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Abstract: Large language models (LLMs) have revolutionized natural language processing (NLP), yet full fine-tuning remains 

computationally expensive. Parameter-efficient fine-tuning (PEFT) techniques offer a solution by modifying only a small number of 

parameters. This paper provides a comparative analysis of key PEFT strategies, including Adapters, Low-Rank Adaptation (LoRA), 

Prompt Tuning, and Prefix Tuning, discussing their best practices, trade-offs, and empirical evaluations. We present a real-world 

implementation demonstrating the efficacy of these methods on a text classification task.  
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1. Introduction 
 

Large language models (LLMs), such as GPT-4, LLaMA, 

GPT-NeoX, GPT-4.5 Orion, Claude 3.7 Sonnet, Grok-3, and 

Google’s Gemini series, have significantly advanced artificial 

intelligence applications, improving capabilities in text 

generation, language translation, and question answering. 

Despite these advancements, adapting these increasingly 

largescale models to specific downstream tasks through 

traditional fine-tuning methods presents considerable 

challenges. Traditional fine-tuning typically involves 

retraining or updating all parameters within the pre-trained 

model, leading to substantial computational demands and 

extensive memory requirements, often exceeding readily 

available hardware capabilities.  

 

As LLMs continue to scale, concerns regarding their carbon 

footprint and sustainability have also gained attention. 

Researchers are exploring alternative fine-tuning methods 

that balance accuracy with environmental efficiency. 

Additionally, the rising cost of training and maintaining these 

models has pushed enterprises to seek cost-effective 

solutions. PEFT methods present a viable way forward, 

offering substantial improvements in computational 

efficiency without sacrificing model adaptability.  

 

Parameter-efficient fine-tuning (PEFT) offers a solution by 

selectively modifying a subset of model parameters, reducing 

computational resources while preserving pre-trained 

knowledge. This paper provides a comparative analysis of 

prominent PEFT techniques: Adapters, Low-Rank Adaptation 

(LoRA), Prompt Tuning, and Prefix Tuning, discussing their 

best practices, trade-offs, and empirical evaluations. We 

present a real-world implementation demonstrating the 

efficacy of these methods on a text classification task.  

 

The contributions of this paper include a structured 

comparative analysis of key PEFT strategies, an evaluation of 

tradeoffs, and practical insights from a real-world 

implementation.  

 

2. PEFT Techniques 
 

a) Adapters 

Adapters are small, trainable neural networks inserted 

between the layers of a pre-trained model [1]. The original 

model parameters remain frozen, and only the adapter layers 

are updated. This modular approach facilitates multi-task 

learning and domain adaptation, allowing for easy integration 

of multiple tasks by swapping adapters. Research has shown 

that adapters can achieve performance comparable to full 

fine-tuning with significantly fewer trainable parameters [2].  

 

Architecture:  

 
Figure 1: Diagram of the Adapter Module. Adapted From 

[2] 

 

In this illustration, two adapter modules are added to each 

Transformer layer:  

• One after the multi-headed attention block 

• Another after the feed-forward block 

Each adapter module is designed as a bottleneck: it reduces 

the dimension of the hidden state (down-projection), applies 

a nonlinear transformation, and then restores it to the original 

dimension (up-projection), with a skip connection to stabilize 

training. Only these adapter modules (and a few related 

parameters, like layer normalization) are trainable during 

fine-tuning, while most of the Transformer parameters remain 

frozen [2].  
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By training just these smaller adapter modules, we 

significantly decrease the total number of trainable 

parameters, making the fine-tuning process more efficient 

than traditional full fine-tuning.  

 

Benefits of Adapters:  

• Parameter Efficiency: Adapters drastically reduce the 

number of trainable parameters, allowing multiple tasks to 

share the same backbone with minimal overhead.  

• Modular Design: Different adapters can be swapped in and 

out for different tasks, facilitating multi-task learning and 

continuous integration of new tasks.  

• Stable Training: The bottleneck architecture helps 

maintain stability and preserve core model knowledge.  

• Use cases of Adapters:  

• Multi-Task Learning: Where one wants to maintain a 

single base model and switch adapter modules for each 

task.  

• Domain Adaptation: Easy to add domain-specific adapters 

without re-training the entire model.  

• Resource-Constrained Environments: Ideal where 

memory and compute are limited.  

 

Best Practices: Use Adapter Fusion for multi-task learning to 

combine knowledge from different adapters.  

 

Trade-offs: Requires additional model parameters, increasing 

the overall model size.  

 

b) Low-Rank Adaptation (LoRA)  

LoRA (Low-Rank Adaptation) is a parameter-efficient 

technique introduced by Hu et al. [4] that factorizes weight 

updates into smaller matrices, drastically reducing trainable 

parameters during fine-tuning. Unlike full fine-tuning-which 

retrains all parameters—LoRA freezes the original pre-

trained weights and injects trainable low-rank matrices 

alongside them, making fine-tuning far more memory-and 

compute-friendly.  

 

The core idea of LoRA is represented in Fig.2, which 

illustrates how the technique decomposes weight updates. For 

a pre-trained weight matrix W ∈ Rd×d, LoRA constrains its 

update by representing the change ∆W as a product of two 

low-rank matrices: ∆W = BA, where B ∈ Rd×r, A ∈ Rr×d, and 

the rank r ≪ min (d, k). During the forward pass, both the 

frozen pre-trained weights W and the low-rank adaptation ∆W 

= BA are applied to the same input x, with their outputs being 

summed:  

 

 h = Wx + ∆Wx = Wx + BAx               (1)  

 

This approach allows the model to learn task-specific 

adaptations while keeping the original parameters frozen. 

