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Abstract: The equations for a graph G having n vertices and m edges with 𝑴𝟏
̅̅ ̅̅ (G),𝑴𝟏(𝑮̅), 𝑴𝟏

̅̅ ̅̅ (𝑮̅), 𝑴𝟐
̅̅ ̅̅ (G), 𝑴𝟐(𝑮̅), 𝑴𝟐

̅̅ ̅̅ (𝑮̅) and 𝑭̅(G) were 
established by Gutman et al.[1]. In this paper the relationships between topological coindices and coindices of complement graphs of Dutch 

windmill, wheel and helm graph are studied.   
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1. Introduction 
 

Let G be a simple, finite, connected graph with vertex set V(G) 

and edge set E(G). The degree of a vertex u ∈ V(G) is denoted 

by dG(u) and is the number of vertices adjacent to u. The edge 

connecting the vertices u and v is denoted by uv. A 

topological index is a numerical parameter mathematically 

derived from the graph structure. A complement G̅ of a graph 

G consist of same set of vertices, where two vertices v and w 

are adjacent by an edge vw if and only if they are not adjacent 

in G [2]. Hence vw ∈ E(G̅) ⟺ vwE(G).A complement graph 

consists of a number of edges and the degree of vertex v which 

are represented as m̅ = (
n
2

) − m and dG̅ (v) = n-1-dG(v) 

respectively.   Edges of the complement graph G̅ are exactly 

the non-edges of G.So studying non-edges of G is equivalent to 

studying the edges of   G̅. The Zagreb coindices of G̅ count 

over non-edges in  G̅ (that is edges in G) using degree values 

from G̅.This means coindices are computed on different sets of 

vertex pairs. The degrees used in the calculation are also 

different due to being from G versus G̅.The relations between 
some Zagreb indices and Zagreb coindices of graphs have 

been studied in [3].  For a simple graph G, M1
̅̅ ̅̅ (G) =  M1

̅̅ ̅̅ (G̅) 
[4-6].Some topological indices such as 

M1(Hn), M2(Hn), H(Hn) and F(Hn) were computed in [7].The 

multiplicative Zagreb coindices  of graph operations were 

studied in [8] and Gourava  coindices of a molecular graph in 

[9]. The M-polynomials of some cycle related graphs were 

studied in [10]. Topological indices and M-polynomials of 

wheel graph are studied in many papers as [11-15]. Some 

topological indices of molecular structure in anticancer drugs 

were studied in [16].For the wheel graph W1,n, n≥4,first, 

second and third leap Zagreb coindices were computed in 

[17].For any (n,m) graph, M1
̅̅ ̅̅ (G) =2m(n-1)-M1(G) and  

 M1
̅̅ ̅̅ (G̅) = 2m-(n-1)-M1(G) [18] and HZ+HZ̅̅ ̅̅  =(n-2)M1+4m2 

[19]. Let G be a simple graph then M3
̅̅ ̅̅ (G) =M3(G)̅̅ ̅. 

 

A helm graph Hn is a graph constructed from a wheel Wn by 

adding n vertices of degree one adjacent to each terminal 

vertex. A helm graph Hn has edges 3n and 2n+1 vertices 

among which 1 vertex is of degree n, n vertices of degree 4 

and n pendant vertices (a vertex of degree 1).  

 

A wheel graph Wn is the join of K1 and Cn. Wheel graphs Wn 

has n+ 1 vertices and 2n edges with central and rim vertices. 

The central vertex has degree n-1, while other n-1 vertices on 

the cycle have degree 3.Wheel graphs are used to model 

certain types of networks such as a star network with a central 

hub and a ring of nodes. The edge set of Wn can be partitioned 

as |E(3,3)| = n, |E(3,n)|= n [20].For topological coindex of 

complement graph of wheel graph, the vertex pairs are center-

peripheral with degrees (0, n-4) and peripheral-peripheral 

with degrees (n-4,n-4). 

