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Abstract: This study introduces BioAgeSense, an AI-powered, non-invasive diagnostic device designed to estimate biological age using 

salivary biomarkers. Saliva samples from 200 participants (aged 20–70) were analyzed for physiological indicators such as DNA 

methylation (Horvath and Hannum clocks), cortisol, DHEA, 8-OHdG, TERT, inflammatory proteins, lactoferrin, urea, and microbiome 

composition. Biological age, derived from epigenetic clocks, served as the target variable. Machine learning models like Random Forest, 

XGBoost, and Deep Neural Networks (DNN) were developed, with the DNN achieving the best performance (R² = 0.89, MAE = 2.5, RMSE 

= 3.2). XGBoost and Random Forest followed closely, with R² values of 0.88 and 0.86, respectively. Participants were classified into low, 

moderate, and high-risk groups based on biological age acceleration scores. Key biomarkers related to stress, inflammation, and oxidative 

stress significantly influenced predictions. Distribution patterns of biomarkers included: cortisol (normal, ~5 ng/mL), DHEA (bell-shaped, 

~2.5 ng/mL), 8-OHdG (right-skewed, ~10 ng/mL), Firmicutes/Bacteroidetes ratio (centered ~1.5), inflammatory proteins (~50 a. u.), 

lactoferrin (~4.5 μg/mL), and urea (~28 mg/dL). BioAgeSense shows strong potential as a scalable, saliva-based platform for personalized 

aging assessment and remote health monitoring in precision medicine.  
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1. Introduction  
 

Aging is a multifactorial biological process involving the 

gradual loss of cellular integrity, physiological resilience, and 

metabolic homeostasis (Selman & Pardo, 2021). While 

chronological age is a fixed measure based on the passage of 

time, biological age reflects the true physiological state of an 

individual, shaped by a complex interplay of genetics, 

environmental exposures, and lifestyle factors (Hartmann et 

al., 2023). Early identification of individuals experiencing 

accelerated biological aging is essential for guiding timely 

interventions to prolong healthspan and reduce the onset of 

chronic age-related diseases (Wallace et al., 2017). 

Traditional methods to assess biological aging have largely 

relied on invasive techniques such as blood sampling to 

measure telomere length, inflammatory cytokines, and DNA 

methylation status through high-throughput genomic assays 

(Li et al., 2024). Though highly informative, these approaches 

require specialized laboratory facilities, are cost-prohibitive 

for routine monitoring, and are often unsuitable for 

population-level screening (Vera & Blasco, 2012).  

 

In contrast, BioAgeSense is a novel AI-driven salivary 

diagnostic platform which can predict aging via saliva, a 

promising alternative biofluid due to its ease of collection, 

non-invasive nature, and ability to reflect systemic 

physiological states. Saliva contains diverse biomolecules 

including DNA, RNA, proteins, hormones, and microbiota-

derived metabolites (Ciurli et al., 2021) —many of which 

correlate with aging processes and were integrated into the 

BioAgeSense system. In this study, BioAgeSense was 

deployed to analyze saliva samples from 200 participants 

aged 25 to 65 years. Biomarker selection within BioAgeSense 

was guided by established literature linking molecular 

changes to biological aging. Epigenetic markers such as DNA 

methylation patterns known from Horvath’s and Hannum’s 

clocks were included to infer cellular age (Baker & Sprott, 

1988; Yusri et al., 2024). Hormonal biomarkers like cortisol 

and alpha-amylase were considered for their association with 

chronic stress, while oxidative stress markers such as 8-

hydroxy-2′-deoxyguanosine (8-OHdG) were measured as 

indicators of accumulated molecular damage (Palmer et al., 

2019). Telomerase activity served as a proxy for replicative 

capacity, and shifts in oral microbiome composition provided 

insight into immune and metabolic alterations (Hau et al., 

2015). Feature selection within BioAgeSense involved 

correlation filtering, entropy-based ranking, and recursive 

elimination to retain the most informative and non-redundant 

features for modeling.  