Studies have shown that LoRA can achieve results 

comparable to full fine-tuning while updating only a fraction 

of the parameters [3], with GPT-3 experiments demonstrating 

up to a 10, 000× reduction in trainable parameters.  

 
Figure 2: LoRA Reparameterization (Adapted From [4]): 

The figure shows how LoRA keeps the pre-trained weights 

W frozen while adding trainable low-rank matrices A and B. 

The output h is computed as the sum of the original pathway 

and the low-rank adaptation pathway. 

 

Key Implementation Steps:  

• Freeze the original model weights W 

• Initialize A with random Gaussian weights and B with 

zeros, so ∆W = BA is zero at the beginning of training 

• Choose an appropriate rank r (typically 4–32) that 

determines the inner dimension of matrices A and B 

• Scale ∆W by α/r where α is a constant, helping to stabilize 

training across different rank values 

• Apply LoRA selectively to specific weight matrices (often 

query and value matrices in attention blocks)  

• Fine-tune only A and B, capturing the task-specific 

adaptations in a low-dimensional subspace 

• After training, the low-rank update can be merged with the 

original weights (W +BA) for inference, introducing no 

additional latency 

 

The rank r is a critical hyperparameter that balances 

parameter efficiency and model expressiveness. Lower ranks 

offer greater efficiency but potentially less expressivity, while 

higher ranks can capture more complex adaptations but 

require more parameters. Empirical studies suggest that 

surprisingly low ranks (even r = 1 or r = 2) can be sufficient 

for many downstream tasks, indicating that the weight 

updates during adaptation have an inherently low “intrinsic 

rank.” 

 

Benefits of LoRA:  

• Efficiency: LoRA limits updates to small, low-rank 

matrices, substantially reducing trainable parameters and 

optimizer states.  

• No Extra Latency: Once merged, the final weights look 

like any fully fine-tuned model.  

• Flexible: Can be applied to different parts of the 

Transformer depending on parameter budget and 

performance needs.  

• Scalable: Applicable across various model scales with 

consistent memory savings.  

• Use Cases for LoRA:  

• Transformer Attention Focus: When fine-tuning attention 

blocks suffices for high performance (e. g., classification, 

QA).  

• Large Language Models: Where full fine-tuning is costly 

or infeasible.  

• Resource-Constrained GPUs: Minimizes memory usage 

during training, suitable for smaller GPU setups.  
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Best Practices and Trade-offs: Optimize the rank r and scaling 

factor α to balance performance and resource usage. Target 

specific transformer components based on the task. 

Performance depends heavily on rank selection; an overly 

small rank can degrade accuracy, while a large rank reduces 

efficiency gains.  

 

c) Prompt Tuning 

Prompt Tuning is a parameter-efficient approach proposed by 

Lester et al. [5] that learns soft prompts—trainable 

embedding vectors—while keeping the large language 

model’s main parameters frozen. Unlike traditional 

prompting (where discrete tokens are manually crafted), 

Prompt Tuning leverages backpropagation to update these 

soft prompt embeddings directly, conditioning the model on 

downstream tasks. This is particularly advantageous because 

it allows the model to retain its general language 

understanding, focusing adaptation on a small set of learned 

prompt parameters.  

 

Simply put, instead of fine-tuning the entire model, you only 

learn a set of additional (or “virtual”) tokens—a prompt—that 

is prepended (or appended) to the actual input. During 

training, only these prompt embeddings are adjusted, while 

the original model weights remain frozen. This approach can 

be particularly useful when you want to reduce compute, 

avoid overfitting on small datasets, or quickly adapt a large 

model to a new task.  

 

Architecture:  

 
Figure 3: Prompt Tuning (Adapted From [5]) 

 

With Model Tuning, each new task duplicates the large pre-

trained model’s parameters, leading to huge storage and 

memory demands. By contrast, Prompt Tuning retains a 

single frozen backbone and learns only a small prompt 

embedding (20K parameters), reducing the trainable 

parameter count by several orders of magnitude. This also 

supports mixed-task inference, where multiple prompts can 

be batched together on a single forward pass.  

 

Key Insights from Lester et al. [5]:  

• Scalability: As model size increases (e. g., T5-XXL), 

Prompt Tuning’s performance can approach full 

finetuning.  

• Minimal Memory Footprint: Only a small prompt 

embedding is updated, lowering compute/storage costs for 

each downstream task.  

• Domain Transfer & Robustness: Freezing the main model 

can reduce overfitting, improving zero-shot transfer to 

out-of-domain data.  

• Prompt Ensembling: Multiple prompts can be combined 

in a single forward pass for further performance gains, 

without storing multiple large models.  

 

Benefits of Prompt Tuning 

• Minimal Memory Footprint: Only the prompt embeddings 

are trained, leaving the core model untouched.  

• Adaptation: Quick to fine-tune and easy to swap prompts 

for different tasks or domains.  

• Avoids Overfitting: Freezing the backbone helps preserve 

general language understanding, improving domain 

transfer.  

• Scalable to Large Models: Performance gap to full 

finetuning narrows as model size grows.  

• Use Cases for Prompt Tuning 

• Rapid Prototyping: Quickly adapt a large LLM (e. g., 

GPT-3, T5-XXL) to new tasks.  

• Low-Resource Settings: Effective when labeled data are 

limited, avoiding the overhead of full fine-tuning.  

• Efficient Multi-Task Serving: Batching different prompts 

reduces latency.  

 

Best Practices:  

• Experiment with prompt initialization strategies (random, 

vocabulary-based, class-label-based).  

• Use longer prompts in smaller models; short prompts can 

suffice in larger LLMs.  

