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Abstract: The potent ensemble learning method Random Forest (RF) is frequently applied to tasks involving regression and 

classification. Its intrinsic black-box character, however, makes it challenging to understand how decisions are made. The reasoning 

underlying Random Forest predictions is traced and interpreted using a variety of methods in this research. We provide a summary of 

surrogate models, SHAP values, LIME, feature importance techniques, and decision path analysis to improve interpretability. In addition, 

we go over parallels with various machine learning models, explainability issues in high-stakes domains, and practical applications. 

Finally, we investigate potential avenues for further study to increase Random Forest models’ transparency.  
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1. Introduction 
 

Random Forest, a supervised learning algorithm, has 

established itself as a highly utilized and adaptable ensemble 

method in the field of machine learning. Pioneered by Leo 

Breiman and Adele Cutler, this algorithm effectively 

combines the predictive power of multiple decision trees to 

generate a single, more robust outcome suitable for both 

classification and regression problems. The fundamental 

principle involves constructing a multitude of decision trees, 

each trained on a randomly selected subset of the data and 

considering only a random subset of features during the 

splitting process. This approach fosters a collection of diverse 

and largely uncorrelated trees, whose aggregated prediction, 

derived through majority voting for classification or 

averaging for regression, typically surpasses the accuracy of 

any individual tree within the forest. The increasing 

integration of machine learning into critical applications 

across various domains has brought forth a growing emphasis 

on the need for Explainable Artificial Intelligence (XAI). As 

AI systems become more prevalent in areas impacting human 

lives and societal well-being, the ability to comprehend and 

trust the decisions made by these systems becomes 

paramount. XAI is a discipline focused on developing 

methodologies that enhance the transparency of AI models, 

making their outputs and the reasoning behind them 

understandable to human users. Model interpretability, a key 

aspect of XAI, refers to the capacity to understand why a 

model generates specific predictions 13. This understanding 

is crucial for fostering user trust in AI systems, facilitating the 

debugging and refinement of models, ensuring fairness and 

equity in their application, and meeting the growing demands 

for regulatory compliance. While Random Forests are 

celebrated for their high predictive accuracy and resilience, 

their inherent complexity as an ensemble of multiple decision 

trees presents a significant challenge to interpretability, 

particularly when attempting to understand the reasoning 

behind a specific prediction for an individual instance. The 

aggregation of numerous independent trees, each potentially 

trained on different data subsets and considering different 

features, obscures the direct path of influence that leads to a 

particular outcome. This paper aims to address this challenge 

by exploring and elucidating various techniques that enable 

the tracing of reasoning behind individual predictions made 

by Random Forest models. The focus will be on 

methodologies that offer insights into how the specific feature 

values of an instance contribute to the model’s final output.  

 

2. Random Forest Overview 
 

Random Forest operates based on the fundamental principles 

of ensemble learning, where the combined predictions of 

multiple individual models, in this case, decision trees, result 

in a more robust and accurate overall prediction. This 

ensemble approach leverages the concept that a collection of 

diverse” weak learners” can collectively form a” strong 

learner” that generalizes well to unseen data. Two key 

techniques contribute to the diversity within the Random 

Forest: bagging and the random subspace method. Bagging, 

or Bootstrap Aggregating, is a technique where each decision 

tree in the forest is trained on a bootstrap sample of the 

original training data. A bootstrap sample is created by 

randomly selecting data points from the original dataset with 

replacement, meaning some data points might appear multiple 

times in a single tree’s training set, while others might be 

excluded. The data points not included in a particular tree’s 

bootstrap sample form the out-of-bag (OOB) samples, which 

can be used for internal validation of the model. The random 

subspace method, also known as feature randomness, 

introduces further diversity by ensuring that at each node split 

in a decision tree, the algorithm considers only a random 

subset of the available features to determine the best split. 