 

The Dutch windmill graph is obtained by taking m≥ 1 copies 

of the cycle Cn, n≥ 3,with a vertex in common [21-25].Let G 

be a Dutch windmill graph (Dn
m) with 1+m(n-1) vertices and 

mn edges, then there are two vertices V2= m(n-1) and V2m=1 

and edges  E(2,2)= m(n-2) and E(22m) = 2m.  

 

The first and second Zagreb coindices of graph G are defined 

in [26-27] as 

M1
̅̅ ̅̅ (G)= ∑ (dG(u) + dG(v))uvE(G)             (1) 

 
M2
̅̅ ̅̅ (G)= ∑ (dG(u)dG(v))uvE(G)               (2) 

 

And the corresponding coindices for complement graph are 

M1
̅̅ ̅̅ (G̅) = ∑ (dG̅(u) + dG̅(v))uvE(G̅)           (3) 

 
M2
̅̅ ̅̅ (G̅) = ∑ (dG̅(u)dG̅(v))uvE(G̅)                (4) 

 

The first, second multiplicative Zagreb indices, harmonic 

index, hyper Zagreb index and forgotten index were studied 

for vitamin D3 by M.R.R.Kanna et al.[28].We define 

corresponding coindices for a graph G and its complement 

graph as 

∏1
̅̅ ̅̅ (G)= ∏ (dG(u) + dG(v)uvE(G) )          (5) 

 

∏2
̅̅ ̅̅ (G)= ∏ (dG(u) dG(v)uvE(G) )           (6) 

 

H̅(G)= ∑
2

(dG(u)+dG(v))uvE(G)             (7) 

 

HM̅̅ ̅̅̅(G)= ∑ (dG(u) + dG(v)uvE(G) )2             (8) 

 

F̅(G)= ∑ (dG(u)2 + dG(vuvE(G) )2)         (9) 

 

And  

∏1
̅̅ ̅̅ (G̅) = ∏ (dG̅(u) + dG̅(v)uvE(G̅) )       (10) 

 

∏2
̅̅ ̅̅ (G̅) = ∏ (dG̅(u) dG̅(v)uvE(G̅) )          (11) 

 

H̅(G̅) = ∑
2

(dG̅(u)+dG̅(v))uvE(G̅)            (12) 

 

HM̅̅ ̅̅̅(G̅) = ∑ (dG̅(u) + dG̅(v)uvE(G̅) )2        (13) 

 

F̅(G̅) = ∑ (dG̅(u)2 + dG̅(vuvE(G̅) )2)         (14) 

 

Alsharafi et al. studied Y-index and coindex of nanotubes in 

[29-30], then Y̅(G) and Y̅(G̅) are defined as 

 

Y̅(G)= ∑ (dG(u)3 + dG(vuvE(G) )3)              (15) 

 

Y̅(G̅) = ∑ (dG̅(u)3 + dG̅(vuvE(G̅) )3)            (16) 

 

The reduced second Zagreb coindex is defined as 

 

RM2
̅̅ ̅̅ ̅̅ (G)= ∑ (dG(u) − 1)(dG(v) − 1)uvE(G)      (17) 

 

We define reduced second Zagreb coindex of a complement 

graph as 

 

RM2
̅̅ ̅̅ ̅̅ (G̅) = ∑ (dG̅(u) − 1)(dG̅(v) − 1)uvE(G̅)  (18) 

 

The Nirmala coindices of a graph and its complement graph 

[31] are  

N̅(G)= ∑ √dG(u) + dG(v)uvE(G)               (19) 
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N̅(G̅) = ∑ √dG̅(u) + dG̅(v)uvE(G̅)               (20) 

      
All the symbols and notations used in this paper are standard 

and taken mainly from books of graph theory [32-34]. In this 

paper we study harmonic, first Zagreb, second Zagreb, 

reduced second Zagreb, hyper Zagreb, Nirmala, forgotten, Y, 

first, second multiplicative Zagreb coindices and 

corresponding coindices for complement graphs of Dutch 

windmill, wheel and helm graph. 

