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Abstract: Artificial Neural Networks (ANNs) have gained significant attention for hydrological modeling due to their ability to handle 

complex, nonlinear relationships. Traditionally, the Multi-Layer Perceptron (MLP) model has been the most commonly employed ANN 

structure, although it lacks systematic guidelines for architecture selection and often requires extensive trial and error. To address these 

limitations, this study explores the application of a Generalized Neuron (GN) model, which offers a simplified architecture and improved 

flexibility. Three distinct GN configurations were tested using daily rainfall and streamflow data from the Kentucky River basin. The 

models were assessed for performance under varying initial weights and limited training data. Results indicate that GN models 

demonstrate higher resilience to initialization, improved generalization, and competitive accuracy with fewer parameters compared to 

MLPs. This suggests GN models are a promising alternative for efficient rainfall-runoff modeling. 
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1. Introduction 
 

Modeling the rainfall-runoff (RR) process is fundamental for 

effective water resources planning, design, and operational 

management. The RR process is inherently complex, 

nonlinear, and dynamic, making it challenging to model with 

conventional deterministic or conceptual techniques. 

Traditional models, based on physical laws such as mass 

andmomentum conservation, often require extensive 

calibration and may struggle to capture intricate real-world 

behaviors, especially under data-limited conditions. In recent 

decades, data-driven modeling approaches, particularly 

Artificial Neural Networks (ANNs), have emerged as 

powerful tools for RR modeling. These models are not 

constrained by assumptions about the underlying physical 

processes and have shown promising performance in diverse 

hydrological contexts. Numerous studies havehighlighted 

the capability of ANNs to outperform classical   in capturing 

nonlinear relationships between rainfall and runoff. Among 

the various ANN architectures, feed-forward Multi-Layer 

Perceptrons (MLPs), typically trained using backpropagation 

algorithms, have been extensively utilized. MLPs consist of 

input, hidden, and output layers, with  neurons connected 

through weighted pathways. However, MLPs suffer from 

certain drawbacks: they often require a large number of 

hidden neurons, involve laborious trial-and-error procedures 

to determine optimal architecture, and are sensitive to the 

choice of initial weights. Additionally, the linear summation 

approach used in traditional neurons may limit their ability 

to model highly nonlinear dynamics. To overcome these 

limitations, recent research has introduced the Generalized 

Neuron (GN) model, which enhances flexibility by 

incorporating multiple discriminant and activation functions 

within a single neuron structure. Unlike MLPs, GN models 

do not require multiple hidden layers and can efficiently 

capture complex system behaviors with fewer parameters. 

This study aims to investigate the effectiveness of GN 

models in simulating the RR process and compares their 

performance with traditional MLP models. Specifically, we 

assess (a) the sensitivity of both models to different initial 

weight configurations, and (b) their robustness when trained 

on progressively reduced datasets. 

 

2. Generalized neuron model 
 

The Generalized Neuron (GN) model, introduced by 

Chaturvedi et al. [2004], represents a significant 

advancement over traditional artificial neuron models such 

as the McCulloch-Pitts Artificial Neuron (MPAN). Unlike 

the MPAN—which relies on a single linear summation 

function followed by a nonlinear activation function—the 

GN model incorporates a more flexible structure comprising 

five functional components. Figure 1 shows the structure of 

a GN model.  The five components of a GN model are (a) 

first discriminant function (f1), (b) second discriminant 

function (f2), (c) activation function (g1) corresponding to 

the first discriminant function, (d) activation function (g2) 

corresponding to the second discriminant function, and (e) 

an assimilation function (f3) that aggregates outputs from 

the components (c) and (d) above.   

 
Figure 1:  A Generalized Neuron 
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The GN model derives its power from the flexibility in being 

able to select different discriminant and activation functions. 

Since a single artificial generalized neuron is capable of 

capturing the complexity and non-linearity in the physical 

system being modeled, it is not necessary to have several 

hidden layers and corresponding hidden neurons. This 

reduces the complexity and dimensionality of the overall 

ANN model in a GN model.   