This prevents individual trees from becoming overly reliant 

on a small number of potentially dominant features and 

encourages a more comprehensive exploration of the feature 

space. Each decision tree in the Random Forest is constructed 

independently using its specific bootstrap sample and the 

randomly selected features at each split. The process of 

splitting nodes continues until predefined stopping criteria are 

met, such as reaching a state of high purity in the node or a 

minimum number of samples. When a new, unseen instance 

needs to be predicted, it is passed down through every tree in 

the forest. For classification problems, each tree outputs a 

class prediction, and the Random Forest determines the final 

prediction by taking a majority vote across all the trees. In 

regression tasks, each tree predicts a continuous value, and 

the Random Forest’s final prediction is the average of all the 

individual tree predictions. The behaviour and performance 

of a Random Forest are influenced by several key 

hyperparameters. The n estimators parameter specifies the 
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number of trees in the forest; generally, increasing this 

number improves the stability and accuracy of the model but 

also increases the computational resources required. The max 

features hyperparameter controls the number of features 

considered at each split, impacting the diversity of the 

individual trees. Min samples leaf defines the minimum 

number of samples required in a leaf node, influencing the 

complexity and depth of the trees. Finally, random state is 

used to control the random number generation process, 

ensuring that the results can be reproduced consistently. Ion 

contributes to improved generalization.  

 

 
Figure 1: Illustration of a Random Forest Algorithm 

 

3. Interpreting Random Forests 
 

a) Feature Importance 

Feature importance scores help understand which features 

contribute the most to the model’s predictions. The two 

common methods for measuring feature importance are:  

 
Figure 2: Illustration of a Feature Importance 

 

Gini Importance: Based on the decrease in impurity at each 

split. Permutation Importance: Measures the impact of 

randomly shuffling feature values.  

 

b) Decision Path Visualization 

Decision paths provide a way to interpret individual 

predictions by tracing the sequence of splits in a decision tree 

that led to a particular outcome.  

 

c) SHAP and LIME for Interpretability 

SHAP (SHapley Additive explanations) and LIME (Local 

Interpretable Model-agnostic Explanations) are modern 

interpretability techniques used to explain Random Forest 

predictions by approximating the impact of each feature on 

the model’s output.  

 

d) Explainable AI (XAI)  

Explainable Artificial Intelligence (XAI) is a multifaceted 

field dedicated to developing methods and processes that 

allow human users to understand and have confidence in the 

outputs produced by machine learning algorithms. The central 

objective of XAI is to demystify the decision-making 

processes of AI systems, making them transparent and 

comprehensible to humans. This involves providing 

descriptions of AI models, elucidating their expected impact, 

and identifying any inherent biases they might possess. XAI 

plays a crucial role in evaluating model accuracy, fairness, 

transparency, and the overall outcomes of AI-driven decision-

making. The ability to provide explanations for AI models is 

increasingly vital for building trust and fostering the 

responsible deployment of AI technologies in real-world 

applications. Many sophisticated machine learning models, 

including Random Forests, are often characterized as “black 

boxes” due to their intricate internal structures and the 

difficulty in grasping how they arrive at specific predictions. 

This lack of transparency can present a significant 

impediment, particularly in contexts were 

 

 
Figure 3: Decision Path Visualization 

 

accountability and a thorough understanding of the decision-

making process are paramount. The inherent opacity of black-

box models can also make it challenging to detect potential 

flaws, biases, or inaccuracies in their decision-making, 

potentially leading to unjust or detrimental consequences. 

Therefore, transparency is essential for promoting the ethical 

and responsible application of AI systems.  

 

4. Prevalent Methodologies 
 

Random Forest (RF), a powerful ensemble learning 

algorithm, has been widely applied in the domain of early 

disease detection due to its robustness, accuracy, and ability 

to handle high-dimensional data. It operates by constructing 

multiple decision trees during training and outputs the mode 

of the classes (for classification) or mean prediction (for 
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regression) of the individual trees. This ensemble approach 

significantly reduces overfitting and improves generalization.  

 

In the context of early disease diagnosis, Random Forest has 

been employed in numerous studies across various medical 

conditions, such as cancer, diabetes, heart disease, and 

neurological disorders. Researchers have leveraged RF’s 

built-in feature importance mechanism to identify and 

prioritize the most relevant clinical or biological markers 

responsible for disease onset. For instance, in breast cancer 

detection, features like tumour radius, texture, and 

compactness have consistently emerged as top predictors. 

Similarly, in predicting the early onset of diabetes, attributes 

such as glucose level, BMI, age, and blood pressure were 

found to be highly indicative.  