 

2. Materials and Methods 
 

Let G be a finite, simple, connected graph with vertex set V(G) 

and edge set E(G). In computing M1
̅̅ ̅̅ (G), we sum over all non-

adjacent pairs of vertices in G. For topological coindices of 

complement graph   G̅, we take this sum over all non-edges of   

G̅. The edge partition for non-adjacent pairs of complement 

graph of wheel graph is presented in table 1. All non-adjacent 

pairs of helm graph are given in table 2. The Dutch windmill; 

wheel and helm graphs are depicted in figures (1-3). 

 

3. Results and Discussion 
 

Dutch windmill graph 

It is observed from figure 1 that there are |E(2,2)|= (n−1
2

)-(n-1) 

and |E(2(m-n+1),2)|= (n-1)-2(m-n+1) non-adjacent edges in 
Dutch windmill graph. 

 

Theorem 1.1a. Harmonic coindex of Dutch windmill graph is 
(n−1)(n−4)

4
+

3n−2m−3

m−n+1
. 

 

Proof. H̅(G)= ∑
2

(dG(u)+dG(v))uvE(G)    

= |E(2,2)|
2

2+2
+|E(2(m-n+1),2)|

2

2(m−n+1)+2
 

= [(n−1
2

)-(n-1)] 
2

2+2
+(n-1-2(m-n+1))

2

2(m−n+1)+2
 

= 
(n−1)(n−4)

4
+

3n−2m−3

m−n+1
. 

 

Theorem 1.1b.Harmonic coindex of complement graph of 

Dutch windmill graph is 
4n

((m−3)n+(m−1)n−1)
+

n(m−2)

(m−1)n−1
. 

 

Proof. Harmonic coindex of complement graph  

  H̅(G̅) = ∑
2

(dG̅(u)+dG̅(v))uvE(G̅)    

=|E((m-3)n,(m-1)n-1)|
2

((m−3)n+(m−1)n−1)
+|E((m-1)n-1,(m-1)n-

1)|
2

((m−1)n−1+(m−1)n−1)
 

=2n
2

((m−3)n+(m−1)n−1)
+n(m-2)

2

((m−1)n−1+(m−1)n−1)
 

= 
4n

((m−3)n+(m−1)n−1)
+

n(m−2)

(m−1)n−1
. 

 

Theorem 1.2a. First Zagreb coindex of Dutch windmill graph 

is 2(n − 1)(n − 4)+ (3n-2m-3) (2m − 2n + 4). 
 

Proof. M1
̅̅ ̅̅ (G)= ∑ (dG(u) + dG(v))uvE(G)    

=|E(2,2)| (2 + 2)+|E(2(m-n+1),2)|(2(m − n + 1) + 2)=[(n−1
2

)-

(n-1)] (2 + 2)+(n-1-2(m-n+1)) (2(m − n + 1) + 2) = 

(
(n−1)(n−4)

2
) (2 + 2) +(n-1-2(m-n+1)) (2(m − n + 1) + 2) 

= 2(n − 1)(n − 4) +(3n-2m-3) (2m − 2n + 4). 
 

Theorem 1.2b. First Zagreb coindex of complement graph of 

Dutch windmill graph is 2n[ (2mn − 4n − 1) + (m −
2)((m − 1)n − 1)]. 
 

Proof. First Zagreb coindex of complement graph  
M1
̅̅ ̅̅ (G̅)= ∑ (dG̅(u) + dG̅(v))uvE(G̅)     

= |E((m-3)n,(m-1)n-1)|((m − 3)n + (m − 1)n − 1) +|E((m-1)n-1,(m-

1)n-1)|((m − 1)n − 1 + (m − 1)n − 1) 

= 2n((m − 3)n + (m − 1)n − 1) + n(m − 2)((m − 1)n −

1 + (m − 1)n − 1) 

= 2n[ (2mn − 4n − 1) + (m − 2)((m − 1)n − 1)]. 
 

