
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Where Microfrontends with Module Federation Are

Required: Advantages, Disadvantages, and the Risk

of Overengineering

Justin Davis

Abstract: As web applications grow in scale and complexity, frontend architectures have evolved to accommodate scalability, team

autonomy, and maintainability. Microfrontends, particularly when implemented with Webpack's Module Federation, offer a distributed

and modular approach to frontend development. However, their application is not universally advantageous. This paper explores the

contexts in which microfrontends with module federation are most suitable, outlines the advantages and disadvantages of this

architecture, and critically analyzes scenarios where their adoption may result in overengineering.

Keywords: Microfrontends, Module Federation, Webpack, Frontend Architecture, Team Autonomy, Independent Deployment,

Overengineering, Scalability, Runtime Integration, Incremental Migration

1. Introduction

The concept of microfrontends extends the principles of

microservices to the frontend. This architectural style allows

large applications to be divided into independently developed

and deployed frontend units, which are integrated at runtime.

Module Federation, introduced in Webpack 5, has emerged as

a powerful mechanism to implement microfrontends,

enabling dynamic code sharing between separate builds

without duplicating dependencies.

While this architectural paradigm can significantly enhance

development agility in large organizations, it also introduces

considerable complexity. This paper investigates when

microfrontends with module federation are required and when

they might unnecessarily complicate application architecture.

2. Microfrontends and Module Federation: An

Overview

Microfrontends

Microfrontends are a way of breaking up a monolithic

frontend into smaller, semi - independent "fragments" that can

be owned and operated by different teams. These fragments

may be composed using iframes, JavaScript integration, or

client - side routing.

Module Federation

Webpack's Module Federation allows independently

compiled modules to be dynamically loaded at runtime,

without requiring a central deployment pipeline. This

technique enables shared dependencies, version negotiation,

and on - demand loading of remote modules.

3. When Microfrontends with Module

Federation Are Required

The use of microfrontends with module federation is

particularly suitable under the following conditions:

Large and Distributed Development Teams

Organizations with multiple teams working on different

features in parallel benefit from clear code ownership and

deployment independence. Module federation allows teams

to ship features autonomously without coordination

bottlenecks.

Multiple Product Verticals or Domains

Applications that span distinct business domains—e. g.,

dashboards, e - commerce, and admin interfaces—can be

naturally segmented into microfrontends. This enables

domain - driven design on the frontend.

Incremental Upgrades and Tech Stack Migration

Microfrontends allow legacy systems to coexist with modern

frameworks. Module federation can load both legacy and new

components during a gradual migration from, say, AngularJS

to React.

Need for Independent Deployment and CI/CD Pipelines

When different parts of the application need to be deployed

independently—perhaps due to regulatory compliance or

development velocity—microfrontends with module

federation provide a practical solution.

4. Advantages of Microfrontends with Module

Federation

Advantage Explanation

Scalability
Teams can independently scale and manage

separate parts of the application.

Autonomous

Deployment

Features can be released independently without

full application redeployment.

Technology

Diversity

Teams can use different frameworks (e. g., React

for one feature, Angular for another).

Code Sharing
Module Federation allows shared libraries to be

reused at runtime, reducing duplication.

Incremental

Migration

Legacy systems can be modernized piecemeal

without big - bang rewrites.

5. Disadvantages of Microfrontends with

Module Federation

Paper ID: SR25621033541 DOI: https://dx.doi.org/10.21275/SR25621033541 1499

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Disadvantage Explanation

Increased

Complexity

Requires careful orchestration of routing, state,

and shared dependencies.

Higher Bundle

Size

Initial loads may be larger due to remote entry

files and duplicate dependencies.

Runtime

Errors

Runtime integration is less deterministic than

compile - time, increasing the chance of failure.

Testing

Challenges

End - to - end and integration tests become more

difficult across distributed parts.

Steep

Learning

Curve

Teams need to understand Webpack internals,

module federation, and new deployment

strategies.

6. Overengineering with Microfrontends:

When Not to Use Them

Microfrontends may introduce more problems than they solve

if misapplied. The following scenarios often signal

overengineering:

Small to Medium - Scale Applications

Applications maintained by a single team or a small group do

not benefit from the distributed nature of microfrontends. The

added complexity outweighs any gains in independence or

scalability.

Lack of Organizational Readiness

Without mature DevOps practices, decentralized ownership,

and CI/CD infrastructure, the benefits of microfrontends are

hard to realize and may lead to fragmented and unstable

systems.

Homogeneous Technology Stack

If the entire application is built using a single frontend

framework and doesn’t require isolation or migration, then a

monolithic SPA architecture is simpler and more performant.

Synchronization Overhead Exceeds Benefit

If frequent coordination between microfrontend teams is

required, the intended decoupling benefits are lost, leading to

duplication, inconsistent UX, and brittle integrations.

7. Recommendations and Best Practices

• Use in Domain - Driven Applications: Align

microfrontend boundaries with business domains.

• Adopt Shared Design Systems: Use common component

libraries to enforce consistent UI/UX.

• Limit the Number of Microfrontends: Avoid breaking

the application into too many granular fragments.

• Centralize Configuration: Use orchestration layers or

container apps to manage routing and integration.

• Optimize for Performance: Lazy - load microfrontends

and minimize shared dependency duplication.

8. Conclusion

Microfrontends with module federation represent a powerful

architecture for large - scale, distributed frontend

development. When used judiciously, they enable

independent deployment, technological heterogeneity, and

scalable development processes. However, they are not a one

- size - fits - all solution. In smaller applications or under

immature organizational structures, they may result in

avoidable complexity and maintenance overhead. A careful

analysis of team structure, application scale, and long - term

goals is essential before adopting microfrontends with

module federation.

References

[1] Zack Jackson et al., “Module Federation, ” Webpack

Documentation, 2021.

[2] Cam Jackson, “Micro - Frontends, ” MartinFowler. com,

2019.

[3] Luca Mezzalira, Building Micro - Frontends, O’Reilly

Media, 2021.

[4] ThoughtWorks Technology Radar, “Micro Frontends, ”

2020.

[5] Garlan, D. and Shaw, M., “An Introduction to Software

Architecture, ” CMU Software Engineering Institute,

1994.

Paper ID: SR25621033541 DOI: https://dx.doi.org/10.21275/SR25621033541 1500

http://www.ijsr.net/