• LM-adaptive pre-training for encoder-decoder models 

(like T5) helps them better handle natural text prompts.  

• Evaluate prompt ensembling for potential performance 

boosts.  

 

Trade-offs:  

• May struggle with complex tasks or large domain gaps if 

only the prompt is trainable.  

• Performance is sensitive to prompt length and 

initialization; hyperparameter tuning may be required.  

• Small models can have a bigger gap from fully fine-tuned 

performance; larger LLMs see greater relative benefit 

from prompt tuning.  

 

d) Prefix Tuning 

Prefix Tuning is a parameter-efficient technique introduced 

by Li and Liang [6] that adds a sequence of trainable, task-

specific vectors (prefixes) to the hidden states of each 

Transformer layer, rather than just prepending tokens at the 

input embedding level. Unlike Prompt Tuning—which 

primarily modifies the initial input embeddings—Prefix 

Tuning influences multiple layers of the model, potentially 

leading to richer adaptations for complex tasks.  

 

How Prefix Tuning Works 

• Continuous Prefixes: Like Prompt Tuning, Prefix Tuning 

adds virtual tokens, but instead of appending them only at 

the input layer, these prefixes are applied across the hidden 

states in all Transformer blocks [7]. The large majority of 

the model’s parameters remain frozen, with only these 

prefix vectors being updated during training.  

• Layer-wise Modifications: At each layer, the Transformer 

can attend to these trainable prefixes, allowing for more 

expressive control. This yields an approach that is more 

flexible than Prompt Tuning, which primarily operates at 

the input embedding level.  
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• Sparse Updates: By freezing most of the model’s weights 

and only tuning the prefix vectors, Prefix Tuning reduces 

computational overhead and avoids the need to maintain 

multiple fine-tuned copies of a large model.  

 

Architecture:  

 
Figure 4: Prefix Tuning (Adapted from Li and Liang [6]) 

 

• Prefix vectors are inserted as learnable parameters at each 

Transformer layer.  

• The main model parameters remain frozen.  

• Only the prefix vectors are optimized to align the model 

with downstream tasks.  

 

Benefits of Prefix Tuning:  

• More Expressive than Prompt Tuning: Because it modifies 

activations across multiple Transformer layers, Prefix 

Tuning can capture more complex adaptations, potentially 

leading to better performance on tasks that demand deeper 

model adjustments.  

• Combines Well with LoRA: The prefix approach can be 

used alongside LoRA, leveraging low-rank updates in 

attention while simultaneously controlling intermediate 

representations.  

• Efficient Parameter Usage: Retains the majority of the pre-

trained model’s knowledge while updating only a small 

fraction of parameters.  

• Strong for NLG Tasks: By influencing hidden states, 

Prefix Tuning is especially useful in natural language 

generation scenarios where controlling generation at 

multiple stages is advantageous.  

 

Use Cases:  

• Natural Language Generation: Tasks like summarization, 

story generation, or table-to-text often benefit from the 

richer control that Prefix Tuning provides.  

• Resource-Constrained Scenarios: Similar to Prompt 

Tuning, Prefix Tuning can achieve strong performance 

with fewer trainable parameters than full fine-tuning.  

• Complex Adaptations: Where small shifts in embedding-

level prompts are insufficient, layer-wise prefix 

modifications offer more fine-grained control.  

 

Best Practices:  

• Optimize Prefix Length: Longer prefixes can offer more 

expressive capacity but risk overfitting or slowing 

training.  

• Careful Initialization: Initializing prefix vectors to 

meaningful embeddings or random values can affect 

stability.  

• Empirically, using domain-relevant tokens often speeds 

convergence.  

• Combine with LoRA: For tasks requiring minimal 

memory usage, applying LoRA to specific attention 

weights while employing Prefix Tuning for layer control 

can deliver strong results.  

 

Trade-offs:  

• Reduced Sequence Length: Because the prefix tokens 

occupy space in the model’s hidden states, the effective 

sequence length for original tokens can be lower.  

• Potential Overhead in Multi-Layer Insertion: Maintaining 

prefixes at every layer can be slightly more complex 

compared to input-level prompt tuning.  

• Hyperparameter Sensitivity: Finding the right prefix 

length and initialization strategy may require tuning, 

especially for more specialized domains.  

 

3. GAPS in Existing Research 
 

Although parameter-efficient fine-tuning (PEFT) has led to 

remarkable progress in adapting large language models 

(LLMs) with fewer resources, several challenges and open 

questions remain:  

 

1) Inconsistent Reporting of Parameter Counts and 

Efficiency:  

A recurring issue in PEFT studies is the inconsistency in 

reporting parameter counts. Some methods report only 

trainable parameters, whereas others cite changed parameters 

or low-rank dimensions. This inconsistency makes it difficult 

to compare methods fairly. Moreover, the relationship 

between the number of parameters and actual resource usage 

(e. g., GPU memory) is often non-linear. For instance, a 

method that introduces many new parameters in a 

reparameterization may still have low memory usage, 

whereas a sparse, selective method could introduce minimal 

changed parameters but require large gradients or masks for 

full model layers.  

 

Recommended Direction: Researchers should explicitly 

report both trainable and changed parameters and detail 

memory usage, training time, and inference overhead, 

adhering to a standardized approach. Consistent metrics and 

clear definitions would help practitioners make better-

informed decisions.  

 

2) Lack of Standardized Metrics Beyond Accuracy:  

While downstream performance is crucial, PEFT methods 

need to be evaluated along multiple axes, including training 

speed, peak memory usage, inference latency, and storage 

overhead for adapter modules or soft prompts. Many recent 

papers focus almost exclusively on accuracy (e. g., GLUE, 

SuperGLUE) but do not provide details about GPU memory 

consumption, training throughput, or inference speed, which 

can vary significantly across different parameter-efficient 

approaches.  

