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Abstract: In this paper, we introduce the inverse sum indeg downhill index and the inverse sum indeg downhill polynomial of a graph. 

Furthermore, we compute the inverse sum indeg downhill index and its polynomial for some standard graphs, wheel graphs, gear 

graphs helm graphs and honeycomb networks.  

 

Keywords: inverse sum indeg downhill index, inverse sum indeg downhill polynomial, graph 

 

1. Introduction 
 

The simple graphs which are finite, undirected, connected 

graphs without loops and multiple edges are considered. Let 

G be such a graph with vertex set V(G) and edge set E(G). 

The degree dG(u) of a vertex u is the number of vertices ad-

jacent to u.  

 

In [1], Vukičević et al. observed that many graph indices are 

defined simply as the sum of individual bound contributions. 

They have proposed a class of discrete Adriatic indices to 

study whether there other possibly significant graph indices 

of this form. One of these discrete Adriatic indices is the 

inverse sum indeg index, and this index is defined as 
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Some inverse sum indices were studied in [2, 3]. 

 

Motivated by the inverse sum indeg index, the inverse sum 

indeg downhill index of a graph G is defined as 
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In view of the inverse sum indeg downhill index, the inverse 

sum indeg downhill polynomial of a graph G is defined as
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Recently, some downhill indices were studied such as the 

downhill Sombor index [4], harmonic downhill index [5]. 

 

In this paper, the inverse sum indeg downhill index and its 

polynomial for some graphs and honeycomb networks are 

determined. 

 

2. Results for Some Standard Graphs 
 

Proposition 1.  Let G   be r-regular with n vertices and r≥ 2. 

Then      
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Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then ( ) 1dnd v n= −  for every v in G.  

From definition, 
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Corollary 1.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      
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Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      
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Proposition 2.  Let   Pn be a path with n≥ 3 vertices. Then      
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Proof: Let Pn be a path with n≥ 3 vertices. Clearly, Pn has 

two types of edges based on the downhill degree of end 

vertices of each edge as follows: 

 

E1 = {uv E(Pn)| ddn(u)=0, ddn(v) = n – 1}, |E1| = 2. 

E2 = {uv E(Pn)| ddn(u)= ddn(v) = n – 1 }, |E2| = n – 3. 

Then        
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Proposition 3.   Let Km,n   be a complete bipartite graph with  

m< n. Then  ( ), 0.m nISIDW K =  
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Proof.  Let Km,n   be a complete bipartite graph with m< n. 

There are m+n vertices and mn edges. Clearly, Km,n   has one 

type of edges based on the downhill degree of end vertices 

of each edge as follows: 

 

E1 = {uv E(Km,n  )| ddn(u)=0, ddn(v) = n},  |E1| = mn. 

Then  
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3. Results for Wheel Graphs 
 

Let Wn be a wheel with n+1vertices and 2n edges, n4. Then 

there are two types of edges based on the downhill degree of 

end vertices of each edge as follows: 

E1 = {uv  E(Wn) | ddn(u) = n, ddn(v) = n – 1},  | E1 | = n. 

E2 = {uv  E(Wn) | ddn(u) =  ddn(v) = n – 1},  | E2 | = n. 

 

Theorem 1:   Let Wn be a wheel with n+1vertices and 2n 

edges, n4.  Then     
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Proof: From definition, 
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Theorem 2:   Let Wn be a wheel with n+1vertices and 2n 

edges, n4.  Then     
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Proof: From definition, 
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4. Results for Gear Graphs 
 

A bipartite wheel graph is a graph obtained from Wn with 

n+1 vertices adding a vertex between each pair of adjacent 

rim vertices and this graph is denoted by Gn and also called 

as a gear graph. Clearly, |V(Gn)| = 2n+1 and |E(Gn)| = 3n. A 

gear graph Gn is depicted in Figure 1. 

 

 
Figure 1 

              

 Let Gn be a gear graph with 2n+1vertices, 3n edges, n4. 

Then Gn has two types of edges based on the downhill 

degree of the vertices of each edge as follows: 

 

E1 = {u  E(Gn) | ddn(u) =2n, ddn(v) = 2},  | E1 | = n. 

E2 = {u  E(Gn) | ddn(u) = 2, , ddn(v) = 0}, | E2 | = 2n. 

 

Theorem 3. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then the inverse sum indeg downhill index of 

Gn is  
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Proof: From definition, 
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Theorem 4. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then the inverse sum indeg downhill 

polynomial of Gn is  
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Proof: From definition, 
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5. Results for Helm Graphs 
 

The helm graph Hn is a graph obtained from Wn (with n+1 

vertices) by attaching an end edge to each rim vertex of Wn. 

Clearly, |V(Hn)| = 2n+1 and |E(Hn)| = 3n. A graph Hn is 

shown in Figure 2. 
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Figure 2 

 

Let Hn be a helm graph with 3n edges, n5. Then Hn has 

three types of edges based on the downhill degree of the 

vertices of each edge as follows: 

E1 = {uv  E(Hn) | ddn(u) = 2n, ddn(v) = 2n – 1}, | E1 | = n. 

E2 = {uv  E(Hn) | ddn(u) = ddn(v) =2n – 1}, | E2 | = n. 

E3 = {uv  E(Hn) | ddn(u) =2n – 1, ddn(v) = 0}, | E3 | = n. 

 

Theorem 5. Let Hn be a helm graph with 2n+1 vertices, n5. 

Then the inverse sum indeg downhill index of Hn is  
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Proof: From definition, 
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Theorem 6. Let Hn be a helm graph with 2n+1vertices, 3n 

edges, n5. Then the inverse sum indeg downhill 

polynomial of Hn is  
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Proof: From definition, 
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6. Results for Honeycomb Networks 
 

Honeycomb networks are very useful in computer graphics 

and also in chemistry. A honeycomb network of dimension n 

is denoted by HCn where n is the number of hexagons 

between central and boundary hexagon. 

 
    Figure 3: A 4-dimensional honeycomb network  

 

Let H be the graph of honeycomb network HCn where n ≥ 

3.  By calculation, we obtain that H has 6n2 vertices and 9n2 

– 3n edges. Then there are four types of edges based on the 

downhill degree of end vertices of each edge as follows: 

E1 = {uv  E(H) | ddn(u) = 1, ddn(v) = 1},           | E1 | = 6.   

E2 = {uv  E(H) | ddn(u) = 1, ddn(v) = 6 n2– 1},  | E2 | = 12. 

E3 = {uv  E(H) | ddn(u) = 0, ddn(v) = 6 n2– 1},  | E2 | = 12(n 

–2). 

E4 = {uv  E(H) | ddn(u)= ddn(v) = 6 n2– 1},    | E4 | = 9n2 – 

15n+6.    

 

Theorem 7:   Let H be a honeycomb network with 6 n2 

vertices, n4.  Then     
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Proof: From definition, 
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Theorem 8: Let H be a honeycomb network with 6n2 vertices, n4. Then    

( ) ( ) ( )
2

2

11 1
1 3

0 262 2, 6 12 12 2 9 15 6 .
n

nISIDW H x x x n x n n x
− −

= + + − + − +  

 

Proof: From definition, 
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7. Conclusion 
 

In this paper, the inverse sum indeg downhill index and its 

corresponding polynomial of some standard graphs, wheel 

graphs, gear graphs, helm graphs and honeycomb networks 

are determined.
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