Theorem 1.3a. Second Zagreb coindex of Dutch windmill 

graph is 2(n − 1)(n − 4) +4(3n-2m-3) (m − n + 1). 
 

Proof. M2
̅̅ ̅̅ (G)= ∑ (dG(u)dG(v))uvE(G)    

=|E(2,2)|(2 × 2) + E(2(m−n+1),2)|(2(m − n + 1) × 2)=[(n−1
2

)-

(n-1)] (2 × 2)+(n-1-2(m-n+1)) (2(m − n + 1) × 2) = 

(
(n−1)(n−4)

2
) (2 × 2) +(n-1-2(m-n+1)) (2(m − n + 1) × 2) 

= 2(n − 1)(n − 4) +4(3n-2m-3) (m − n + 1). 
 

Theorem 1.3b. Second Zagreb coindex of complement graph 

of Dutch windmill graph is 2n(m2n2 − 4mn2 − mn + 3n2 +
3n) +n(m-2)((m-1)n-1)2. 
 

Proof. Second Zagreb coindex of complement graph  

M2
̅̅ ̅̅ (G̅)= ∑ (dG̅(u) × dG̅(v))uvE(G̅)     

= |E((m-3)n,(m-1)n-1)|((m − 3)n × (m − 1)n − 1) +| E((m-1)n-

1,(m-1)n-1)|((m-1)n-1× (m-1)n-1) 

= 2n((m − 3)n × (m − 1)n − 1) + n(m − 2)((m − 1)n −

1 × (m − 1)n − 1) 
=2n(m2n2 − 4mn2 − mn + 3n2 + 3n) +n(m-2)((m-1)n-
1)2. 
 

Wheel graph 

 

Theorem 2.1a. Harmonic coindex of wheel graph is   
(n−1)(n−4)

6
. 

 

Proof.  H̅(G)= ∑
2

(dG(u)+dG(v))uvE(G)    

= |E(3,3)|
2

3+3
= 

(n−1)(n−4)

2
 

2

3+3
 

= 
(n−1)(n−4)

6
 . 

 

Theorem 2.1b. Harmonic coindex of complement graph of 

wheel graph is   
3(n−1)

(n−4)
. 

 

Proof. Harmonic coindex of complement graph 

  H̅(G̅) = ∑
2

(dG̅(u)+dG̅(v))uvE(G̅)    

=|E(0,n-4)|
2

n−4
+|E(n-4,n-4)|

2

n−4+n−4
=(n-1)

2

n−4
+ (n − 1)

2

n−4+n−4
 

= 
3(n−1)

(n−4)
. 

 

Theorem 2.2a. First Zagreb coindex of wheel graph is 3(n-

1)(n − 4). 
 

Proof.  M1
̅̅ ̅̅ (G)= ∑ (dG(u) + dG(v))uvE(G)    

  =|E(3,3)|(3 + 3)=
(n−1)(n−4)

2
(3 + 3) 

=3(n-1)(n − 4). 
 

Theorem 2.2b. First Zagreb coindex of complement graph of 

wheel graph is 3(n-1)(n − 4). 
 

Proof. First Zagreb coindex of complement graph  

M1
̅̅ ̅̅ (G̅)= ∑ (dG̅(u) + dG̅(v))uvE(G̅)      

  =|E(0,n-4)|(0 + n − 4) + |E(n−4,n−4)|(n − 4 + n − 4)= (n-

1)(0 + n − 4) + (n − 1)(n − 4 + n − 4) 

=3(n-1)(n − 4). 
 

Theorem 2.3a. Second Zagreb coindex of wheel graph is 
9(n−1)(n−4)

2
. 

