𝑖 − 𝜇)′Γ−1(𝑋𝑖 − 𝜇))1/2/σ̂𝑛

𝑖=1   

 

Compute the MM estimator of the covariance matrix  

 

Σ̂ = σ̂Γ̂  

 

2.3 Minimum Covariance Determinant MCD Estimator 

 

The Minimum Covariance Determinant (MCD) Estimator 

was established by [5], which can calculate the mean vector 

and covariance matrix as well as identify outliers. The 

smallest determinant-containing sample of h observations is 

searched with respect to the covariance matrix. The scatter 

estimate is a multiple of the scatter matrix, and the location 

estimate is the mean value of that group according to this 

estimator. 

 

𝑀𝑋(𝐻) = ℎ−1𝑋𝐻
′ 𝐼ℎ (6) 

 

𝑆𝑋(𝐻) = (ℎ − 1)−1(𝑋𝐻 − 𝑀𝑋(𝐻))′(𝑋𝐻 − 𝑀𝑋(𝐻)) (7) 
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After that, the MCD method seeks to minimize the 

determinant of 𝑆𝑋(𝐻) for all 𝐻 ∈ ℋℎ. 

 

𝐻𝑀𝐶𝐷 =  (𝑑𝑒𝑡(𝑆𝑋(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛
 (8) 

 

The MCD estimation of the location  𝑀𝑀𝐶𝐷 is defined by the 

mean of the h-subset, whereas the estimated MCD scatter 

estimate 𝑆𝑀𝐶𝐷  is specified as a multiplier of the samples 

scatter matrix and is obtained by 

 

𝑀𝑀𝐶𝐷 = 𝑀𝑋(𝐻𝑀𝐶𝐷)                (9) 

 

𝑆𝑀𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝐶𝐷)            (10) 

 

where 𝐶𝛼 is a consistency factor similar to that offered by [2] 

that is dependent upon the trimming percentage = (𝑛 − ℎ)/𝑛. 

Its major disadvantage is that when the dimension is larger 

than the size of the subset, it produces incorrect results. MCD 

must be modified for high dimensions because the current 

MCD techniques are inefficient and inadequate. 

 

2.4 Minimum Regularized Covariance Determinant 

(MRCD) Estimator  

 

The MRCD estimator is a modified version of MCD 

estimators for high-dimensional data and was proposed by 

[1]. To guarantee that the MRCD scatter estimator is scale 

equivariant and location unvarying, as is common in the 

literature, first, standardize the variables. The use of a 

trustworthy univariate location and scale estimate is required 

for standardization. For this, the median of each subset is 

calculated and placed in a location vector called 𝑚𝑥. 

Additionally, each variable's scale using the Qn estimator is 

calculated [13], then insert these scales into 𝑑𝑥, the diagonal 

matrix. 

 

𝑍𝑖 = 𝑑𝑥
−1(𝑥𝑖 − 𝑚𝑥)            (11) 

 

The regularized scatter matrix of the standardized observation 

is 

 

𝒮(𝐻) =  𝜌𝑇 + (1 − 𝜌)𝐶𝛼𝑆𝑍(𝐻) 

 

where 𝑆𝑍(𝐻) is defined in (7), however, in the case of Z, 𝐶𝛼 

is the same consistency parameter as in (10). 

 

Assume that the orthogonal matrix Q provides the pertinent 

eigenvectors and that A is the diagonal matrix holding the 

eigenvalues of T. It will be useful to use the spectral 

decomposition 𝑇 = 𝑄𝐴𝑄′. 

 

Then, 

𝒮(𝐻) = 𝑄𝐴
1

2⁄ [𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻)]𝐴𝐴
1

2⁄ 𝑄′ (12) 

 

where 𝑊 is the 𝑛 × 𝑝 matrix consisting the transformed 

standardized observations  

𝑤𝑖 =  𝐴
−1

2⁄ 𝑄′𝑍𝑖, and 𝑆𝑊(𝐻) =  𝐴
−1

2⁄ 𝑄′𝑆𝑍𝑄𝐴
−1

2⁄  

 

The MRCD subset is given by 

𝐻𝑀𝑅𝐶𝐷 =  (𝑑𝑒𝑡(𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛
 (13) 

 