 

Recommended Direction: A common benchmark that 

includes efficiency metrics—such as training time in 

tokens/second, inference speed, maximum VRAM usage, and 

final model storage size—would provide a more holistic view 

of method trade-offs.  

3) Hyperparameter Sensitivity and Limited Tuning 

Protocols:  
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Several PEFT methods (e. g., Prefix Tuning, Prompt Tuning, 

hybrid approaches) often exhibit high sensitivity to 

hyperparameters like the prompt length, learning rate, and 

initialization scheme. Many impressive results rely on heavily 

tuned settings, which might not transfer well to real-world 

constraints (limited compute budgets, new domains). This 

gap is exacerbated in large-scale LLM fine-tuning, where 

hyperparameter sweeps can be cost-prohibitive.  

 

Recommended Direction: Systematic investigations on 

hyperparameter robustness could yield heuristics or meta-

tuning strategies for practitioners. Auto-tuning or adaptively 

choosing hyperparameters based on limited pilot runs (similar 

to Hyperband or Bayesian optimization) might also mitigate 

sensitivity concerns.  

 

4) Model Scale and Generalization to Billion-Parameter+ 

Regimes:  

Despite being labeled “large, ” many PEFT experiments are 

performed on moderate-size Transformer backbones (e. g., 

BERT-base, T5-base). Yet, these methods often behave 

differently once the model surpasses the billion-parameter 

scale. For instance, some methods become more parameter-

efficient as model size grows, while others run into memory 

bottlenecks or instability. This discrepancy indicates a need 

for studying PEFT at truly large scales (e. g., 20B, 175B) to 

capture real-world usage patterns.  

 

Recommended Direction: Evaluate new PEFT methods on 

diverse model sizes (e. g., smaller than 1B, 3B–20B, larger 

than 20B) and analyze scalability and robustness. Results at 

smaller scales should be clearly distinguished from those at 

billion-parameter scales.  

 

5) Comparison Across Hybrid or Combined Methods:  

Although hybrid PEFT approaches (e. g., combining LoRA 

with Adapters or Prompt Tuning) can leverage 

complementary strengths, there is limited empirical 

exploration of which combinations work best under different 

constraints. Some studies do propose multicomponent 

solutions (e. g., MAM Adapters, UniPELT), but they can be 

memory-intensive or hyperparameter-heavy to the point that 

real-world adoption is hindered.  

 

Recommended Direction: More thorough head-to-head 

comparisons and ablation studies of multi-component PEFT 

recipes. Clarifying how each sub-component influences 

memory and compute overhead could guide modular 

adoption in production scenarios.  

 

6) Reporting Challenges and Reproducibility:  

In some open-source PEFT implementations, users must 

install custom forks of Transformers libraries, with minimal 

documentation on changes to code paths. This complicates 

reproducibility and discourages consistent baselines. As a 

result, many “new” PEFT techniques are not directly 

comparable because they were tested in distinct frameworks 

or rely on non-standard data preprocessing.  

 

Recommended Direction: Encourage shared code repositories 

and well-documented integration into popular libraries (e. g., 

HuggingFace PEFT, AdapterHub). A multitask PEFT 

benchmark suite, accompanied by scripts for standard data 

splits and metric logging, would foster transparency and 

direct comparisons.  

 

7) Broader Ethical and Long-Term Implications:  

Efficiency-focused methods could have unintended 

consequences. For instance, constant freezing of large 

backbones might inhibit necessary updates for bias reduction 

or domain fairness. Similarly, minimal adapters or prompts 

might not rectify harmful stereotypes ingrained in the pre-

trained model. Empirical work on catastrophic forgetting 

often lacks rigorous analysis of potential fairness or safety 

considerations for real-world deployment.  

 

Recommended Direction: Investigate bias, fairness, and 

safety under the lens of PEFT, ensuring that parameter 

efficiency does not come at the cost of ethical compromises. 

Future research should measure and mitigate bias shifts that 

can arise from partial or modular fine-tuning.  

 

In summary, while PEFT methods—such as Adapters, LoRA, 

Prompt/Prefix Tuning, and hybrids—offer promising avenues 

to reduce cost and memory footprints, standardization in 

reporting, robust hyperparameter protocols, and scalable 

evaluations are critical next steps. Addressing these gaps will 

enable a more reliable comparison of techniques and help 

practitioners choose the most suitable approach for their 

domain and resource constraints.  

 

4. Implementation and Demonstration of 

PEFT Methods 
 

A. Experimental Setup 

We implemented and compared four popular parameter-

efficient fine-tuning (PEFT) techniques on a biomedical 

question-answering classification task using the PubMedQA 

dataset. This section details our experimental setup, 

implementation specifics, and execution environment.  

 

Dataset: The PubMedQA dataset’s labeled subset 

(pqa_labeled) contains 1, 000 expert-annotated biomedical 

question-answer pairs. Each sample includes a natural 

language question, a supporting PubMed abstract as context, 

and an expert-labeled answer (yes, no, or maybe). We split 

this dataset into training 80% and validation 20% sets.  

 

Model Architecture: We utilized a pre-trained BERT-base-

uncased model (110M parameters) as our foundation, adding 

a classification head for the 3-class classification task. The 

model was implemented using the Hugging Face 

Transformers library.  

