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Abstract: Vat photo polymerization (VPP) is a high-precision additive manufacturing technique for producing complex ceramic 

components. It requires a high ceramic content to reduce shrinkage and improve mechanical integrity, but also raises the slurry's 

viscosity, compromising printability. Traditional trial-and-error methods are time-consuming and costly, especially for high-value 

materials like cubic boron nitride (cBN). Bayesian optimization, an AI-driven technique, was used to guide experimental formulation, 

resulting in a VPP-suitable cBN slurry with 69 vol. % ceramic content in fewer than 40 iterations. This demonstrates how integrating AI 

with materials development can accelerate optimization, reduce waste, and advance high-performance ceramics in additive 

manufacturing. 
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1. Introduction 
 

a) Vat Photopolymerization of ceramics: an advanced 

additive manufacturing technique 

Vat Photopolymerization (VPP) is a promising ceramic 

additive manufacturing (AM) technique that offers 

exceptional precision, fine feature resolution, and excellent 

surface finish. VPP uses a ceramic slurry, consisting of high-

loading ceramic powder suspended in a photosensitive 

organic binder system, to fabricate ceramic components 

layer by layer. Common ceramic powders include aluminum 

oxide and zirconium oxide. VPP can produce sintered 

ceramics with densities exceeding 99%, resulting in parts 

with near-theoretical density and outstanding mechanical 

integrity. The process is selectively cured using ultraviolet 

or visible light, using point-based systems and area-based 

systems for faster, high-resolution printing. VPP is an 

advanced and scalable technology with unmatched control 

over dimensional accuracy, micro structural quality, and 

surface finish. 

 

b) Ceramic slurries for vat Photopolymerization 

Vat Photopolymerization (VPP) in ceramics involves a 

binder system with monomers, photo initiators, co-initiators, 

and additives. Radical polymerization is the most common 

method due to its fast curing characteristics. The formulation 

of the ceramic slurry affects printing process and final part 

quality. High solid content improves dimensional accuracy 

and density, while higher viscosity can hinder recoating. 

Griffith's foundational model considers refractive index 

difference and inter particle spacing, affecting printed layers' 

resolution and stability. 

 

c) Bayesian optimization in ceramic slurry design 

Ceramic slurries in vat Photopolymerization are complex 

due to their multiple components and compositional 

constraints. Traditional DoE approaches are time-consuming 

and resource-intensive, leading to the "curse of 

dimensionality." Bayesian Optimization, a sequential, 

model-based technique, has emerged as a powerful 

alternative for optimizing complex systems with limited 

experimental budgets. It works by building a surrogate 

model, typically a Gaussian Process Regression (GPR) 

model, and using an acquisition function to identify the next 

set of parameters. This AI-driven approach has been widely 

applied in materials acceleration platforms and automated 

laboratories for tasks like optimizing chemical synthesis 

conditions and real-time process parameters. 

 

d) Research target: Optimization and design of cBN 

inserts via vat Photopolymerization 

This research aims to optimize Cubic Boron Nitride (cBN) 

inserts using Vat Photopolymerization (VPP), an advanced 

additive manufacturing technique for high-precision ceramic 

components. To reduce defects and ensure structural 

integrity, increasing cBN content in the photopolymer slurry 

is essential. Bayesian Optimization is employed to explore 

and optimize the slurry formulation, focusing on maximizing 

solid content, maintaining viscosity, and minimizing curing 

width-to-depth ratio. The binder system is based on previous 

formulations, ensuring reliability and reproducibility. This 

research contributes to the design of high-performance cBN 

inserts and advances VPP's application in fabricating 

complex ceramic tools with precise geometry and superior 

functional properties.  

 

2. Foundational Concepts 
 

1) Vat Photopolymerization (vpp). 

