
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Parameter-Efficient Fine-Tuning for Generative AI:

Implementations, Best Practices, and Trade-Offs

Chandan Singh Troughia1, Sriraman Suryanarayanan2

1Staff Machine Learning Engineer, CVS Health

ORCID: 0009-0004-2921-6355

2Senior Manager, Data Engineering, CVS Health

ORCID: 0009-0002-9564 – 466

Abstract: Large language models (LLMs) have revolutionized natural language processing (NLP), yet full fine-tuning remains

computationally expensive. Parameter-efficient fine-tuning (PEFT) techniques offer a solution by modifying only a small number of

parameters. This paper provides a comparative analysis of key PEFT strategies, including Adapters, Low-Rank Adaptation (LoRA),

Prompt Tuning, and Prefix Tuning, discussing their best practices, trade-offs, and empirical evaluations. We present a real-world

implementation demonstrating the efficacy of these methods on a text classification task.

Keywords: Generative AI, Parameter-efficient fine-tuning (PEFT), Adapters, Low-Rank Adaptation (LoRA), Prompt Tuning, Prefix

Tuning, Natural Language Processing (NLP)

1. Introduction

Large language models (LLMs), such as GPT-4, LLaMA,

GPT-NeoX, GPT-4.5 Orion, Claude 3.7 Sonnet, Grok-3, and

Google’s Gemini series, have significantly advanced artificial

intelligence applications, improving capabilities in text

generation, language translation, and question answering.

Despite these advancements, adapting these increasingly

largescale models to specific downstream tasks through

traditional fine-tuning methods presents considerable

challenges. Traditional fine-tuning typically involves

retraining or updating all parameters within the pre-trained

model, leading to substantial computational demands and

extensive memory requirements, often exceeding readily

available hardware capabilities.

As LLMs continue to scale, concerns regarding their carbon

footprint and sustainability have also gained attention.

Researchers are exploring alternative fine-tuning methods

that balance accuracy with environmental efficiency.

Additionally, the rising cost of training and maintaining these

models has pushed enterprises to seek cost-effective

solutions. PEFT methods present a viable way forward,

offering substantial improvements in computational

efficiency without sacrificing model adaptability.

Parameter-efficient fine-tuning (PEFT) offers a solution by

selectively modifying a subset of model parameters, reducing

computational resources while preserving pre-trained

knowledge. This paper provides a comparative analysis of

prominent PEFT techniques: Adapters, Low-Rank Adaptation

(LoRA), Prompt Tuning, and Prefix Tuning, discussing their

best practices, trade-offs, and empirical evaluations. We

present a real-world implementation demonstrating the

efficacy of these methods on a text classification task.

The contributions of this paper include a structured

comparative analysis of key PEFT strategies, an evaluation of

tradeoffs, and practical insights from a real-world

implementation.

2. PEFT Techniques

a) Adapters

Adapters are small, trainable neural networks inserted

between the layers of a pre-trained model [1]. The original

model parameters remain frozen, and only the adapter layers

are updated. This modular approach facilitates multi-task

learning and domain adaptation, allowing for easy integration

of multiple tasks by swapping adapters. Research has shown

that adapters can achieve performance comparable to full

fine-tuning with significantly fewer trainable parameters [2].

Architecture:

Figure 1: Diagram of the Adapter Module. Adapted From

[2]

In this illustration, two adapter modules are added to each

Transformer layer:

• One after the multi-headed attention block

• Another after the feed-forward block

Each adapter module is designed as a bottleneck: it reduces

the dimension of the hidden state (down-projection), applies

a nonlinear transformation, and then restores it to the original

dimension (up-projection), with a skip connection to stabilize

training. Only these adapter modules (and a few related

parameters, like layer normalization) are trainable during

fine-tuning, while most of the Transformer parameters remain

frozen [2].

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1166

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

By training just these smaller adapter modules, we

significantly decrease the total number of trainable

parameters, making the fine-tuning process more efficient

than traditional full fine-tuning.

Benefits of Adapters:

• Parameter Efficiency: Adapters drastically reduce the

number of trainable parameters, allowing multiple tasks to

share the same backbone with minimal overhead.

• Modular Design: Different adapters can be swapped in and

out for different tasks, facilitating multi-task learning and

continuous integration of new tasks.

• Stable Training: The bottleneck architecture helps

maintain stability and preserve core model knowledge.