 

Computing Environment: Experiments were executed on a 

cloud instance with the following specifications:  

• GPU: 1× NVIDIA RTX A5000 

• vCPUs: 12 

• System Memory: 25 GB RAM 

• Storage: 20 GB 

• OS: Ubuntu 22.04 with CUDA 11.8.0 

• Framework: PyTorch 2.1.0 

Implementation Framework: We utilized Hugging Face’s 

Transformers (v4.48.0) and PEFT (v0.7.1) libraries for model 

implementation, with the following additional libraries:  

• Accelerate (v0.26.0) for training optimization 
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• Datasets (v2.14.5) for data processing 

• Evaluate (v0.4.1) for metrics calculation 

• Weights & Biases for experiment tracking 

 

Common Training Configuration: For consistent comparison, 

all methods used identical training parameters:  

• Maximum sequence length: 512 tokens (adjusted as 

needed for prompt-based methods)  

• Batch size: 8 

• Learning rate: 5e-5 

• Weight decay: 0.01 

• Training epochs: 3 

• Optimization: AdamW optimizer 

• Mixed precision (FP16): Enabled 

• Random seed: 42 

 

B. PEFT Method Implementations 

 

1) Adapters: Adapters insert small trainable bottleneck layers 

between the existing layers of a pre-trained model. We 

implemented adapters using the Pfeiffer configuration:  

 

adapter_config = ADAPTER_CONFIG_MAP ["pfeiffer"] 

model. add_adapter ("pubmedqa_adapter", 

config=adapter_config)  

model. train_adapter ("pubmedqa_adapter")  

model. set_active_adapters ("pubmedqa_adapter")  

 

The Pfeiffer adapter architecture adds bottleneck layers with 

a reduction factor of 16 after the attention and feedforward 

blocks in each transformer layer. This resulted in 2.1M 

trainable parameters (1.89% of total parameters).  

 

2) Low-Rank Adaptation (LoRA): LoRA applies low-rank 

decomposition to weight matrices in the model, particularly 

in the attention mechanism:  

 

lora_config = LoraConfig ( 

 r=8, # Rank of update matrices 

 lora_alpha=16, # Scaling factor 

 target_modules= ["query", "value"], # 

 Apply to specific matrices 

 lora_dropout=0.1, # Regularization 

 bias="none",  

 task_type=TaskType. SEQ_CLS 

)  

 model = get_peft_model (model,  

 lora_config)  

 

Our implementation used a rank of 8 and targeted the query 

and value matrices in the attention layers, resulting in 0.297M 

trainable parameters (0.27% of total parameters).  

 

3) Prompt Tuning: Prompt Tuning prepends trainable “soft 

prompts” to the input while keeping the model frozen:  

 

 

 

prompt_config = PromptTuningConfig ( 

 task_type=TaskType. SEQ_CLS,  

 num_virtual_tokens=10,  

 tokenizer_name_or_path="bert-base- 

 uncased",  

 prompt_tuning_init="RANDOM" 

model = get_peft_model (model,  

 prompt_config)  

 

We implemented prompt tuning with 10 virtual tokens, 

resulting in just 9, 987 trainable parameters (0.009% of total 

parameters). To accommodate these virtual tokens, we 

reduced the maximum sequence length for actual tokens to 

502.  

 

Note that we increased the training epochs to 10 for Prompt 

Tuning (compared to 3 epochs for other methods) to give this 

lightweight approach more opportunity to learn. Despite the 

additional training time, Prompt Tuning still converged to 

predicting only the majority class, achieving the same 51.5% 

accuracy as LoRA and Prefix Tuning.  

 

4) Prefix Tuning: Prefix Tuning adds trainable vectors to the 

hidden states at each layer of the model:  

 

prefix_config = PrefixTuningConfig ( 

 task_type=TaskType. SEQ_CLS,  

 num_virtual_tokens=20,  

 prefix_projection=True,  

 encoder_hidden_size=768 

)  

model = get_peft_model (model,  

 prefix_config)  

 

Our implementation used 20 virtual tokens with a projection 

layer, resulting in 14.8M trainable parameters (11.9% of total 

parameters). We reduced the maximum sequence length to 

492 to accommodate the prefix tokens.  

 

5. Result and Analysis 
 

A. Performance Comparison 

Table I summarizes the performance metrics, parameter 

efficiency, and training characteristics of the four PEFT 

methods:  

 

Table I: Comparison of PEFT Methods on PUBMEDQA 

Method Accuracy 
F1 

Score 

Trainable 

Param- 

eters 

Parameter 

Efficiency 

Class 

Discriminat 

-ion 

Adapter 

(Pfeiffer) 
79.0% 0.79 2.1M 1.89% Strong 

LoRA 51.5% 0.23 0.297M 0.27% Poor 

Prompt 

Tuning 
51.5% 0.23 9, 987 0.009% None 

Prefix 

Tuning 
51.5% 0.23 14.8M 11.9% None 

 

B. Detailed Analysis 

Performance Across Methods: The adapter approach 

significantly outperformed other PEFT methods, achieving 

79% accuracy with good discrimination between classes. In 

contrast, LoRA, Prompt Tuning, and Prefix Tuning all 

converged to predicting only the majority class (“yes”), 

resulting in identical performance metrics (51.5% accuracy 

and 0.23 F1 score).  
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Classification Behavior: The classification reports revealed 

distinct behavior patterns:  

 

Adapters: Showed balanced precision and recall across all 

classes 

 

 Precision Recall F1-Score Support 

Yes 0.82 0.87 0.84 113 

No 0.77 0.70 0.73 67 

Maybe 0.65 0.65 0.65 20 

 

LoRA, Prompt Tuning, Prefix Tuning: All displayed the same 

pattern of predicting only the majority class 

 

 Precision Recall F1-Score Support 

Yes 0.52 1.00 0.68 103 

No 0.00 0.00 0.00 72 

Maybe 0.00 0.00 0.00 25 

 

Parameter Efficiency: Prompt Tuning achieved the highest 

parameter efficiency, requiring only 0.009% of the model’s 

parameters, while Prefix Tuning unexpectedly had the lowest 

efficiency at 11.9%. LoRA demonstrated excellent efficiency 

at 0.3% while Adapters used a moderate 1.89% of parameters.  