 

To analyze this multi-dimensional dataset, BioAgeSense 

implemented three (Palmer et al., 2019) machine learning 

techniques: Random Forest, XGBoost, and Deep Neural 

Networks. Random Forest, an ensemble learning algorithm, 

constructed multiple decision trees to predict biological age 

by identifying biomarker splits that best reduced variance 

(Alzboon et al., 2025). This allowed BioAgeSense to identify 

key markers such as elevated cortisol and reduced telomerase 

activity, which frequently contributed to accelerated aging 

predictions (Shokhirev et al., 2024). XGBoost further 

enhanced model performance by iteratively minimizing 

prediction error while regularizing complexity crucial for 

biological datasets with many interdependent variables. It was 

particularly useful in uncovering non-linear relationships 

between oxidative and microbial biomarkers (Zhang et al., 

2019). The Deep Neural Network (DNN) model in 

BioAgeSense was architected to capture high-dimensional 

biomarker interactions. The network translated raw 

biomarker inputs into abstract feature hierarchies through 

multiple hidden layers, allowing it to detect subtle epigenetic 

patterns and systemic changes related to aging (Galkin et al., 

2021). Through backpropagation and fine-tuning, the DNN 

uncovered mechanistic signatures of aging that may not be 

apparent with classical models alone (Galkin et al., 2021). 

This integrative architecture empowered BioAgeSense to 

deliver accurate, personalized biological age predictions and 

risk stratification based on salivary biomarkers. Unlike 

traditional aging assessments that are often costly, invasive, 

and inaccessible at scale, BioAgeSense offers a practical, 

scalable, and non-invasive alternative suited for routine health 

monitoring, early detection of age-related decline, and 

individualized intervention planning.  

 

 
Schematic Overview of the present investigation 

 

2. Materials and Methods 
 

The study population consisted of 200 participants, ranging in 

age from 20 to 70 years, with an equal representation of male 

and female subjects to ensure gender balance. Saliva samples 

were collected using a non-invasive, standardized method 

unstimulated saliva obtained through passive drool to 

maintain consistency and minimize variability in sample 
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composition. Participants were instructed to refrain from 

eating, drinking, or oral hygiene activities prior to sample 

collection to reduce external influences on salivary 

biomarkers. Individuals with chronic illnesses or those 

currently taking medications known to alter biomarker 

profiles were excluded from the study to avoid confounding 

effects and ensure the reliability and validity of the data 

collected. All participants provided written informed consent 

prior to participation. Confidentiality, anonymity, and the 

right to withdraw at any stage were fully ensured.  

 

Flow Chart process 

 
 

Biomarker Integration and Analysis 

The primary target variable used within BioAgeSense was 

biological age, estimated using DNA methylation-based 

epigenetic clocks, specifically the Horvath and Hannum 

models. Salivary biomarkers were analyzed to assess aging-

related physiological changes. Cortisol, DHEA, alpha-

amylase, and 8-OHdG reflected stress and oxidative damage. 

TERT indicated telomerase activity, while the 

Firmicutes/Bacteroidetes ratio captured microbiome shifts. 

Inflammatory proteins, lactoferrin, and urea measured 

immune and metabolic status, supporting comprehensive 

biological age prediction through non-invasive sampling. The 

selected biomarkers served as input features for 

BioAgeSense, encompassing epigenetic, hormonal, oxidative 

stress, microbiome, and proteomic/metabolic categories.  

 

Computational Framework for Biological Age Estimation 

The core analytical pipeline of BioAgeSense began with 

structured preprocessing of quantitative biomarker data, 

followed by feature selection and scaling. Three machine 

learning models were integrated into the system: Random 

Forest (RF), XGBoost, and a custom Deep Neural Network 

(DNN). The DNN architecture included an input layer 

corresponding to selected biomarkers, multiple hidden layers 

with ReLU activation, dropout layers for regularization, and 

an output node predicting biological age. It was trained using 

the Adam optimizer and mean squared error as the loss 

function. RF and XGBoost models were optimized using 

GridSearchCV with 10-fold cross-validation on an 80% 

training subset. Performance evaluation was conducted on a 

20% test set using R², MAE, and RMSE.  