Vat Photopolymerization's remarkable resolution and 

surface quality are among its main benefits. Because the 

technology can create layers as thin as 25–100 microns, 

smooth surfaces can be achieved with little post-processing. 
This is especially helpful for applications where accuracy 

and beauty are essential, like dental prosthetics, jewelry, 

hearing aids, microfluidics, and biomedical devices. VPP 

parts frequently come out of the printer almost ready to use, 

in contrast to techniques like FDM that may leave noticeable 

layer lines and require extensive finishing. This drastically 

cuts down on post-processing expenses and time. Vat 
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Photopolymerization is also becoming more popular in 

terms of material versatility. Advances in resin chemistry 

have produced durable, flexible, and even ceramic-filled 

VPP, whereas traditional VPP was restricted to brittle 

photopolymers. 

 

 
Figure 1: Vat Photopolymerization (VPP). 

 

2) Prerequisites for successful vat Photopolymerization.  

 

a) Slurry of photopolymer resin  

• Materials that are photosensitive (monomers or 

oligomers) and cure when exposed to visible or 

ultraviolet light.  

• Additives: metal or ceramic fillers (for functional 

parts), stabilizers, dyes, rheology modifiers, and 

photo-initiators.  

• Viscosity control: Depending on the system, the 

resin's viscosity must be appropriate for recoating, 

usually 0.5 to 3 Pa•s. 

b) Light Source: 

• UV laser or projector, usually with a wavelength of 

355 nm or 405 nm. 

• Consistent high energy dose for appropriate curing 

depth and resolution. 

c) Vat or Resin Tank: 

• For bottom-up systems, the bottom is composed of a 

UV-transparent substance, such as FEP film.  

• May be heated or stirred to preserve resin flow and 

homogeneity; designed to minimize resin waste and 

stop leaks. 

d) Create a platform that is mechanically 

 

3) Bayesian Optimization 

The best solution to complicated problems where evaluating 

the objective function is expensive, time-consuming, or 

lacks a clear mathematical form can be found using 

Bayesian Optimization, an intelligent, data-efficient 

optimization technique. It creates a probabilistic model, 

usually a Gaussian Process, that forecasts the result of 

various input values rather than thoroughly testing every 

potential input. It uses an acquisition function to choose the 

most promising input for further evaluation based on these 

predictions and related uncertainties. This enables it to strike 

a balance between investigating uncharted territory and 

taking advantage of established positive outcomes. In 

domains where experimental trials are costly or scarce, such 

as machine learning, materials science, and additive 

manufacturing, Bayesian optimization is particularly useful. 

Bayesian optimization is preferred over conventional 

techniques due to its effectiveness and data efficiency. 

 

3. Experimental Composition and Curing 

Agents 
  

The effect of particle size distribution on the rheological and 

curing characteristics of ceramic-loaded slurries in vat 

Photopolymerization (VPP) is examined in this work. 

Because of its optical qualities, chemical inertness, and 

thermal stability, boron nitride (cBN) was selected. The 

study investigated the effects of varying particle size on the 

viscosity, dispersion stability, and overall curing efficiency 

of BN powders with three distinct median particle sizes 

(0.05 μm, 0.5 μm, and 3 μm). Additionally evaluated was 

the binder system, which included the ceramic filler. The 

formulation included three distinct acrylate-based 

monomers, which had an impact on the reactivity and cross 

linking density during Photopolymerization. 

Trimethylolpropane ethoxylate triacrylate (TEMPTA) and 1, 

6-hexanediol diacrylate (HDDA) were utilized to boost 

crosslinking density and reactivity, while isobornyl acrylate 

(IBOA) was selected due to its low viscosity. 

 

Table 1: Material Properties Table 

 
 

Successful printing of green parts depends on the flow and 

stability of the slurry, which should have a target viscosity 

of 0.5-5 Pa.s, a thixotropy of 0-2 Pa.s, and sedimentation 

resistance, especially with high-density particles like cBN. 
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To ensure accurate Photopolymerization, the slurry system 

must match the printer wavelength, have a controlled 

reactivity, and be well-dispersed to avoid agglomeration. 

The slurry system must also be compatible with VPP 

hardware, such as the Lithoz CeraFab 2M30 printer, LED or 

laser light source, re coater, and build platform heating. 

