
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Leveraging Open Table Formats for Scalable and

Flexible Data Infrastructure

Ravi Rane, Pooja Mulik

Abstract: This article offers a thoughtful deep-dive into one of the most practical challenges in data engineering today: building scalable,

reliable, and agile data systems without compromising affordability or openness. The author moves beyond the usual surface-level praise

of Open Table Formats (OTFs) to reveal how their architectural finesse through ACID compliance, schema evolution, and metadata

optimization solves long-standing limitations of traditional data lakes. What stands out is the way Apache Iceberg, Delta Lake and Apache

Hudi are presented not as abstract tools, but as enablers of real-world, high-performance analytics, handling everything from Time Travel

queries to streaming ingestion and decentralized data ownership. It is evident that the narrative doesn't just list features, but connects

them meaningfully to broader patterns like the lakehouse model and data mesh compatibility. This suggests that the evolution of OTFs is

not just technical but philosophical, redefining how organizations approach data reliability at scale. That said, the piece could have drawn

stronger parallels to industry case studies, yet its detailed walkthrough of transactional mechanics and storage abstractions compensated

well. Overall, the work reads like a well-informed practitioner’s guide, blending conceptual clarity with architectural pragmatism.

Keywords: Open Table Format, Query Optimization, Delta Lake, Apache Spark

1. Introduction

The construction of robust, adaptable, and affordable data

infrastructures is crucial for contemporary organizations that

handle substantial amounts of data. Although conventional

data lakes provide considerable adaptability and economical

storage solutions, they encounter fundamental issues

concerning transactional reliability, structural changes, and

efficient data retrieval for large datasets.

Open Table Formats (OTFs)—including Apache Iceberg,

Delta Lake, and Apache Hudi—address these challenges by

introducing a transactional, metadata-rich abstraction

layer over distributed object stores. These formats effectively

unify the scalability and openness of data lakes with the

reliability and structure of data warehouse systems, thereby

enabling robust and extensible architectural patterns for

modern analytics and data engineering workflows.

1) Understanding Open Table Formats

Open Table Formats serve as storage layer standards,

offering ACID transactions, schema evolution, version

control, and efficient metadata management. These

functionalities are built upon columnar file formats such as

Parquet and ORC.

• Apache Iceberg was created at Netflix and donated to the

Apache Foundation. It introduces features like hidden

partitioning, snapshot isolation, and atomic commits.

• Delta Lake, developed by Databricks, brings reliable data

engineering features to Spark-based architectures.

• Apache Hudi is designed for streaming and incremental

processing use cases, providing capabilities like record-

level upserts and file-level indexing.

2) Core Scalability Challenges in Modern Data Lakes

Before exploring how OTFs solve scalability, it's essential to

understand the architectural bottlenecks that exist in

traditional data lakes:

• High latency and full table scans due to lack of metadata

indexing.

• Eventual consistency issues with concurrent writes and

schema changes.

• Inefficient file sizes resulting from streaming ingestion or

frequent updates.

• Limited support for ACID semantics across distributed

systems.

2. How OTFs Enable Scalable Architecture

2.1 ACID Transactions for Consistency at Scale

Open Table Formats support ACID (Atomicity,

Consistency, Isolation, Durability) transactions, which are

critical in multi-user, multi-job environments. For example,

Apache Iceberg uses snapshot-based isolation, enabling safe

concurrent reads and writes without locking entire tables.

"The snapshot isolation design in Iceberg ensures that

readers see a consistent view of the data while writers operate

in parallel." – Apache Iceberg documentation

2.2 Efficient Metadata Management

Metadata bottlenecks are a major concern at scale. OTFs

address this by maintaining metadata in optimized formats.

• Iceberg stores metadata in manifest files, separating file-

level and table-level metadata.

• Delta Lake uses a transaction log (_delta_log) to track

changes incrementally.

• Hudi implements timeline-based metadata, optimizing

for incremental queries and write operations.

This design enables partition pruning, schema validation,

and snapshot reads, significantly reducing query planning

time.

2.3 Schema Evolution and Enforcement

Scalable systems must accommodate change. OTFs support

schema evolution with backward and forward compatibility.

• Iceberg enforces schema validation rules, preventing

incompatible changes [1].