 

A GN model receives inputs from an external source and 

gives output to an external receiver like in a conventional 

ANN model.  As shown in Figure 2, a GN receives the 

inputs through its first two components and then computes 

the net input signal depending on the discriminant functions 

employed.  A bias element is added to simulate the threshold 

characteristic of an artificial neuron.  The net input signal 

can be calculated as follows: 

)1,,1(1 1 BiasDXWDfNetD ii=                 (1) 

)2,,2(2 2 BiasDXWDfNetD ii=                     (2) 

 

Where NetD1 and NetD2 are the net input signals to the GN 

model corresponding to the first and second discriminant 

functions, respectively; f1 and f2 are the first and second 

discriminant functions; WD1i and WD2i are the weights 

corresponding to the first and second discriminant functions, 

respectively, connecting to the inputs Xi’s; i is an index 

representing the elements of the input vector; and BiasD1 

and BiasD2 are the bias weights corresponding to the two 

components of the GN model.  The outputs are calculated 

using the respective activation functions, which can be a 

sigmoid, a Gaussian, a Spline, a linear function, or any other 

mathematical function satisfying the conditions of being an 

activation function in the traditional ANNs employing 

MPANs.  The two outputs can be calculated as follows: 

)1(1 1 NetDgO =                                 (3) 

)2(2 2 NetDgO =                       (4) 

Where g1 and g2 are the first and second activation functions 

associated with the first and second discriminant functions, 

respectively. The overall output from the GN model is then 

calculated using a linear aggregation of the two outputs 

calculated above.  This can mathematically be represented as 

follows: 

2)1(1)2,1(3 OWOWOOfO −+==         (5) 

 

Where O is the overall output from the GN model; f3 is the 

assimilation function that calculates output from the GN 

model; W is the weight corresponding to the output O1; and 

(1-W) is the weight corresponding to the output O2. The 

training of the GN model is carried out in a manner similar 

to the training of a traditional ANN using gradient descent 

method. More details of the training of a GN model can be 

found in Chaturvedi et al. [2004].  The total number of 

weights to be optimized in a GN model is (2N+3) where N is 

the total number of inputs received by the GN model from 

an external source.  The overall structure of the GN model 

described above provides a very compact ANN model as 

compared to the traditional MLP model having many times 

more weights due to the number of hidden neurons involved 

in them.   

 

3. Study Area and Data 
 

The study utilizes hydrological data from the Kentucky 

River basin in the United States. This river system serves as 

the primary water source for several municipalities in the 

region. The analysis focuses on data collected at Lock and 

Dam 10 (LD10) near Winchester, Kentucky, which drains a 

watershed area of approximately 10,240 km².The data 

employed include average daily stream flow (m3/s) from 

Kentucky River at LD10 and daily total rainfall (mm) from 

five rain gauges, Manchester, Hyden, Jackson, Heidelberg, 

and Lexington Airport.  The daily total rainfalls from the 

five rain gauges were spatially aggregated using simple 

mean approach.  The rainfall and flow data of 26 years were 

available, which were divided into two sets: a training data 

set of thirteen years (1960-1972), and a testing data set of 

thirteen years (1977-1989).  The performance of the models 

developed in this study was evaluated using five different 

standard statistical measures.  These are: normalized root 

mean square error (NRMSE), Nash-Sutcliffe efficiency (E), 

Pearson coefficient of correlation (R), average absolute 

relative error (AARE), and threshold statistics (TS). In this 

study, TS statistics at ARE levels of 25%, 50%, and 100% 

have been considered.  All of these are commonly employed 

error statistics to evaluate ANN model performance and 

their detailed description can be found in Jain et al. [2001] 

and Jain and Kumar [2009]. 

 

4. Model development 
 

This section outlines the development and implementation 

of two categories of neural network models: a conventional 

Multi-Layer Perceptron (MLP) and three variants of the 

Generalized Neuron (GN) model. The models were trained 

and tested using rainfall and data from the Kentucky River 

basin. Details of the study area, data preprocessing, and 

model structures are presented below. 

 

MLP Model Development 

A feed-forward MLP architecture trained with the 

backpropagation algorithm and momentum factor was 

developed. The model comprises three layers: an input layer, 

one hidden layer, and an output layer. Both the hidden and 

output neurons used the sigmoid activation function. A 

computer program written in C was developed for ANN 

model simulation.  The output from the MLP model was 

flow at time t, Q(t).  Inputs to the MLP model were 

determined using auto- and cross-correlation analyses.  The 

significant inputs were determined to be daily rainfalls P(t), 

P(t-1), and P(t-2) and daily average observed flows Q(t-1) 

and Q(t-2).  Thus, an MLP structure of 5-N-1was explored.  