Parameters for the process include layer thickness, exposure 

time, and print speed. Post-processing requirements include 

cleaning, debinding, sintering, and shrinkage compensation. 

These parameters help to optimize the process and ensure 

the correct materials are used for successful printing. The 

slurry system must also be compatible with VPP hardware, 

such as the printer, light source, re coater, and build platform 

heating. 

 

Table II: VPP Requirements Table 
Aspect Requirement 

Viscosity Control 
Optimized with 1-Octanol and 

Disperbyk 

Photopolymerization 
CQ+ co initiator matched with 460nm 

light source 

Refractive Index 

Match between resin (IBOA, HDDA, 

TEMPTA) and ceramic (cBN) for light 

penetration 

Rheology Additives Disperbyk ensures flow and dispersion 

Printer Suitability 
High- Viscosity handling, blue light 

source, fine resolution system 

 

4) Python Implementation of Bayesian Optimization 

A Python-based Bayesian Optimization framework has been 

developed to achieve a target viscosity of 1 Pa•s for cubic boron 

nitride (cBN) slurry in Vat Photopolymerization (VPP). The 

framework uses a binder system with three monomers and a photo 

initiator, Camphorquinone (CQ), and 1-Octanol to reduce initial 

viscosity. The Python environment is prepared, and essential 

libraries like numpy are installed. The surrogate model is defined 

as a proxy for experimental measurements, and the objective 

function is defined to maximize the deviation from the desired 

viscosity. The Bayesian Optimization process is initiated by 

defining parameter bounds, and the optimizer iteratively proposes 

new combinations based on expected improvement strategies. The 

resulting code provides a data-driven tool for efficient material 

design and reduces the time and cost of manual experimentation, 

accelerating the development of optimized slurries for advanced 

ceramic 3D printing via Vat Photopolymerization. 

 

A. Assumptions  

• The proportions of the constituents determine viscosity.  

• Gaussian Process will serve as the stand-in model.  

• The ratios of isobornyl acrylate (IBOA), 1,6-hexanediol 

diacrylate (HDDA), trimethylolpropane ethoxylate 

triacrylate (TMPTA), camphorquinone (CQ), 4-

(Dimethylamino)benzonitrile (DMABN), iso-octanol, and 

disperbyk will all be optimized. 

 

B. Mathematical formulation  

Let: x = [x₁, x₂... x₇], where, xᵢ is the weight percentage of 

the ith component from the list: IBA, HDDA, TTA, CQ, 

DMB, IO, DBYK. Let cBN fixed = 69%. Then the 

constraint is: ∑ 𝑥𝑖 = 31 Define the viscosity estimation 

function f(x) as: 

f(x) = (
1

 ∑ 𝑥𝑖
 ) * ∑ 𝑥𝑖 * (0.4 * 𝜌𝑖+ 0.6 * 𝑛𝑖)] where 𝜌𝑖 is the 

density and 𝑛𝑖 is the refractive index of component i 

The objective function to minimize is: 

 

L(x) = |f(x) - 1.0| 

 

If ∑ 𝑥𝑖 > 31, then L(x) = 10 (penalty). 

 

The optimization is performed using Gaussian Process 

Regression (GPR) to model the objective function. The 

Expected Improvement (EI) acquisition function is used to 

balance exploration and exploitation in the optimization 

space. The optimizer iteratively samples new points in the 7-

dimensional space of component percentages until a 

composition that minimizes |f(x) - 1.0| is found. 

 

C. Python script for Bayesian optimization  

In order to reach a target viscosity of 1 Pa.s, this complete 

Python script employs Bayesian optimization to modify the 

proportions of eight components in a vat 

Photopolymerization system, with boron nitride set at 69%. 

 

Creating a Python script for Bayesian optimization entails 

fusing effective search techniques with statistical modeling 

to maximize complex functions, particularly in cases where 

evaluations are expensive or time-consuming. Usually, the 

process starts with defining the objective function you want 

to maximize or minimize, such as the viscosity of a ceramic 

slurry or the error of a machine learning model. The search 

space for the input parameters—which may consist of 

continuous, integer, or categorical variables—is then 

specified. Python libraries like bayes_opt, GPyOpt, and 

scikit-optimize (skopt) offer strong tools for putting this 

workflow into practice. 