Training Dynamics: All methods showed unusual training 

loss patterns, with relatively flat losses across epochs. This is 

particularly notable for LoRA, Prompt Tuning, and Prefix 

Tuning, which all converged to predicting only the majority 

class despite having different architectures and parameter 

counts.  

 

The poor performance of LoRA, Prompt Tuning, and Prefix 

Tuning on the PubMedQA task likely stems from their limited 

architectural modifications. While these methods are 

parameter-efficient, they may lack the computational capacity 

needed for complex biomedical question-answering. 

Adapters, by adding new neural network layers with non-

linear transformations, create additional processing pathways 

that can learn task-specific patterns. In contrast, LoRA’s low-

rank updates, Prompt Tuning’s input-only modifications, and 

Prefix Tuning’s attention-only adjustments might be too 

constrained to capture the nuanced relationships between 

medical questions and scientific abstracts, causing them to 

default to the simplest solution: majority class prediction.  

 

C. Discussion 

Our results highlight several important insights about PEFT 

methods when applied to biomedical classification tasks:  

• Method Selection Criticality: The choice of PEFT method 

dramatically impacts performance, with Adapters clearly 

superior for this particular task despite using more 

parameters than some alternatives.  

• Task Compatibility: Not all PEFT methods are equally 

suited to all tasks. The poor performance of prompt-based 

methods suggests they may require task-specific 

optimization or may simply be less effective for 

classification with BERT-like models.  

• Efficiency-Performance Trade-off: The most parameter-

efficient method (Prompt Tuning) performed poorly, while 

the moderately efficient Adapter approach achieved the 

best results. This suggests that some minimum level of 

parameter flexibility may be necessary for effective 

learning.  

• Implementation Challenges: Both Prompt Tuning and 

Prefix Tuning required special handling of sequence 

lengths to accommodate virtual tokens, adding 

implementation complexity.  

• Domain-Specific Considerations: The biomedical 

domain’s specialized vocabulary and complex reasoning 

requirements may favor adapter-based approaches that 

retain more expressive power at key layers in the network.  

 

Beyond just the number of trainable parameters, it’s crucial 

for practitioners to consider the broader computational 

overhead. The reduced number of trainable parameters in 

PEFT methods, as shown in Table I, directly translates to 

lower GPU memory consumption during training compared 

to traditional full fine-tuning. This is a significant advantage 

for environments with limited hardware resources. 

Furthermore, fewer trainable parameters generally mean less 

computation during the backpropagation step, which can lead 

to faster training times per epoch, even if the total training 

time might vary based on convergence speed. For inference, 

the impact varies. Methods like LoRA offer the significant 

advantage of being mergeable into the original model weights 

after training, resulting in no additional inference latency. 

Adapter-based methods, on the other hand, introduce small 

additional layers, which might add a minor overhead during 

inference, although this is often negligible compared to the 

efficiency gains during training. Prompt and Prefix Tuning 

operate by modifying input or hidden states, and while they 

avoid modifying the core model weights, their impact on 

inference latency can depend on the specific implementation 

and how the prefixes/prompts are handled. When selecting a 

PEFT method, practitioners should evaluate not just 

parameter count but also measure training speed and 

inference latency in their target deployment environment.  

 

D. Limitations and Future Work 

Several limitations should be noted:  

• Dataset Size: The PubMedQA labeled subset contains 

only 1, 000 examples, which may be insufficient for 

prompt-based methods that typically benefit from larger 

datasets.  

• Hyperparameter Optimization: We used consistent 

hyperparameters across methods to ensure fair 

comparison, but method-specific tuning might improve 

performance, particularly for the underperforming 

methods.  

• Additional PEFT Methods: Newer methods such as IA³, 

BitFit, and UniPELT were not evaluated and could 

potentially offer different performance characteristics.  

• Future work could explore:  

• Combining methods (e. g., LoRA + Adapters) for 

potentially better performance.  

• Extending evaluations to larger biomedical datasets.  

• Investigating the impact of model scale on PEFT method 

effectiveness.  

• Developing specialized PEFT approaches for biomedical 

classification tasks.  

The implementation code for all four PEFT methods used in 

this study is available at [https: //github. 

com/chandantroughia/PEFT], providing researchers with a 

practical starting point for their own experiments with 

parameter-efficient fine-tuning methods.  
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6. Real World Applications 
 

Parameter-efficient fine-tuning methods have rapidly gained 

adoption across multiple industries, enabling organizations to 

customize large language models for domain-specific 

applications while managing computational resources 

effectively. Several key sectors are leading the 

implementation of these techniques:  

 

A. Healthcare and Biomedical Applications 

The healthcare industry has embraced PEFT methods to adapt 

language models for specialized medical tasks:  

 

Clinical Decision Support: Research by Christophe et al. 

(2024) demonstrated that while full-parameter fine-tuning 

achieved better performance, parameter-efficient methods 

like LoRA yielded remarkably close results when adapting 

large language models for medical reasoning and diagnostic 

tasks, including on the USMLE medical licensing exam 

where their Med42 model achieved 72% accuracy [8].  

 

Biomedical Information Extraction: Dagdelen et al. (2024) 

showed how large language models could be fine-tuned to 

extract structured information from scientific texts, with 

applications in materials chemistry demonstrating effective 

extraction of complex scientific knowledge while maintaining 

efficiency in computational resources [9].  