The input and output data were normalized in the range of 

0.1 and 0.9. The optimum ANN structure is normally 

determined using a trial and error procedure.  The number of 

hidden neurons was varied from 1 to 20 and the architecture 

giving the best performance in terms of E and AARE was 

selected as the optimum MLP model.  An architecture of 5-

4-1 was found suitable.  

 

GN Model Development 

Three different GN models were constructed, each 

employing a unique combination of discriminant and 

activation functions. The goal was to evaluate the influence 
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of these components on model accuracy and generalization. 

Sigmoid and Gaussian functions were employed as 

activation functions.  These are described in the following 

equations: 

 

Linear Discriminant Function (∑): 

 BiasXWDNet
N

i

ii +=
=1

            (6) 

Non-linear Discriminant Function (П): 

BiasXWDNet
N

i

ii *
1


=

=            (7) 

Sigmoid Activation Function (∫):   

Nete
O

−+
=

1

1
                  (8) 

Gaussian Activation Function (Ω):   
2)(NeteO −=                   (9) 

 

Three different GN models are investigated in this study, 

which differ in the discriminant and activation functions 

employed.  The GN models are referred to as GNA, GNB, 

and GNC models in this study.  The details of the 

discriminant and activation functions employed in the three 

GN models are presented in Table 1.  All the three GN 

models use a linear assimilation function as the fifth 

component as described earlier.  A gradient descent method 

similar to back-propagation algorithm with momentum 

factor described earlier was employed for training of the 

three GN models.  The stopping criteria were kept same as 

those for the MLP models. 

 

Table 1:  Details of the models developed 

Model f1 f2 g1 g2 
No. of 

Parameters 

MLP Linear (∑) --- Sigmoid --- 29 

GNA Linear (∑) 
Non- 

linear (П) 
Sigmoid Gaussian 

13 

GNB Linear (∑) Linear (∑) Sigmoid Gaussian 13 

GNC Linear (∑) 
Non- 

linear (П) 
Sigmoid Sigmoid 

13 

 

5. Sensitivity Analyses 
 

To assess the robustness and reliability of the developed 

models, two separate sensitivity analyses were conducted. 

These focused on (a) the effect of different initial weight 

configurations, and (b) the impact of progressively reducing 

the training dataset size. Both analyses were carried out on 

all four models: MLP, GNA, GNB, and GNC. 

 

Sensitivity to Initial Solutions 

The feed-forward multi-layer perceptron ANN models are 

often criticized for their inability to provide global solution 

in terms of optimized weight matrix.  This is due to several 

reasons including the gradient descent nature of the back-

propagation training algorithm employed in MLP model 

building, the error surfaces being extremely complex 

consisting of many local solutions, and heavy dependence of 

the MLP models on the initial weights among others.  One 

can use a higher order training algorithm for training of an 

MLP model, which involves computation of higher order 

derivatives at each training cycle increasing computational 

burden during training.  The complex structure of the MLP 

models consisting of many hidden layers and associated 

hidden neurons leads to the error surfaces being complex 

consisting of many local peaks and troughs.  Therefore, the 

principle of parsimony should be exercised during the MLP 

model building process.  However, the number of hidden 

neurons at-least equal to the size of the input vector is 

normally required, which still causes the problem of local 

minima and the search algorithm getting stuck in one of 

them.  Given that the BPA is the most popular training 

method employed and that there will be many local minima 

for the training algorithm to handle, it is a usual practice to 

shake the initial weights and retrain the MLP models.  Often, 

one needs to attempt ten or twenty different initial weight 

sets in order to get close to the global optimum, which is still 

not guaranteed.   

 

With these problems in mind, a sensitivity analysis was 

carried out to investigate the dependence of the models 

developed in this study on the initial solutions.  For this, 

each model developed (MLP, GNA, GNB, and GNC) was 

trained using ten different initial weight vectors.  Various 

performance evaluation measures were then calculated from 

all the models corresponding to each initial weight vector.  

The results in terms of average and standard deviation of 

various error statistics (over ten different models developed 

on ten different initial weights) are presented in Table 2.  

Looking at the average of the statistics from Table 2, it is 

clear that the GNB model performs the best in terms of all 

the error statistics.  Its performance was marginally better 

than the next best model in terms of NRMSE, E, and R but 

was significantly better in terms of AARE and TS statistics.  