 

Gaussian Processes are a popular method for modeling the 

unknown function. The script fits a probabilistic surrogate 

model that forecasts the behavior of the function across the 

parameter space after initializing with a set of observed 

samples. 

 
D. Implementation of Python Script 

 

Optimal Composition (%): 
IBA: 5.23% HDDA: 4.31% TTA: 5.98% 

CQ: 0.77% DMB: 0.60% IO: 6.41% 

DBYK: 7.70% Boron Nitride: 69.00%  

 

The Bayesian Optimization script's output is an optimized 

mix of a slurry formulation that will be used in vat 

Photopolymerization (VPP) with the goal of getting the 

viscosity as close to 1 Pa.s as possible. This viscosity target 

is very important for making sure that the flow behaves 

correctly, that the layers are recoated, and that the light gets 

through during the VPP method of additive manufacturing. 

The optimization was done with a fixed ceramic loading of 

69% cubic boron nitride (cBN) by weight, which is a 

common filler concentration for high-performance ceramic 

parts. The other 31% of the formulation was made up of 

different liquid phase components, such as monomers, photo 

initiators, additives, and dispersing agents. The algorithm 

figured out the best amounts of the other seven parts: 

isobornyl acrylate (IBA), 1,6-hexanediol diacrylate 

(HDDA), and trimethylolpropane ethoxylate triacrylate 

 

Paper ID: SR25703110142 DOI: https://dx.doi.org/10.21275/SR25703110142 322 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 7, July 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

4. Results and Discussion 
 

Plotting the viscosity values of various slurry formulations 

over a series of Bayesian optimization iterations. As 

iterations increase, the graph shows a decreasing trend in the 

difference between the measured viscosity and the target 

viscosity (1 Pa.s). This indicates that within 20–25 

evaluations, Bayesian Optimization successfully reduced the 

search space and found promising formulations. The optimal 

formulation closely matched the target viscosity of 1.02 

Pa.s. 

 

 
Figure 2: Viscosity vs. iteration number 

  

When the concentrations of HDDA (cross linker), IBOA 

(low viscosity monomer), and dispersant are balanced, the 

viscosity is at its lowest. While a high IBOA content 

reduced viscosity, mechanical strength was compromised by 

a lack of HDDA. Even at lower monomer ratios, dispersants 

such as DISPERBYK-180 dramatically decreased viscosity, 

demonstrating their function in enhancing flow and 

dispersion. 

 

 
Figure 3: Viscosity VS Monomer composition (IBOA vs 

HDDA) 

 

 
Figure 4: Curing depth vs. cBN Content  

 

The depth of UV curing drastically drops with increasing 

CBN content because of increased light scattering. The 

trade-off between attaining a high ceramic content and 

adequate cure depth is highlighted in the graph. This 

requires long exposure times and restricts layer thickness. 

UV-transparent binders or surface-modified CBN are 

examples of potential future advancements. 

 

5. Conclusion 
 

With a focus on boron nitride (cBN)-based composites, this 

work shows how to optimize ceramic slurry formulations for 

Vat Photopolymerization (VPP) in a methodical and data-

driven manner. The study investigated the effects of 

different monomers, cross linkers, and dispersing agents on 

the viscosity and curing behavior of the slurry system by 

setting the solid loading of cBN at 69 weight percent, an 

ideal balance for achieve functional ceramic load while 

maintaining process ability. By effectively exploring the 

formulation space, Bayesian Optimization (BO) was 

incorporated. This resulted in a significant reduction in the 

number of experimental iterations required to achieve the 

target viscosity of 1 Pa.s, which is crucial for layer 

uniformity and print resolution in the VPP process. Non-

linear interactions between chemical components were taken 

into consideration by the model-driven approach, which 

provided a clever framework for creating high-performance. 
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