 

Proof. M2
̅̅ ̅̅ (G)= ∑ (dG(u)dG(v))uvE(G)     

  =|E(3,3)|(3 × 3)=
(n−1)(n−4)

2
(3 × 3) 

=
9(n−1)(n−4)

2
.  

 

Theorem 2.3b. Second Zagreb coindex of complement graph 

of wheel graph is   (n − 1) (n − 4)2. 
 

Proof.  Second Zagreb coindex of complement graph  

 M2
̅̅ ̅̅ (G̅)= ∑ (dG̅(u)dG̅(v))uvE(G̅)     
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=|E(0,n-4)|(0× (n-4))+|E(n-4,n-4)|((n-4) × (n-4))= (n − 1)(n −
4)  × (n − 4) 

=   (n − 1) (n − 4)2. 
 

Helm graph  

Let Hn be a helm graph of order 2n+1 and size 3n then from 

figure 3, we can say that the edge partition is divided into 

|E(1,4)|= n, |E(4,4)|= n and |E(4,n)|= n. All non-adjacent pairs 

are pendant-pendant, pendant-cycle and pendant-center and 

cycle-cycle vertices. 

 

Theorem 3.1a.Harmonic coindex of helm graph is   
21n3+10n2+49n−20

40(1+n)
. 

 

Proof. H̅(G)= ∑
2

(dG(u)+dG(v))uvE(G)    

= |E(1,1)|
2

1+1
+|E(1,4)|

2

1+4
+ |E(4,4)|

2

4+4
+|E(1,n)|

2

1+n
  

= 
n(n−1)

2

2

1+1
+n(n − 1)

2

1+4
+ 

n(n−3)

2

2

4+4
+ 

2n

1+n
 = 

21n3+10n2+49n−20

40(1+n)
. 

 

Theorem 3.1b. Harmonic coindex of complement graph of 

helm graph is   
7n3−2n2+3n

6(n+1)
. 

 

Proof. Harmonic coindex of complement graph   

H̅(G̅) = ∑
2

(dG̅(u)+dG̅(v))uvE(G̅)      

= |E(1,1)|
2

1+1
+|E(1,3)|

2

1+3
+ |E(1,n)|

2

1+n
+|E(3,3)|

2

3+3
  

= 
n(n−1)

2

2

1+1
+n(n − 1)

2

1+3
+ n

2

1+n
+

n(n−3)

2
 

2

3+3
 = 

7n3−2n2+3n

6(n+1)
. 

 

Theorem 3.2a. First Zagreb coindex of helm graph is   

11n2 − 17n. 

 

Proof.  M1
̅̅ ̅̅ (G)= ∑ (dG(u) + dG(v))uvE(G)    

= |E(1,1)|(1+1)+|E(1,4)|(1+4)+ |E(1,n)|(1+n)+|E(4,4)|(4+4)  

= 
n(n−1)

2
(1 + 1)+n(n − 1)(1 + 4)+ n(1 + n)+

n(n−3)

2
 (4 + 4) 

=11n2 − 17n. 

 

Theorem 3.2b. First Zagreb coindex of complement graph of 

helm graph is   9n2 − 13n. 

 

Proof. First Zagreb coindex of complement graph  

 M1
̅̅ ̅̅ (G̅)= ∑ (dG̅(u) + dG̅(v))uvE(G̅)     

= |E(1,1)|(1+1)+|E(1,3)|(1+3)+ |E(1,n)|(1+n)+|E(3,3)|(3+3)  

= 
n(n−1)

2
(1 + 1)+n(n − 1)(1 + 3)+ n(1 + n)+

n(n−3)

2
 (3 + 3) 

=9n2 − 13n. 

 

Theorem 3.3a. Second Zagreb coindex of helm graph is   
27n2−57n

2
. 