 

Hospital Discharge Summarization: Parameter-efficient fine-

tuning using QLoRA (Quantized Low-Rank Adaptation) has 

been applied to summarize hospital discharge papers, 

enabling accurate interpretation of medical terminologies and 

contexts while significantly reducing memory usage 

compared to full fine-tuning, as demonstrated by Prajapati et 

al. (2024) [10].  

 

B. Financial Services 

The financial sector leverages PEFT methods to enhance 

analytical capabilities:  

 

Financial Sentiment Analysis: Research by Zhang et al. 

(2023) demonstrated that instruction-tuned models using 

parameter-efficient fine-tuning outperformed state-of-the-art 

supervised sentiment analysis models on financial text, 

particularly when handling numerical values and financial 

contexts crucial for market analysis [11].  

 

Financial Documentation Processing: A study on FinLoRA by 

Wang et al. (2025) showed that parameter-efficient fine-

tuning with quantized low-rank adaptation (QLoRA) 

significantly reduced GPU memory requirements and 

improved training efficiency while maintaining high model 

performance for processing financial regulatory 

documentation and extracting relevant information [12].  

 

Portfolio Management: Research by Konstantinidis et al. 

(2024) demonstrated that LoRA-based fine-tuning applied to 

financial large language models reduced model training time 

significantly while maintaining comparable performance on 

financial sentiment analysis tasks, using only 0.06% of the 

total trainable parameters (4.2 million parameters) to enhance 

portfolio management and risk assessment capabilities [13].  

 

C. Customer Service and Enterprise Applications 

Organizations across industries are deploying PEFT methods 

to enhance customer interactions with significant measurable 

benefits. The implementation of these techniques is 

transforming how businesses handle customer engagement 

while substantially reducing computational costs.  

 

Domain-Specific Chatbots: Enterprise implementations of 

PEFT methods in customer service have shown remarkable 

efficiency gains. A 2024 study documented that AI-powered 

chatbots can handle up to 70% of routine customer inquiries, 

allowing human agents to focus on complex issues [14]. This 

reduction in manual workload translates to lower operational 

costs as businesses can manage their customer service 

operations with fewer resources.  

 

Multilingual Support: Parameter-efficient fine-tuning enables 

organizations to efficiently adapt foundation models for 

multilingual customer support applications. Research has 

shown that PEFT methods like Semantic Knowledge Tuning 

(SK-Tuning) can achieve competitive or superior 

performance compared to full fine-tuning while utilizing 

significantly fewer parameters [15]. By reducing the number 

of trainable parameters from hundreds of millions to just a 

few million, these approaches allow companies to deploy 

specialized models for different languages without the 

computational overhead of maintaining fully fine-tuned 

models for each language, making multilingual support more 

accessible and cost-effective.  

 

Enterprise Knowledge Management: A 2024 Together. ai case 

study on Multi-LoRA demonstrated how enterprise teams can 

deploy task-specific adapters for functions ranging from 

customer service automation to documentation 

management—all using a shared base model [16]. This 

approach eliminated the need for separate model deployments 

while improving information retrieval quality and allowing 

for more efficient resource utilization.  

 

D. Emerging Applications 

Beyond established use cases, PEFT methods are enabling 

innovation in emerging areas:  

 

Resource-Constrained Devices: Recent research by Ding et 

al. (2024) demonstrates that LoRA approaches can be 

optimized for IoT and edge devices with limited 

computational resources, enabling efficient model adaptation 

without compromising performance [17].  

 

Personalized AI Experiences: Tan et al. (2024) introduced 

“One PEFT Per User” (OPPU), a personalization framework 

that equips each user with their own parameter-efficient fine-

tuning module. This approach significantly outperformed 

existing prompt-based methods across diverse tasks while 

requiring only 0.5% of the trainable parameters compared to 

full model fine-tuning [18].  

Rapid Domain Adaptation: The Hugging Face PEFT library 

(2023) provides implementations of LoRA and other 

parameter-efficient techniques that enable practitioners to 

adapt models to new domains in hours rather than days, while 

maintaining over 95% of the performance of full fine-tuning 

approaches [19].  
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These real-world applications demonstrate that PEFT 

methods are not merely theoretical innovations but practical 

solutions addressing genuine industry needs for efficient, 

domain-specific AI deployment.  

 

7. Best Practices and Trade-Offs 
 

Successfully applying Parameter-Efficient Fine-Tuning 

methods in practice often requires careful consideration and 

tuning of hyperparameters. While PEFT significantly reduces 

the search space compared to full fine-tuning, parameters 

specific to each PEFT technique (such as LoRA rank, prompt 

length, or adapter reduction factor) can significantly influence 

performance. The best practices and trade-offs discussed 

below provide a valuable starting point, but practitioners 

should anticipate the need for some level of hyperparameter 

experimentation to achieve optimal results for their specific 

task and dataset.  