The performance of the GNC model was next to the best 

model.  Further, the MLP model performed slightly better 

than the GNA and GNC models in terms of average 

NRMSE, E, and R statistics but its performance was much 

inferior in terms of the AARE and TS statistics.   

 

Analyzing at the results from Table 2 in terms of the 

standard deviations of the various error statistics during 

training and testing, it was observed that MLP model 

consistently obtained higher standard deviations for all the 

error statistics. Higher standard deviations indicate higher 

sensitivity of a model towards the initial weights.  This may 

be because the search algorithm probably getting stuck in 

different local minima corresponding different initial 

weights and providing an inferior overall performance.  The 

GNA model performed the best in terms of standard 

deviations of various statistics as it obtained the least 

standard deviations for all the error statistics.  The GNB and 

GNC models were also able to perform at par with the GNA 

model in terms of some of the error statistics (see bold font 

statistics in Table 2).  This means that the GN model 

employing a combination of linear and non-linear 

discriminant functions and a combination of Sigmoid and 

Gaussian functions as activation functions was the least 

sensitive to initial weights.  This is a significant finding as 

such a combination of discriminant and activation functions 

can be employed for the modeling of complex physical 

systems without having to worry about getting stuck in local 

minima and/or shaking initial weights.   
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Table 2:  Sensitivity analyses results with respect to initial 

weights 
Model NRMSE E R AARE TS25 TS50 TS100 

        

Average During Training 

        

MLP 0.497 0.905 0.952 28.5 43.6 64.0 75.5 

GNA 0.480 0.913 0.956 29.9 42.1 60.4 75.3 

GNB 0.421 0.933 0.966 23.3 53.0 72.7 86.6 

GNC 0.458 0.921 0.960 29.8 48.1 70.9 84.2 

        

Average During Testing 

        

MLP 0.515 0.895 0.946 28.3 45.8 64.6 75.4 

GNA 0.482 0.909 0.953 30.2 43.9 62.6 75.3 

GNB 0.453 0.920 0.960 23.0 54.1 72.4 85.6 

GNC 0.467 0.915 0.957 29.8 48.7 70.3 83.5 

        

Standard Deviation During Training 

        

MLP 0.066 0.025 0.013 6.016 10.407 9.551 10.876 

GNA 0.001 0.000 0.000 0.058 0.123 0.045 0.070 

GNB 0.002 0.001 0.000 0.128 0.605 0.740 0.489 

GNC 0.001 0.001 0.001 0.295 1.490 2.237 0.744 

        

Standard Deviation During Testing 

        

MLP 0.056 0.022 0.012 6.548 9.076 7.796 9.449 

GNA 0.000 0.001 0.000 0.058 0.069 0.087 0.097 

GNB 0.001 0.000 0.000 0.132 0.438 0.692 0.649 

GNC 0.005 0.002 0.001 0.345 1.610 1.906 1.378 

 

Further, the difference in the performances from MLP and 

GN models in terms of standard deviations on AARE and 

TS statistics was quite significant indicating that different 

solutions obtained from MLP model differed significantly 

from each other as compared to the GN models.  This 

demonstrates that the different solutions obtained from the 

GN models corresponding to different initial weights are 

very close to each other indicated by almost zero standard 

deviations for many of the error statistics.  Considering the 

sensitivity analysis results in terms of both average and 

standard deviations taken together, the GNB model appeared 

to perform the best.  The time series plots from the GNB 

model from the best initial weights for two sample years 

during testing (one wet and one dry year) are shown in 

Figure 2.  Figure 2 demonstrates that the GNB model is able 

to estimate the magnitude and timing of all the peak flows 

very well, and is able to estimate low flows also very well.   

 

 
(a) Time-series plot from the GNB model for sample dry 

year 1986 

 

 
(b) Time-series plot from the GNB model for sample wet 

year 1989 

Figure 2:  Time series plots from the GNB model with best 

initial weights 

 