 

Previous methodologies typically involve training RF models 

on structured medical datasets — often derived from 

electronic health records or public health databases — and 

evaluating performance metrics such as accuracy, sensitivity, 

specificity, and AUC-ROC. The use of cross-validation and 

hyperparameter tuning (e. g., optimizing the number of trees 

or depth of each tree) has further enhanced model 

performance.  

 

One of the major advantages highlighted in these studies is 

RF’s resilience to missing data and its capacity to work well 

with both numerical and categorical variables. Moreover, its 

straightforward mechanism for ranking features has made it a 

practical choice for healthcare practitioners seeking data 

driven insights without relying on black-box models.  

 

A. Challenges Faced? 

Lack of Deep Interpretability: While Random Forest provides 

a feature importance ranking, it does not offer detailed 

insights into how individual predictions are made. This can be 

problematic in healthcare settings where clinicians require 

transparent decision-making to ensure patient trust and ethical 

accountability.  

1) Feature Correlation and Redundancy: In many medical 

datasets, features are highly correlated. Random Forest 

may overemphasize certain correlated variables, leading 

to redundant insights and potentially misleading 

conclusions about the true driving factors of a disease.  

2) Bias in Imbalanced Datasets: Medical datasets often suffer 

from class imbalance — for example, fewer positive cases 

of a rare disease. RF models tend to be biased toward the 

majority class, which can compromise early detection 

performance for the minority class (i. e., actual disease 

cases).  

3) Limited Temporal Analysis: Random Forest does not 

inherently handle sequential or time-series data, which is 

crucial for understanding disease progression. As a result, 

it may miss temporal patterns important in early diagnosis.  

4) Overfitting on Small Datasets: In cases where the dataset 

is limited, especially with rare diseases, RF can still overfit 

despite being an ensemble model — especially if not 

properly tuned or validated.  

5) Computational Cost: When dealing with large datasets 

and a high number of trees, RF can become 

computationally expensive, leading to slower training and 

prediction times.  

6) Generalization Issues: Models trained on a specific 

population or dataset may not generalize well to different 

demographics or institutions without proper calibration.  

 

5. Proposed Solution for Tracing Individual 

Predictions in Random Forests Using SHAP 
 

SHAP (SHapley Additive explanations) significantly 

enhances the interpretability of machine learning models, 

particularly Random Forests, when applied to early disease 

prediction. While Random Forest algorithms are highly 

accurate and widely used in the medical domain for 

classification problems such as cancer detection, diabetes risk 

assessment, and cardiovascular disease prediction, they often 

operate as black-box models. This opacity creates a challenge 

in sensitive applications like healthcare, where understanding 

the reasoning behind a prediction is as important as the 

prediction itself. SHAP addresses this challenge by providing 

a clear, mathematically grounded explanation of each 

feature’s contribution to an individual prediction, using 

principles from cooperative game theory.  

 

In the context of early disease detection, SHAP allows 

practitioners to not only see the model’s output but also 

understand the why behind it. For example, in a model trained 

to detect breast cancer using features such as mean radius, 

concavity, texture, and symmetry, SHAP can highlight which 

of these attributes pushed the model’s prediction toward a 

cancerous or non-cancerous outcome. If a Random Forest 

model predicts that a patient is at high risk of early-stage 

breast cancer, SHAP may show that high values in concave 

points worst and radius mean were the most influential in this 

prediction. This insight enables medical professionals to take 

early action with more confidence, perhaps by recommending 

additional diagnostic tests or preventive measures.  

 

Furthermore, SHAP values are not limited to individual 

explanations. SHAP summary plots offer a global view of 

feature importance across the dataset, allowing researchers to 

identify which biomarkers are most critical for disease 

prediction. This can inform both clinical decision-making and 

future medical studies. SHAP also helps uncover hidden 

biases or data leakage in the model. For instance, if a model 

relies heavily on non-clinical features (like patient ID or 

hospital location), SHAP will reveal this, prompting data 

scientists to revisit their data preprocessing.  

 

In high-stakes applications like medicine, trust in the model 

is paramount. SHAP builds this trust by turning opaque 

predictions into transparent narratives. It allows machine 

learning models to support—not replace—clinical judgment, 

making them safer and more reliable tools for early disease 

detection. By illuminating how and why a model reaches its 

conclusions, SHAP not only strengthens interpretability but 

also opens the door to more ethical and accurate AI-driven 

healthcare systems.  