 

Additionally, biological age predictions were used to classify 

participants into risk groups (Low, Moderate, High), enabling 

the calculation of classification metrics such as Precision and 

Recall. This layered framework allowed BioAgeSense to 

combine interpretability, predictive accuracy, and biological 

insight for practical deployment in health monitoring. Each 

model’s prediction output was subsequently integrated into 

the BioAgeSense risk stratification module to classify 

biological aging risk levels (Low, Moderate, High) based on 

the deviation between predicted biological and chronological 

age.  

 

Training and Validation 

The dataset was partitioned into training (80%) and testing 

(20%) subsets to evaluate the generalizability of predictions 

generated by BioAgeSense. To enhance robustness and 

prevent overfitting, the platform implemented 10-fold cross-

validation on the training data. Hyperparameter tuning for 

classical machine learning models like Random Forest and 

XGBoost was conducted within BioAgeSense using 

GridSearchCV, enabling systematic optimization of model 

parameters for improved performance. For the Deep Neural 

Network (DNN), the Adam optimizer was employed to 

minimize the mean squared error (MSE) loss function. The 

DNN training module in BioAgeSense included dropout 

layers and regularization techniques to ensure stability and 

reliability when processing high-dimensional salivary 

biomarker inputs, ultimately supporting accurate and scalable 

biological age prediction.  

 

3. Results 
 

The predictive performance of the models within 

BioAgeSense was evaluated using standard regression 

metrics: the coefficient of determination (R²), mean absolute 

error (MAE), and root mean squared error (RMSE). Among 

the three algorithms tested, the Deep Neural Network (DNN) 

exhibited the highest predictive accuracy, achieving an R² 

score of 0.89, an MAE of 2.5, and an RMSE of 3.2 indicating 

strong reliability in estimating biological age from salivary 

biomarkers. XGBoost performed comparably, with an R² of 

0.88, MAE of 2.9, and RMSE of 3.7. The Random Forest 

model also demonstrated robust performance, with an R² of 

0.86, MAE of 3.2, and RMSE of 4.1. These results confirm 

that all three models embedded in BioAgeSense effectively 

capture the underlying biological signals of aging, with the 

DNN providing the most precise and generalizable 

predictions.  
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Distribution of Biological Aging Acceleration 

Sample outputs generated by the BioAgeSense predictive 

model reveal distinct inter-individual variations between 

chronological and biological age, underscoring the system's 

sensitivity to subtle physiological differences (Table 1). For 

example, Participant BIO-00412, chronologically aged 45.0 

years, exhibited a predicted biological age of 52.4 years, 

yielding an acceleration score of +7.4 years and a 

classification in the High-Risk category. In contrast, 

Participant BIO-00235 (age 39.0) demonstrated decelerated 

aging with a biological age of 36.7 years (–2.3 years), falling 

into the Low-Risk group. Participant BIO-00117 (age 58.0) 

showed a mild acceleration of +2.1 years and was categorized 

as Moderate Risk, while BIO-00789 (age 62.0) experienced a 

pronounced acceleration of +8.5 years, aligning with the 

High-Risk group. Participants BIO-00308 (age 33.0) and 

BIO-00294 (age 29.0) both exhibited biological age 

reductions of –1.8 and –0.5 years, respectively, and were 

classified as Low Risk. Other cases such as BIO-00651 (age 

50.0, +3.6 years) and BIO-00566 (age 55.0, +2.3 years) fell 

within the Moderate Risk category. Notably, Participant BIO-

00804 (age 51.0) had a biological age of 58.9 years (+7.9), 

indicating accelerated aging, whereas BIO-00921 (age 47.0) 

showed a deceleration of –1.9 years, emphasizing the model’s 

capacity to detect nuanced differences in aging trajectories 

across individuals.  