Sensitivity to Reduced Training Data 

The performance of the four models was evaluated when 

presented with gradually reduced training data with an 

objective of investigating their efficiency under scarce data 

conditions. As discussed earlier, the models were trained 

with a set of ten different initial weight in order to find the 

sensitivity of the models towards initial weights. The best 

model structure was selected on the basis of performance of 

the model during training as well as testing with ten different 

initial weights. The initial weight with which the 

performance of the models was found the best was 

considered as the best model structure. Table 3 presents the 

statistical results of the models with best model structure. In 

order to carry out the computational experiment, the four 

models with best model structure were retrained using 

reduced number of years of training data.  The training data 

presented to the best model structures with best  (MLP, 

GNA, GNB, and GNC) were reduced from thirteen to one 

year in a step of one year. After retraining of the models, 

performance statistics were calculated during training and 

testing data sets.  The training data set consisted of reduced 

years but the testing data set was kept constant at thirteen 

years in order to test the model performance under scarce 

training data.  The statistical results are not presented here 

due to their volume.  Instead, the results for R, AARE, 

NRMSE, and TS50 are presented in Figure 3 and Figure 4 

for training and testing, respectively.   

 

Table 3:  Statistical results from MLP and GN models (with 

best initial weights)  
Model NRMSE E R AARE TS25 TS50 TS100 

During Training 

MLP 0.439 0.927 0.963 21.94 53.58 74.28 87.51 

GNA 0.479 0.913 0.956 29.76 42.40 60.40 75.44 

GNB 0.423 0.933 0.966 23.43 53.79 73.50 86.94 

GNC 0.455 0.922 0.960 29.21 50.04 73.50 85.11 

During Testing 

MLP 0.460 0.917 0.958 20.93 55.48 72.79 85.89 

GNA 0.482 0.909 0.953 30.11 43.91 62.76 75.57 

GNB 0.454 0.919 0.960 23.09 54.68 73.02 86.27 

GNC 0.476 0.911 0.955 29.13 50.91 72.68 85.30 

 

Looking at Figure 3 and Figure 4, it can be noted that the 

performance of all the models is unaffected when the 

number of training years is reduced from thirteen to about 

three or four years.  Figure 3(a) and Figure 4(a) show that 

correlation coefficient is largely unaffected by the number of 
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training years. It appears that the performance of models 

GNA and GNC gets affected significantly beyond three 

training years and the performance of MLP and GNB 

models remains largely unaffected even when training years 

were reduced to a single year.  This shows that both MLP 

and GNB models are robust when encountered with scarce 

data situation, which is a little surprising result as both of 

these models employed linear discriminant functions.  

Analyzing the differences in performances of the MLP and 

GNB models using TS50 (Figures 3(d) and 4(d)), it is noted 

that the performance of the GNB model is far superior to 

that of the MLP model up to six training years beyond which 

the performance of the two models is comparable with the 

MLP model performing marginally better.  This trend was 

observed in other error statistics also although not as 

apparent as that for TS50. 

 

 
Figure 3: Error statistics during training under reduced 

training data 

 

 
Figure 4:  Error statistics during testing under reduced 

training data 

 

 

 

6. Summary and Conclusions 
 

This study investigated the application of Generalized 

Neuron (GN) models for simulating the nonlinear and 

complex rainfall-runoff (RR) relationship, and compared 

their performance against the conventional Multi-Layer 

Perceptron (MLP) model. Three GN variants—GNA, GNB, 

and GNC—were evaluated using daily rainfall and 

streamflow data from the Kentucky River basin. Five 

different error statistics were used to evaluate the model 

performance.  Experiments were carried out to investigate 

the efficiency of the models in terms of their dependence on 

the initial weights and reduced training data. 

 

It has been found that the GN models perform better than the 

conventional MLP model. The GN models were found to be 

insensitive to the initial weights.  The GN models offer a 

promising alternative to model the complex and non-linear 

rainfall-runoff process as they have a very compact 

structure, take less time to train, consist of a very few 

parameters, are independent of the initial weights, and 

provide better generalization and extrapolation ability 

beyond the range of training data.  The GNB and MLP 

models were found to perform well when presented with 

minimum amount of training data with the GNB model 

performing better when presented with seven year or more 

of training data.  The GN models have tremendous potential 

to be employed in modeling of the complex engineering 

systems.  They require significantly less time for training.   

 

There exists a need and tremendous potential for carrying 

out research in the area of developing new artificial neuron 

models and it is recommended that the GN models proposed 

in this study are applied in other watersheds to have more 

confidence in the findings reported here.  The method of 

training employed in this study was popular back-

propagation training algorithm, which has been reported to 

have its own limitations.  The new GN models trained using 

alternative training algorithms may prove to be still better 

tools for hydrological modeling; however, such aspects need 

attention by the water resources researchers.   
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