 

1) Why SHAP? 

SHAP is based on game theory and the Shapley value, which 

provides a unique, fair allocation of feature importance. 

SHAP satisfies desirable properties like:  

a) Local accuracy: (prediction = sum of SHAP values + 

base value) Consistency (if a feature contributes more to 
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one model, it gets a higher value) Missingness (features 

not in a model get zero importance) LIME lacks these 

formal guarantees and may produce inconsistent results.  

b) Global + Local Interpretability: SHAP provides both: 

Local explanations (per-instance) Global insights 

(overall feature importance across dataset) LIME is 

strictly local, explaining one prediction at a time without 

a global view.  

c) Model Behaviour Awareness: SHAP considers all 

possible combinations of features, so it knows how the 

model behaves with and without each feature. LIME 

builds a linear surrogate model around a specific point, 

which might oversimplify complex models.  

d) Better Visualizations: SHAP offers powerful visual tools: 

Summary plots 

e) Dependence plots 

f) Force plots 

g) This help tell a clear story, especially in presentations or 

model debugging.  

h) Deterministic Output: SHAP values are consistent and 

repeatable.  

i) LIME is stochastic — results can vary slightly each time 

unless you fix the random seed.  

 

2) How it Works? 

a) Defining a Baseline Output: This is the model’s average 

prediction across the dataset — called the expected value.  

b) Measuring Feature Contributions: For a given instance, 

SHAP calculates:  

c) How the prediction changes as features are added one by 

one.  

d) Across all possible orderings of feature addition.  

e) This means it computes the marginal contribution of each 

feature over many possible scenarios.  

f) Using Approximations for Speed: Since calculating all 

permutations is computationally expensive (exponential 

time!), SHAP uses approximations:  

g) Tree SHAP (used for Random Forests and XGBoost): 

Uses clever math to compute exact Shapley values in 

polynomial time, by leveraging the tree structure.  

h) Kernel SHAP (model-agnostic): Uses sampling and 

linear regression to estimate Shapley values for any 

black-box model.  

i) Outputting SHAP Values: The result is a set of values:  

j) Positive values push the prediction up (toward class 1). 

Negative values push it down (toward class 0).  

 

3) Binary Classifier:  

Model Baseline (Expected Value) This is the average 

prediction across the entire training dataset:  

Baseline = 0.50 (this means the average probability of 

malignancy across all patients is 50 

 *SHAP Contributions per Feature 

Feature SHAP Value Explanation 

radius mean +0.15 Increases risk (pushed up)  

texture mean -0.05 Decreases risk (pulled down)  

concave points mean +0.25 Strongly increases risk 

 

SHAP values and their interpretations for selected features.  

Final Prediction = Baseline +X (SHAP Values)  

= 0.50+0.15−0.05+0.25 

= 0.85 

 

So, the final output of 0.85 is not just a number — it tells a 

story:  

• Concave points mean made the strongest push toward 

malignancy,  

• Radius mean also contributed positively,  

• While texture mean slightly reduced the probability.  

 

4) How are we different? 

a) Transparent Interpretability at Individual Level: Unlike 

traditional Random Forests that provide only global 

feature importance, SHAP explains each prediction 

locally, i. e., it shows how much each feature contributed 

to a single prediction. This is critical in healthcare, where 

understanding why a specific patient was classified as 

“high risk” is just as important as the prediction itself.  

b) Consistent and Fair Attribution: SHAP is grounded in 

game theory and satisfies properties like consistency and 

local accuracy, ensuring that the contribution of features 

is mathematically justified. This adds scientific rigor and 

helps gain clinician confidence.  

c) Handling Feature Interactions: SHAP values can capture 

complex interactions between features — something 

traditional feature importance rankings often miss. For 

instance, SHAP can show that “high glucose” only raises 

risk significantly when “BMI is also high.” 

d) Visualization Tools: SHAP comes with intuitive plots 

such as force plots, summary plots, and dependence 

plots, which visually convey how features affect the 

model’s output. This visual storytelling helps bridge the 

gap between data scientists and medical professionals.  

e) Bias Detection: SHAP can help uncover hidden biases by 

highlighting unexpected or disproportionate feature 

effects on certain groups or predictions.  

f) Improved Trust and Ethical Use: By making black-box 

predictions explainable, SHAP allows healthcare 

providers to validate and audit AI decisions, improving 

ethical deployment and trust in clinical settings.  