 

Proof. M2
̅̅ ̅̅ (G)= ∑ (dG(u)dG(v))uvE(G)    

= |E(1,1)|(1×1)+|E(1,4)|(1×4)+ |E(1,n)|(1×n)+|E(4,4)|(4×4)  

= 
n(n−1)

2
(1 × 1)+n(n − 1)(1 × 4)+ n(1 × n)+

n(n−3)

2
 (4 × 4) 

=
27n2−57n

2
. 

 

Theorem 3.3b. Second Zagreb coindex of complement graph 

of helm graph is   9n2 − 17n. 
 

Proof. Second Zagreb coindex of complement graph  

  M2
̅̅ ̅̅ (G̅)= ∑ (dG̅(u)dG̅(v))uvE(G̅)     

= |E(1,1)|(1×1)+|E(1,3)|(1×3)+ |E(1,n)|(1×n)+|E(3,3)|(3×3)  

= 
n(n−1)

2
(1 × 1)+n(n − 1)(1 × 3)+ n(1 × n)+

n(n−3)

2
 (3 × 3) 

= 9n2 − 17n. 
 

The computed values of reduced second Zagreb, hyper 

Zagreb, Nirmala, forgotten, Y, first, second multiplicative 

Zagreb coindices and corresponding coindices for complement 

graphs of Dutch windmill, wheel and helm graph are given in 

table 3. 

 
                Figure 1              Figure 2            Figure 3 

     
Figure 1. Dutch windmill graph (Dn

m), figure 2. wheel graph 

Wn and figure 3. helm graph Hn. 

 

Table 1: The edge partition for non-adjacent pairs of 

complement graph of wheel graph 
Vertices center-peripheral peripheral-peripheral 

(dG(u), dG(v)) (0, n-4) (n-4, n-4) 
Number of edges n-1 n-1 

 

 

Table 2: All non-adjacent pairs for helm graph. 
Pairs pendant-pendant pendant-cycle cycle-cycle pendant-center 

(dG(u), dG(v)) (1,1) (1,4) (4,4) (1,n) 

Number of edges n(n − 1)

2
 

n(n − 1) n(n − 3)

2
 

n 

 
Table 3: Topological coindices and coindices of complement graphs of Dutch windmill, wheel and helm graph. 

Topological index reduced second Zagreb hyper Zagreb Nirmala 
Dutch windmill 

graph 
RM2
̅̅ ̅̅ ̅̅ (G)= 

(n−1)(n−4)

2
 

+(2m − 2n − 1)(3n − 2m − 3), 
RM2
̅̅ ̅̅ ̅̅ (G̅)= 

2n[((m-3)n-1)((m-1)n-2)]+n(m-2)((m-
1)n-2)2 

HM̅̅̅̅̅(G)=8(n − 1 )(n − 4) +
(3n − 2m − 3)(2m − 2n + 4)2, 

HM̅̅̅̅̅(G̅)= 2n[n(m − 3) + ((m − 1)n −
1)]2 + n(m − 2)[2((m − 1)n − 1)]2 

 

N̅(G)=(n − 1)(n − 4) + (3n −

2m − 3)(2m − 2n + 4 )
1

2, 

N̅(G̅)=2n(2mn-4n-1)
1

2 +(nm-

2n)(2mn-2n-1)
1

2 
 

Wheel graph RM2
̅̅ ̅̅ ̅̅ (G) = 2(n − 1)(n − 4), 
RM2
̅̅ ̅̅ ̅̅ (G̅)=(n − 1)(n − 5)2 

HM̅̅̅̅̅(G)=18(n − 1)(n − 4), 
HM̅̅̅̅̅(G̅)=5(n − 1)(n − 4)2 

N̅(G)=
(n−1)(n−4)√6

2
, 

N̅(G̅)=(1+√2 )(n-1)(n-4)
1

2 
Helm graph RM2

̅̅ ̅̅ ̅̅ (G) =
9

2
n(n − 3), 

RM2
̅̅ ̅̅ ̅̅ (G̅)=2n(n − 3) 