 

 
Figure 1: Developed prototype BioAgeSense 

 

Table 1: Sample Output with Predicted Biological Age and 

Risk Categories 

Participant 

ID 

Chronological 

Age (yrs) 

Predicted 

Biological 

Age (yrs) 

Acceleration 

Score (yrs) 

Risk 

Category 

BIO-00412 45.0 52.4 +7.4 High 

BIO-00235 39.0 36.7 -2.3 Low 

BIO-00117 58.0 60.1 +2.1 Moderate 

BIO-00789 62.0 70.5 +8.5 High 

BIO-00308 33.0 31.2 -1.8 Low 

BIO-00651 50.0 53.6 +3.6 Moderate 

BIO-00804 51.0 58.9 +7.9 High 

BIO-00294 29.0 28.5 -0.5 Low 

BIO-00566 55.0 57.3 +2.3 Moderate 

BIO-00921 47.0 45.1 -1.9 Low 

The distribution of biological aging risk among the 200 study 

participants was assessed using a pie chart generated by 

BioAgeSense, based on model-derived biological age 

acceleration scores. The analysis revealed that approximately 

35% of individuals were classified as Low Risk, indicating 

decelerated or age-appropriate biological aging. Another 40% 

fell into the Moderate Risk group, representing mild to 

moderate acceleration of biological age. The remaining 25% 

were categorized as High Risk, suggesting marked 

advancement in biological aging relative to chronological 

age. This stratification underscores the heterogeneity of aging 

trajectories within the population and demonstrates the 

potential of saliva-based biomarker profiling via 

BioAgeSense for personalized, non-invasive risk assessment.  

 

 
Figure 2: Biomarker distribution 

 

Cortisol (ng/mL)  

The histogram (Figure 3) for salivary cortisol levels, as 

analyzed by BioAgeSense, reveals a nearly normal 

distribution centered around 5 ng/mL, aligning with 

established physiological norms for baseline diurnal secretion 

in healthy adults. A mild right skewness is observed, 

suggesting a subset of individuals with elevated cortisol 

levels, potentially indicative of chronic psychological or 

physiological stress. As cortisol is a principal output of the 

hypothalamic-pituitary-adrenal (HPA) axis, such elevations 

may reflect increased allostatic load a recognized driver of 

accelerated biological aging. This distribution pattern 

highlights cortisol's diagnostic relevance in detecting stress-

related dysregulation and supports its integration into the 

BioAgeSense platform as a key biomarker for age-associated 

physiological decline.  
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Figure 3: Salivary cortisol levels, as analyzed by 

BioAgeSense 

DHEA (ng/mL)  

The distribution of dehydroepiandrosterone (DHEA) 

concentrations, as assessed by BioAgeSense, exhibits a bell-

shaped curve peaking around 2.5 ng/mL typical for mid-life 

adults (Figure 4). The histogram reflects generally balanced 

adrenal androgen output across the cohort, with a few low-

end outliers. Given DHEA’s inverse relationship with 

chronological age and its critical role in regulating immune 

function, mood, and energy metabolism, decreased levels 

serve as indicators of endocrine aging. These findings 

contribute to higher biological age predictions within the 

BioAgeSense framework. The presence of individuals with 

markedly reduced DHEA reveals its value as a predictive 

biomarker for early identification of accelerated aging.  

 

 

 
Figure 4: DHEA assessement by BioAgeSense 

 

Alpha-Amylase (U/mL)  

Salivary alpha-amylase levels, as profiled by BioAgeSense, 

display a positively skewed histogram with a concentration of 

values in the lower range and a trailing tail of elevated 

readings (Figure 5). This enzyme, released in response to 

sympathetic nervous system activation, functions as a 

sensitive marker of acute stress. The observed skewness 

reflects rapid, transient secretory responses to psychological 

or physical stimuli. While most participants fall within 

normative limits, elevated levels in certain individuals 

suggest episodic stress responses that may contribute to 

biological age acceleration. These findings support the 

inclusion of alpha-amylase within BioAgeSense as a relevant 

biomarker for capturing stress-related physiological 

variability.  

 

 
Figure 5: Salivary alpha-amylase levels detected by BioAgeSense 
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8-OHdG (ng/mL)  

The histogram of 8-hydroxy-2'-deoxyguanosine (8-OHdG) 

concentrations, as analyzed by BioAgeSense, reveals a 

moderate right-skew, indicating varying levels of oxidative 

DNA damage across the cohort. The central tendency is near 

10 ng/mL, with outliers exceeding 16 ng/mL (Figure 6). As a 

validated biomarker of oxidative stress and genomic 

instability, both central to aging 8-OHdG which reflects 

cumulative exposure to reactive oxygen species (ROS) and 

diminished antioxidant defenses. Participants in the upper 

quartile exhibit signatures of increased cellular damage, 

reinforcing 8-OHdG’s value within the BioAgeSense 

platform for identifying individuals at risk of accelerated 

biological aging due to oxidative stress.  