 

6. Experimental Analysis 
 

This section presents an empirical study aimed at evaluating 

the interpretability of the Random Forest model using a set of 

benchmark datasets from the healthcare domain. The primary 

objective is to assess how effectively the internal decision-

making process of the model can be understood and 

communicated, particularly in the context of early disease 

detection.  

 

To achieve this, three core interpretability techniques are 

examined: feature importance scores, decision path analysis, 

and SHAP values. Feature importance scores provide a global 

understanding of which variables are most influential across 

the entire dataset. This offers a first-level overview, helping 

identify key clinical indicators such as blood glucose levels, 

tumor size, or blood pressure that consistently influence 

predictions.  

 

Decision path analysis dives deeper by tracing the exact 

sequence of decisions made by the model for individual 

instances. By visualizing or extracting the path a data point 

follows through the forest of trees, we gain clarity on how 

specific combinations of features lead to certain 

classifications — such as predicting malignancy or 
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identifying risk of disease onset. Finally, SHAP (SHapley 

Additive exPlanations) values are used to quantify and 

visualize the local contribution of each feature to individual 

predictions. This approach bridges the gap between global 

trends and instance-level insights by showing precisely how 

much each feature increases or decreases the predicted 

probability for a given case. SHAP’s consistency and additive 

nature ensure that the explanations are both faithful and fair.  

 

Together, these interpretability tools enable a comprehensive 

understanding of how and why the Random Forest model 

arrives at specific predictions.  

 

 
Figure 4: Illustration of Snippet code of Summary SHAP 

Plot 

 
Figure 5: Illustration of Summary SHAP Plot 

 

7. Interpretablity Results 
 

Random Forest models are known for their high predictive 

accuracy, as they aggregate predictions from multiple 

decision trees. However, as the trees become deeper, the 

model’s interpretability decreases, making it harder to trace 

the decision-making process. Deeper trees capture more 

complex patterns but introduce more decision boundaries, 

complicating the overall model understanding. To mitigate 

this, visualization tools (such as tree diagrams) can help 

illustrate the decision paths in individual trees, providing 

insight into how predictions are made. Additionally, feature 

importance metrics, like Mean Decrease Impurity (MDI) and 

Mean Decrease Accuracy (MDA), highlight which features 

most influence the model’s decisions, helping to clarify the 

model’s reasoning. By using these tools, it’s possible to strike 

a balance between the high performance of the model and its 

interpretability, ensuring a better understanding of how 

predictions are generated without sacrificing accuracy.  

 

 
Figure 6: Illustration of Snippet code of Dependence Plot 

 

 
Figure 8: Illustration of Snippet code of Force SHAP Plot 

 

 

 
Figure 9: Illustration of Force SHAP Plot 

 

 
Figure 10: Illustration of Snippet code of Load Dataset 

 

 
Figure 11: Illustration of Snippet code of Train-Test Spilt 

 

 
Figure 12: Illustration of Snippet code of Model Training 

 

8. Conclusion 
 

This paper explores the challenges of achieving traceability in 

Random Forest models and highlights the significant role of 

SHAP (Shapley Additive Explanations) values in improving 

interpretability. Random Forests, while known for their high 

predictive accuracy, are often seen as” black box” models due 

to their ensemble nature, which makes it difficult to 
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understand the reasoning behind individual predictions. To 

address this issue, SHAP values provide a powerful tool for 

explaining the contribution of each feature to a specific 

prediction, offering greater transparency into the decision-

making process.  

 

By using SHAP values, we can break down the complex 

decision-making process of Random Forests, providing clear 

and quantifiable insights into how individual features 

influence the outcome. This decomposition helps trace the 

impact of each feature, making the model’s reasoning more 

understandable and accountable.  

 

As AI systems become increasingly integrated into critical 

applications, the need for explainable and interpretable 

models becomes more pressing. SHAP values represent a 

significant step forward in making complex machine learning 

models, like Random Forests, more transparent. The 

continuous research and development of such techniques are 

crucial for building AI systems that are not only accurate but 

also trustworthy, transparent, and accountable in their 

decision-making processes.  

 

 
Figure 13: Illustration of Snippet code of confusion Matrix 
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