HM̅̅ ̅̅̅(G)=18n(n − 1) + 16n(n − 3) +
n(1 + n2), 

HM̅̅̅̅̅(G̅)=n(20n − 37 + n2) 

N̅(G)=0.7n(n − 1) +
2.23n(n − 1) + 1.4n(n − 3) +

n(1 + n)
1

2, 
N̅(G̅)=0.7n(n-1)+2n(n-

1)+ n(1 + n)
1

2+1.22n(n-3) 

 
 forgotten Y first multiplicative Zagreb second multiplicative Zagreb 

Dutch 
windmill 

graph 

F̅(G)=4(n − 1 )(n −
4)+4(3n-2m-3) 

((m − n + 1)2 + 1) 
F̅(G̅)=2n[((m − 3)n)2 +

((m − 1)n − 1)2] +
2n(m − 2)((m − 1)n − 1)2 

Y̅(G)= 8(n − 1 )(n −
4)+8(3n-2m-3) 

((m − n + 1)3 + 1) 
Y̅(G̅)=2n[((m-

3)n)3+((m-1)n-1)3+(m-
2)((m-1)n-1)3] 

∏1
̅̅ ̅̅ (G)= 4

(n−1)(n−4)

2  ×   (2m −

2n + 4)(3n−2n−3) , 
∏1
̅̅ ̅̅ (G̅)=((m-3)n+(m-1)n-

1)2n  ×  (2(m − 1)n −

1)n(m−2) 

∏2
̅̅ ̅̅ (G)= 4

(n−1)(n−4)

2   ×

  (4(m − n + 1))(3n−2m−3) , 
∏2
̅̅ ̅̅ (G̅)=[(m-3)n×((m-1)n-

1)]2n   × ((m − 1)n −

1)2n(m−2) 
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Wheel 
graph 

F̅(G)=9(n-1)(n-4), 
F̅(G̅)=3(n-1)(n-4)2 

 

Y̅(G)=27(n-1)(n-4), 
Y̅(G̅)=3(n-1)(n-4)3 

∏1
̅̅ ̅̅ (G)=6

n(n−1)(n−4)

2 , 

∏1
̅̅ ̅̅ (G̅)= (n − 4)(n−1) × (2(n −

4))(n−1) 

∏2
̅̅ ̅̅ (G)=9

(n−1)(n−4)

2 , 
∏2
̅̅ ̅̅ (G̅)=0 

Helm 
graph 

F̅(G)= 18n(n-1)+16n(n-

3)+n(1+n2), 
F̅(G̅)=0.5n(31n-47 + 2n2) 

 

Y̅(G)=66n(n-1)+64n(n-

3)+n(1+n3), 
Y̅(G̅)=n(38n-55 + n3) 

∏1
̅̅ ̅̅ (G)=2

n(n−1)

2 × 5n(n−1) ×

8
n(n−3)

2 × (1 + n)n, 

∏1
̅̅ ̅̅ (G̅)= 2

n(n−1)

2  ×

4n(n−1) ×  6
n(n−3)

2 ×  (1 + n)n 

∏2
̅̅ ̅̅ (G)=1

n(n−1)

2  × 4n(n−1) ×

 16
n(n−3)

2  ×  nn, 

∏2
̅̅ ̅̅ (G̅)= 1

n(n−1)

2 × 3n(n−1) ×

 9
n(n−3)

2 ×  nn 

 

4. Conclusion 
 

The relationships between topological coindices of a graph 

and coindices of complement graphs of Dutch windmill, wheel 

and helm graph are obtained. The equation   M1
̅̅ ̅̅ (G) =  M1

̅̅ ̅̅ (G̅) 
is satisfied for wheel graph.  The equality/inequality between 

these relationships is established. Our result supports remark 

F̅(G) ≠  F̅(G̅) between forgotten coindex and forgotten 

coindex of complement graph for these graphs.  
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