 

 
Figure 6: 8-OHdG’s detection by BioAgeSense 

 

TERT (Relative Units)  

Telomerase reverse transcriptase (TERT) levels, as profiled 

by BioAgeSense, are narrowly distributed around a mean of 

1.0 relative units, indicating relatively consistent telomerase 

activity across the study population (Figure 7). The histogram 

shows a mild left skew, with a subset of participants 

exhibiting reduced TERT expression potentially signaling 

impaired telomere maintenance capacity. Low telomerase 

activity is closely linked to cellular senescence and reduced 

regenerative potential, both of which are key hallmarks of 

aging. These findings support the integration of TERT within 

the BioAgeSense framework as a critical molecular marker 

capable of differentiating between normal and accelerated 

aging trajectories, particularly when evaluated alongside 

DNA methylation age estimates.  

 

 
Figure 7: TERT analysis by BioAgeSense 
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Firmicutes/Bacteroidetes Ratio (F/B Ratio)  

The histogram for the Firmicutes/Bacteroidetes (F/B) ratio 

analyzed through BioAgeSense as a proxy for oral microbiota 

balance shows a broad, symmetrical distribution centered 

around 1.5 (Figure 8). This ratio plays a key role in metabolic 

regulation, systemic inflammation, and gut–brain axis 

signaling, all of which are known to affect the aging process. 

Deviations from this central value, whether elevated or 

suppressed, may indicate oral dysbiosis, dietary imbalances, 

or underlying systemic conditions. Individuals with abnormal 

ratios are potentially at greater risk for inflammatory aging 

and metabolic dysfunction, supporting the integration of 

microbiome-derived metrics within the BioAgeSense 

framework for comprehensive biological age prediction.  

 

 
Figure 8: Firmicutes/Bacteroidetes (F/B) ratio analyzed through BioAgeSense 

 

Inflammatory Proteins (Arbitrary Units)  

Inflammatory protein levels in saliva, as measured by 

BioAgeSense, exhibit a wide distribution with a peak around 

50 arbitrary units (a. u.), aligning with patterns of chronic 

low-grade inflammation ("inflammaging") commonly seen in 

middle-aged and older adults (Figure 9). The histogram 

reveals considerable variability, likely reflecting 

heterogeneous immune statuses across the cohort. Individuals 

in the upper percentiles may be experiencing persistent 

systemic or localized (oral) inflammation both of which are 

strongly associated with accelerated biological aging. This 

distribution highlights the importance of inflammatory 

profiling within the BioAgeSense framework, reinforcing its 

utility in stratifying aging risk based on immune system 

dysregulation.  

 

 
Figure 9: Inflammatory protein levels in saliva, as measured by BioAgeSense 
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Lactoferrin (μg/mL)  

The histogram of lactoferrin levels, as assessed by 

BioAgeSense, reveals a normal distribution with a central 

peak at 4.5 μg/mL. Lactoferrin, an iron-binding glycoprotein, 

is integral to mucosal immunity and antimicrobial defense. 

Salivary concentrations vary with age, immune function, and 

oral microbial dynamics (Figure 10). The observed symmetry 

and narrow spread suggest homeostatic regulation in most 

participants, while lower outliers may reflect weakened 

mucosal immunity. Given lactoferrin’s dual relevance to 

immune and microbiome-related aging, its inclusion in 

BioAgeSense provides meaningful insight into mucosal 

immune health, supporting its role in non-invasive monitoring 

of immunosenescence and aging trajectories.  

 

 
Figure 10: Lactoferrin levels, as assessed by BioAgeSense 

 

Urea (mg/dL)  

Salivary urea levels, as analyzed by BioAgeSense, display a 

near-Gaussian histogram centered around 28 mg/dL (Figure 

11). As a byproduct of protein metabolism, urea serves as a 

reliable metabolic marker influenced by renal function, 

protein intake, and hydration status. The histogram’s 

symmetry suggests metabolic stability in most participants, 

while higher-end outliers may indicate catabolic stress or 

early metabolic dysregulation. Given its role in systemic 

homeostasis, urea contributes significantly to the 

BioAgeSense multi-biomarker framework for predicting 

biological age, particularly when interpreted alongside 

oxidative stress and inflammatory profiles.  