The MRCD location, 𝑀𝑀𝑅𝐶𝐷  and scatter, 𝑆𝑀𝑅𝐶𝐷  estimations 

of the initial data matrix X are defined as follows 

𝑀𝑀𝑅𝐶𝐷 = 𝑚𝑋 + 𝑑𝑥𝑀𝑍(𝐻𝑀𝑅𝐶𝐷)  

𝑆𝑀𝑅𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝐶𝐷)  

 

2.5 Mahalanobis Depth based on Various Robust 

Estimators 

 

The classical Mahalanobis Depth (MD) is defined in the 

equation (1). Since it is reliant on non-robust parameters like 

the mean and dispersion matrix, this algorithm lacks to be 

reliable. To get a reliable result, MD is calculated using robust 

location vector and covariance matrix using various robust 

estimators. MD using MCD estimator was proposed by [10]. 

This paper proposed a collection of Mahalanobis Depth for 

location estimation using various robust estimators namely, 

MD using M-estimator (MD-M), MD using MM-estimator 

(MD-MM), and MD using MRCD-estimator (RRMD-Robust 

Regularized Mahalanobis Depth). 

 

The computational Robust depth procedure for MD is as 

follows. 

 

Robust Mahalanobis Depth is obtained by replacing the 

classical location and scatter matrix by robust location and 

scatter matrix. 

 

Let 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 , and Σ𝑅𝑜𝑏𝑢𝑠𝑡  be the robust location and scatter 

matrix. The Robust Mahalanobis Depth (RMD) obtained 

from the squared Mahalanobis distance. 

 

𝐷(𝑌, 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 , Σ𝑅𝑜𝑏𝑢𝑠𝑡  ) = (𝑌 −  𝜇)′Σ𝑅𝑜𝑏𝑢𝑠𝑡
−1(𝑌 − 𝜇𝑅𝑜𝑏𝑢𝑠𝑡) 

and is given by 
𝑅𝑀𝐷 = [1 + 𝐷(𝑌, 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 , Σ𝑅𝑜𝑏𝑢𝑠𝑡)]−1  

 

Let 𝑌 = ( 𝑌1, 𝑌2, … , 𝑌𝑑) be a d dimensional multivariate data 

set and 𝑦 be a numerical vector whose depth is to be 

calculated.  

 

1) By using the dataset calculate robust location (𝜇𝑅𝑜𝑏𝑢𝑠𝑡) 

and scatter estimators ( Σ𝑅𝑜𝑏𝑢𝑠𝑡).  

2) The Squared Mahalanobis distance, can be calculated 

from (i)  

a) e., 𝐷(𝑌, 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 , Σ𝑅𝑜𝑏𝑢𝑠𝑡  ) = (𝑌 −  𝜇)′Σ𝑅𝑜𝑏𝑢𝑠𝑡
−1(𝑌 −

𝜇𝑅𝑜𝑏𝑢𝑠𝑡) 

• 𝑆𝐷 be the sorted distance given in (ii) 

• 𝑀𝑆𝐷 be the median from the distance 

from (iii), 

 

b) 𝑀𝑆𝐷
= 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝐷)  

3) 𝐷𝑦  be the difference between Squared Mahalanobis 

distance value from (ii) and median from (iv), ie., 𝐷𝑦 =

 𝐷(𝑌, 𝜇𝑅𝑜𝑏𝑢𝑠𝑡 , Σ𝑅𝑜𝑏𝑢𝑠𝑡  ) − 𝑀𝑆𝐷
 

4) 𝐴𝑏𝑠(𝐷𝑦) be the absolute value of the difference in (v) 

5) Now, the proposed depth procedure, Robust 

Mahalanobis Depth can be calculated by 𝑅𝑀𝐷 =
[1 + 𝐴𝑏𝑠(𝐷𝑦)]−1 

6) Putting (𝜇𝑀, Σ𝑀), (𝜇𝑀𝑀 , Σ𝑀𝑀), (𝜇𝑀𝐶𝐷 , Σ𝑀𝐶𝐷), 

(𝜇𝑀𝑅𝐶𝐷 , Σ𝑀𝑅𝐶𝐷), in (ii) get MD-M, MD-MM, MD-MCD, 

and RRMD respectively. 