 

PEFT 

Methods 
Best Practices Trade-offs 

Adapters 

• Use reduction factor of 

16 for balanced 

efficiency and 

implement Adapter 

Fusion for multi-task 

learning  

• Place adapters 

strategically in 

transformer layers 

• Introduces architectural 

complexity and higher 

inference latency 

compared to the base 

model 

• Requires additional 

model-parameters, 

increasing model size 

LoRA 

• Optimize rank 

parameter (r=8 

recommended starting 

point) and target 

specific matrices 

(query and value for 

attention)  

• Consider applying to 

different layers based 

on task 

• Performance depends 

heavily on rank 

selection and requires 

weight merging for 

deployment 

• Lower rank may 

significantly degrade 

results 

Prompt 

Tuning 

• Experiment with 

prompt initialization 

strategies, use longer 

prompts for complex 

tasks, and works best 

with larger models 

(larger than 1B 

parameters)  

• May struggle with 

complex tasks, 

performance highly 

dependent on model 

size, and limited 

effectiveness with 

smaller models 

Prefix 

Tuning 

• Optimize prefix length 

based on task 

complexity and use 

reparameterization for 

better stability 

• Consider combining 

with LoRA for better 

results  

• Reduces usable 

sequence length, can be 

surprisingly parameter-

intensive, and 

introduces 

implementation 

complexity with 

attention masks 

8. Future Research Directions 
 

While PEFT methods have advanced significantly, several 

promising research directions could further enhance their 

effectiveness and applicability. Based on our findings and 

identified gaps in current research, we propose the following 

areas for future investigation:  

 

A. Hybrid PEFT Approaches 

Current research predominantly evaluates individual PEFT 

methods in isolation, yet preliminary evidence suggests that 

combining techniques may yield superior results. Future 

research should systematically investigate:  

• Integration of complementary methods (e. g., LoRA with 

Prefix Tuning) to leverage their respective strengths while 

minimizing weaknesses [3].  

• Development of adaptive frameworks that dynamically 

select optimal PEFT techniques based on task 

characteristics and resource constraints, expanding on 

work by Li et al. [6].  

• Quantification of efficiency-performance trade-offs in 

hybrid approaches across diverse model architectures and 

sizes [3, 6].  

 

B. Cross-Modal and Multi-Domain Applications 

Most PEFT research has focused on natural language 

processing, leaving significant opportunities to explore:  

• Adaptation of PEFT techniques for vision transformers, 

audio models, and multi-modal architectures, building on 

preliminary work by Wang et al. [3].  

• Domain-specific optimizations for healthcare, finance, 

legal, and scientific applications [8, 11].  

• Transfer learning capabilities across diverse domains with 

minimal parameter updates [1, 4].  

• Evaluation of PEFT methods in robotics and embodied AI, 

where resource constraints are often stringent.  

 

C. Ethical Considerations and Bias Mitigation 

As PEFT methods become more widely adopted, research 

must address:  

• Impact of parameter-efficient adaptation on inherited 

biases from pre-trained models.  

• Development of PEFT variations specifically designed to 

reduce harmful biases while maintaining task 

performance.  

• Comparative analysis of how different PEFT approaches 

affect model fairness and safety.  

• Transparency frameworks for documenting adaptations 

and their potential effects on model behavior.  

 

D. Resource-Constrained Environments 

Further research is needed to optimize PEFT methods for 

deployment in settings with limited computational resources:  

• Quantization-aware PEFT techniques that maintain 

compatibility with low-precision inference.  

• Auto-scaling approaches that adjust parameter efficiency 

based on available resources.  

• Edge-specific adaptations that minimize memory footprint 

and power consumption.  

• Differential updating strategies that prioritize parameter 

modifications based on task-specific importance.  

E. Standardized Evaluation Frameworks 

To address inconsistencies in reporting and enable fair 

comparisons:  

• Development of comprehensive benchmarks evaluating 

accuracy, memory usage, training speed, and inference 

latency.  
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• Standardized protocols for hyperparameter selection and 

optimization.  

• Long-term studies on stability and catastrophic forgetting 

in PEFT-adapted models.  

• Metrics for quantifying the robustness of PEFT methods 

across different domains and tasks [3, 5].  

 

These research directions address current limitations in PEFT 

methodologies while expanding their applicability to new 

domains and deployment scenarios. As large language models 

continue to grow in size and capability, parameter-efficient 

fine-tuning approaches will become increasingly critical for 

democratizing access to state-of-the-art AI technologies.  

 

9. Conclusion 
 

Parameter-efficient fine-tuning (PEFT) techniques represent 

a significant advancement in the adaptation of large language 

models, offering computationally viable alternatives to 

traditional full fine-tuning approaches. This paper has 

provided a comprehensive analysis of four prominent PEFT 

strategies—Adapters, Low-Rank Adaptation (LoRA), Prompt 

Tuning, and Prefix Tuning—examining their architectural 

designs, implementation details, and empirical performance 

on a biomedical classification task.  

 

Our comparative evaluation revealed considerable 

differences in parameter efficiency and effectiveness across 

methods. While Adapter-based approaches demonstrated 

superior performance for our classification task, achieving 

79% accuracy with only 1.89% of trainable parameters, other 

methods showed limitations when applied to smaller models 

and specialized domains. These findings underscore the 

importance of method selection based on specific use cases, 

available computational resources, and task requirements.  

The best practices and trade-offs we identified highlight that 

PEFT methods are not universally interchangeable—each 

offers distinct advantages for particular applications. 

Adapters provide robust performance with modular design 

benefits, LoRA offers excellent parameter efficiency with 

minimal inference overhead, while prompt-based methods 

potentially excel with larger models despite struggling in our 

experiments with a smaller model.  

 

As large language models continue to grow in size and 

capability, the significance of parameter-efficient adaptation 

will only increase. Future research should focus on 

developing hybrid approaches that combine the strengths of 

multiple PEFT methods, expanding applications beyond NLP 

to other domains, addressing ethical considerations including 

bias mitigation, and optimizing for resource-constrained 

environments. Standardized evaluation frameworks will be 

crucial for fair comparison across the rapidly evolving 

landscape of parameter-efficient fine-tuning techniques.  

The insights and implementation guidelines presented in this 

paper provide practitioners with practical knowledge for 

deploying PEFT methods effectively in real-world scenarios, 

contributing to more accessible, efficient, and sustainable 

adaptation of large language models across diverse 

applications and domains.  
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