 

 
Figure 11: Salivary urea levels, as analyzed by BioAgeSense 
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4. Discussion 
 

This study demonstrates the feasibility and effectiveness of 

using salivary biomarkers integrated with artificial 

intelligence through the BioAgeSense platform to estimate 

biological age and stratify aging-related risk. By combining 

multi-dimensional data—including hormonal, oxidative, 

epigenetic, microbiome, and immune-metabolic markers—

BioAgeSense provides a holistic view of systemic aging via a 

non-invasive and easily accessible medium. The strong 

performance of all three predictive models, particularly the 

Deep Neural Network (R² = 0.89), highlights the platform’s 

capability to deliver accurate, personalized age assessments 

(Ying et al., 2024). The observed variations between 

predicted biological and chronological age expressed as the 

acceleration score—enabled identification of individuals 

experiencing early biological aging, potentially driven by 

stress, inflammation, or metabolic dysregulation. Elevated 

cortisol and 8-OHdG levels, for instance, were frequently 

linked with accelerated aging within the BioAgeSense 

system, supporting their roles in allostatic load and oxidative 

stress (Polsky et al., 2022). Similarly, reduced DHEA and 

TERT levels reflected endocrine and cellular senescence. 

These insights reinforce the clinical utility of salivary 

biomarkers, processed through BioAgeSense, as early 

indicators of physiological decline (Maciejczyk et al., 2022; 

Polsky et al., 2022). The use of machine learning within the 

platform not only facilitated accurate prediction but also 

enabled efficient integration of complex, nonlinear 

relationships among diverse biomarkers. Furthermore, the 

risk stratification feature (Low, Moderate, High) built into 

BioAgeSense offers actionable outputs for targeted 

intervention and lifestyle adjustment. With its non-invasive 

sampling and potential for remote deployment, BioAgeSense 

presents a scalable solution for population-level screening 

and preventive health monitoring. Nonetheless, limitations 

exist. The cross-sectional design limits causal inference, and 

external validation in independent cohorts is necessary to 

generalize findings. Future integration of longitudinal data 

and lifestyle factors could further enhance the precision, 

interpretability, and clinical relevance of BioAgeSense.  

 

5. Conclusion 
 

This study successfully demonstrates the potential of 

BioAgeSense, an AI-powered platform, to integrate salivary 

biomarkers with advanced machine learning models for non-

invasive estimation of biological age and stratification of 

aging-related health risks. The high predictive accuracy—

particularly from the Deep Neural Network—emphasizes the 

strength of combining multidimensional biomarker data with 

artificial intelligence for personalized aging assessments. The 

use of saliva enhances accessibility, compliance, and 

scalability, positioning BioAgeSense as a viable tool for 

population-level screening and remote health monitoring.  

 

Despite these promising outcomes, several challenges 

remain. The cross-sectional design limits causal inference and 

precludes monitoring temporal changes in biological age. 

Additionally, external lifestyle factors such as diet, sleep, and 

physical activity were not captured, yet they significantly 

influence biomarker expression and aging dynamics. Model 

interpretability, especially in deep learning, remains a key 

limitation for clinical translation without explainable AI 

frameworks. Furthermore, the current model requires external 

validation in larger, ethnically diverse cohorts to ensure 

robustness and generalizability.  

 

Looking forward, future research should prioritize 

longitudinal studies to track changes in biological age over 

time and in response to interventions. Enhancing 

BioAgeSense with multi-omics integration (e. g., 

transcriptomics, metabolomics) and real-time data from 

wearable sensors may further strengthen predictive accuracy 

and biological relevance. The development of transparent, 

interpretable AI and user-friendly risk communication tools 

will be essential for clinical and public health adoption. 

Ultimately, BioAgeSense represents a foundational step 

toward scalable, non-invasive biological age monitoring with 

the potential to transform personalized preventive medicine 

and healthy aging strategies.  
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