7) where (𝜇𝑀, Σ𝑀), (𝜇𝑀𝑀, Σ𝑀𝑀), (𝜇𝑀𝐶𝐷 , Σ𝑀𝐶𝐷), 

(𝜇𝑀𝑅𝐶𝐷 , Σ𝑀𝑅𝐶𝐷), be the location and scatter matrix using 
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M, MM, MCD and MRCD respectively. 

 

3. Experimental Result 
 

In this section, it was compared to the usual Mahalanobis 

depth procedure in order to analyze the performance of the 

suggested robust depth procedures. So as to compute the 

location measurement corresponding to the deepest point in 

multivariate and high-dimensional data, experiments were 

conducted in actual and simulated environments. 

 

3.1 Real Data Study 

 

In this section, Delivery Time Data from Montgomery and 

Peck (1982), which is multivariate real data, is taken into 

consideration to study the effectiveness of the mentioned 

depth methods. The data set contains 25 observations and 3 

variables namely the number of products, the distance walked 

by the route driver, and Delivery time. Found that there are 6 

outliers using distance-distance plot. Also, classical and 

proposed Mahalanobis depth function, which can be used to 

find the location parameter in high-dimensional datasets. 

Here the NCI60 data which is obtained from the “ISLR” 

package of R software. The data contains expression levels on 

6830 genes from 64 cancer cell lines. Cancer type is also 

recorded. Due to the enormous dimensions of these datasets, 

this study only used the first p (𝑝 = 3 ∗ 𝑛) variables for 

convenience. The results obtained from real data study is 

concluded in the form of Table 1 and Table 2.  

 

Table 1: Deepest point and observation under various Mahalanobis Depth for n > p 
Methods MD RMD - M RMD - MM RMD - MCD RRMD 

Deepest Point 0.932 (0.836) 0.855 (0.855) 0.989 (0.825) 0.853 (0.790) 0.888 (0.756) 

Observation Number 15 (6) 17 (17) 6 (17) 17 (17) 17 (17) 

(.) without outliers 

 

Table 2: Deepest point and observation under various 

Mahalanobis Depth for n < p 
Methods MD RRMD 

Deepest Point 0.097 (0.086) 0.031 (0.029) 

Observation Number 23 (5) 49 (49) 

 (.) without outliers 
 

Classical MD and the suggested algorithm, Robust 

Mahalanobis Depth (RMD) is obtained based on various 

robust estimators and then the location parameter is calculated 

using the depth values for the two real data sets. In the first 

case except the classical method, the suggested methods 

perform well and give same location measurement under with 

and without outlier condition. But in high-dimensional data, 

the classical methods produce various results in both 

conditions. The suggested methods MD-M, MD-MM, and 

MM-MCD did not produce any depth values, therefore the 

location measurement can’t be calculated. Only the suggested 

depth procedure RRMD gives the reliable result in both 

studies. 

 

3.2 Simulation Study 

 

Two simulation models with various contamination levels are 

carried out to evaluate the performance of the suggested 

algorithms compared with the existing method. The 

experiments were carried out by computing the location 

measure that correspond to maximum depth values.  

 

First generated data with dimension 100 × 6, with mean 

vector 𝜇 = (0,0, … ,0)1×6and covariance matrixΣ = 𝐼6. Here 

n=100, and p=6. Further same experiments were performed 

under various levels of contaminations, such as ε= 5%, 10%, 

20%, 30% (For Location𝜇 = (1.5,1.5, … , 1.5) and Σ = 𝐼6, 

Scale 𝜇 = (0,0, … ,0)1×300, and Σ = 1.5𝐼6, Location, and 

Scale, 𝜇 = (1,1, … , 1) 𝑎𝑛𝑑 Σ = 2𝐼6) are taken into account. 

 

For the second simulation study, generate data with 

dimension 100 × 300, with mean vector 𝜇 =
(0,0, … ,0)1×300and covariance matrixΣ = 𝐼300. Here n=100, 

and p=300. Further same experiments were performed under 

various levels of contaminations, such as ε= 5%, 10%, 20%, 

30% (For Location𝜇 = (1.5,1.5, … , 1.5) and Σ = 𝐼300, 

Scale 𝜇 = (0,0, … ,0)1×300, and Σ = 1.5𝐼300, Location, and 

Scale, 𝜇 = (1.5,1.5, … , 1.5) 𝑎𝑛𝑑 Σ = 1.5𝐼300) are taken into 

account.  
 