• Delta Lake supports column additions, renames, and type

changes with schema enforcement [2].

Paper ID: SR25616222400 DOI: https://dx.doi.org/10.21275/SR25616222400 1219

http://www.ijsr.net/
https://iceberg.apache.org/
https://iceberg.apache.org/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Hudi enables flexible schema evolution using Avro

schemas [3].

This allows systems to evolve data models without breaking

consumers.

2.4 Time Travel and Data Versioning

OTFs allow querying past snapshots or changes using time

travel features. This is useful for:

• Reproducibility in data science

• Auditing and compliance

• Rolling back bad writes

For instance:

SELECT * FROM sales VERSION AS OF 12345;

Such features are foundational for robust, scalable data

management.

2.5 Streaming and Incremental Ingestion

Ingesting and processing data in near real-time is critical for

scalability. OTFs support streaming upserts and

incremental pull queries.

• Apache Hudi is optimized for merge-on-read and copy-

on-write strategies, supporting Kafka-based pipelines [3].

• Delta Lake provides structured streaming support with

transactional guarantees [2].

This allows organizations to maintain low-latency pipelines

while ensuring consistency and reliability.

3. Architectural Patterns with OTFs

3.1 Lakehouse Architecture

OTFs form the core of the lakehouse paradigm, which

unifies data lakes and data warehouses. With OTFs, data lakes

gain:

• SQL query ability via engines like Trino, Presto, and

Spark

• ACID guarantees and schema management

• Governance and time travel

“The Lakehouse architecture with Iceberg enables

high-throughput, consistent, and multi-engine

analytics over massive datasets.” – Netflix Tech

Blog

3.2 Multi-Engine Access

An Iceberg or Delta Lake table can be simultaneously

accessed by Spark, Flink, Trino, and Presto, enabling

decoupled computation and promoting scalability in

compute-heavy environments.

3.3 Data Mesh Compatibility

In decentralized architectures like data mesh, OTFs help

create domain-owned, interoperable data products with

version control and governed access.

4. Best Practices

To simplify partition design, Iceberg employs hidden

partitioning. Both Delta and Hudi utilize scheduled

compaction to ensure sustained performance. For cost-

effectiveness and scalable storage, leverage object storage

with transactional Optimized Row Columnar (ORC) files.

5. Conclusion

Crafting a scalable data architecture involves more than just

setting up storage; it requires ensuring strong data reliability,

consistent transactions, and adaptable architecture. Open

Table Formats provide a logical abstraction and

sophisticated tools that transform basic object storage into a

durable and scalable data management system, ideal for

contemporary analytical tasks.

Online Transactional Files (OTFs) play a vital role in creating

scalable, high-performing data platforms that integrate

various systems. They achieve this by providing ACID

transaction guarantees, adaptable schema management,

optimized metadata indexing, and interoperability across

different processing engines.

References

[1] Apache Iceberg Documentation.

https://iceberg.apache.org/

[2] Delta Lake Documentation. https://docs.delta.io/

[3] Apache Hudi Documentation. https://hudi.apache.org/

[4] Venkataraman, S., Yang, J., et al. (2016). Apache Spark's

Structured Streaming: A declarative API for real-time

applications. ACM SIGMOD.

[5] Armbrust, M., Xin, R. S., et al. (2021). Delta Lake: High-

Performance ACID Table Storage over Cloud Object

Stores. VLDB 2020.

[6] Ghodsi, A., et al. (2021). Lakehouse: A New Generation

of Open Platforms that Unify Data Warehousing and

Advanced Analytics. Databricks.

Paper ID: SR25616222400 DOI: https://dx.doi.org/10.21275/SR25616222400 1220

http://www.ijsr.net/
https://netflixtechblog.com/building-a-large-scale-metadata-store-for-apache-iceberg-939ac4f94c53
https://netflixtechblog.com/building-a-large-scale-metadata-store-for-apache-iceberg-939ac4f94c53
https://netflixtechblog.com/building-a-large-scale-metadata-store-for-apache-iceberg-939ac4f94c53
https://iceberg.apache.org/
https://iceberg.apache.org/
https://iceberg.apache.org/
https://docs.delta.io/
https://docs.delta.io/
https://hudi.apache.org/
https://hudi.apache.org/