From the simulation study it is concluded that the suggested 

robust depth procedures performs well when the number of 

observations is higher than the variables. But in high 

dimensional case only the RRMD can tolerate certain levels of 

contamination and gives the same deepest point up to a certain 

level of contamination. The results obtained from simulation 

studies are given in Table 3 and Table 4. 

 

Table 3: Deepest point and observation under various contamination models with n>p 
Location Contamination 

e MD RMD - M RMD - MM RMD - MCD RRMD 

0.05 0.603 (83) 0.634 (83) 0.616 (83) 0.566 (83) 0.702 (83) 

0.10 0.550 (83) 0.567 (83) 0.575 (83) 0.584 (83) 0.665 (83) 

0.20 0.505 (83) 0.557 (80) 0.534 (85) 0.567 (83) 0.652 (83) 

0.30 0.473 (50) 0.610 (50) 0.607 (50) 0.609 (50) 0.633 (50) 

Scale Contamination 

e MD RMD - M RMD - MM RMD - MCD RRMD 

0.05 0.613 (83) 0.623 (83) 0.642 (83) 0.664 (83) 0.721 (83) 

0.10 0.573 (83) 0.583 (83) 0.633 (83) 0.637 (83) 0.711 (83) 

0.20 0.518 (83) 0.581 (83) 0.602 (83) 0.524 (83) 0.686 (83) 

0.30 0.500 (50) 0.666 (50) 0.627 (50) 0.632 (50) 0.650 (50) 

Paper ID: SR25711214912 DOI: https://dx.doi.org/10.21275/SR25711214912 838 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 7, July 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Location - Scale Contamination 

e MD RMD - M RMD - MM RMD - MCD RRMD 

0.05 0.622 (83) 0.614 (83) 0.626 (83) 0.649 (83) 0.718 (83) 

0.10 0.579 (83) 0.607 (83) 0.611 (83) 0.589 (83) 0.725 (83) 

0.20 0.529 (50) 0.569 (83) 0.565 (83) 0.559 (83) 0.716 (83) 

0.30 0.520 (50) 0.692 (50) 0.670 (50) 0.669 (50) 0.606 (50) 

 

Table 4: Deepest point and observation under various contamination models with n < p 
Location Contamination Scale Contamination Location-Scale Contamination 

e MD RRMD MD RRMD MD RRMD 

0.05 0.178(34) 0.019 (33) 0.987(20) 0.018 (33) 0.057(5) 0.019 (33) 

0.10 0.099 (96) 0.019 (33) 0.870 (41) 0.018 (33) 0.044 (93) 0.019 (33) 

0.20 0.126 (10) 0.019 (33) 0.108 (77) 0.018 (33) 0.032 (88) 0.019 (33) 

0.30 0.014 (38) 0.019 (28) 0.082 (30) 0.018 (22) 0.046 (90) 0.019 (22) 

 

4. Conclusion 
 

Conventional methods should work reasonably well if certain 

assumptions are true, however, they may not be trustworthy 

if one or more of these assumptions are erroneous. Both the 

sample mean vector and covariance matrix are extremely 

susceptible to anomalies. As a result, when the data contains 

anomalies, the traditional Mahalanobis depth fails to generate 

reliable results. For non-normal conditions, a robust 

alternative is required to improve accuracy even when the 

data somewhat depart from the model assumptions. This 

study suggested various notions of Mahalanobis depth based 

on robust estimators namely MD-M, MD-MM, MD-MCD, 

and RRMD to find the location parameters. The proposed 

methods are compared with the existing procedure and give 

reliable results up to certain levels of contamination when the 

variable number is less than the number of observations. But 

in high dimensional data (the variable number is greater than 

the number of observations) RRMD only gives the reliable 

results. The study demonstrated that, even with high-

dimensional data, the suggested depth approach, RRMD, 

outperforms the existing and other suggested method for 

robust and affine equivariant location. The research groups 

can locate the best location with more accuracy when 

employing these methods by locating the deepest point in a 

set of data rather than depending on a more traditional method 

to figure out location. 
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