• Use cases of Adapters:

• Multi-Task Learning: Where one wants to maintain a

single base model and switch adapter modules for each

task.

• Domain Adaptation: Easy to add domain-specific adapters

without re-training the entire model.

• Resource-Constrained Environments: Ideal where

memory and compute are limited.

Best Practices: Use Adapter Fusion for multi-task learning to

combine knowledge from different adapters.

Trade-offs: Requires additional model parameters, increasing

the overall model size.

b) Low-Rank Adaptation (LoRA)

LoRA (Low-Rank Adaptation) is a parameter-efficient

technique introduced by Hu et al. [4] that factorizes weight

updates into smaller matrices, drastically reducing trainable

parameters during fine-tuning. Unlike full fine-tuning-which

retrains all parameters—LoRA freezes the original pre-

trained weights and injects trainable low-rank matrices

alongside them, making fine-tuning far more memory-and

compute-friendly.

The core idea of LoRA is represented in Fig.2, which

illustrates how the technique decomposes weight updates. For

a pre-trained weight matrix W ∈ Rd×d, LoRA constrains its

update by representing the change ∆W as a product of two

low-rank matrices: ∆W = BA, where B ∈ Rd×r, A ∈ Rr×d, and

the rank r ≪ min (d, k). During the forward pass, both the

frozen pre-trained weights W and the low-rank adaptation ∆W

= BA are applied to the same input x, with their outputs being

summed:

 h = Wx + ∆Wx = Wx + BAx (1)

This approach allows the model to learn task-specific

adaptations while keeping the original parameters frozen.

Studies have shown that LoRA can achieve results

comparable to full fine-tuning while updating only a fraction

of the parameters [3], with GPT-3 experiments demonstrating

up to a 10, 000× reduction in trainable parameters.

Figure 2: LoRA Reparameterization (Adapted From [4]):

The figure shows how LoRA keeps the pre-trained weights

W frozen while adding trainable low-rank matrices A and B.

The output h is computed as the sum of the original pathway

and the low-rank adaptation pathway.

Key Implementation Steps:

• Freeze the original model weights W

• Initialize A with random Gaussian weights and B with

zeros, so ∆W = BA is zero at the beginning of training

• Choose an appropriate rank r (typically 4–32) that

determines the inner dimension of matrices A and B

• Scale ∆W by α/r where α is a constant, helping to stabilize

training across different rank values

• Apply LoRA selectively to specific weight matrices (often

query and value matrices in attention blocks)

• Fine-tune only A and B, capturing the task-specific

adaptations in a low-dimensional subspace

• After training, the low-rank update can be merged with the

original weights (W +BA) for inference, introducing no

additional latency

The rank r is a critical hyperparameter that balances

parameter efficiency and model expressiveness. Lower ranks

offer greater efficiency but potentially less expressivity, while

higher ranks can capture more complex adaptations but

require more parameters. Empirical studies suggest that

surprisingly low ranks (even r = 1 or r = 2) can be sufficient

for many downstream tasks, indicating that the weight

updates during adaptation have an inherently low “intrinsic

rank.”

Benefits of LoRA:

• Efficiency: LoRA limits updates to small, low-rank

matrices, substantially reducing trainable parameters and

optimizer states.

• No Extra Latency: Once merged, the final weights look

like any fully fine-tuned model.

• Flexible: Can be applied to different parts of the

Transformer depending on parameter budget and

performance needs.

• Scalable: Applicable across various model scales with

consistent memory savings.

• Use Cases for LoRA:

• Transformer Attention Focus: When fine-tuning attention

blocks suffices for high performance (e. g., classification,

QA).

• Large Language Models: Where full fine-tuning is costly

or infeasible.

• Resource-Constrained GPUs: Minimizes memory usage

during training, suitable for smaller GPU setups.

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1167

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Best Practices and Trade-offs: Optimize the rank r and scaling

factor α to balance performance and resource usage. Target

specific transformer components based on the task.

Performance depends heavily on rank selection; an overly

small rank can degrade accuracy, while a large rank reduces

efficiency gains.

c) Prompt Tuning

Prompt Tuning is a parameter-efficient approach proposed by

Lester et al. [5] that learns soft prompts—trainable

embedding vectors—while keeping the large language

model’s main parameters frozen. Unlike traditional

prompting (where discrete tokens are manually crafted),

Prompt Tuning leverages backpropagation to update these

soft prompt embeddings directly, conditioning the model on

downstream tasks. This is particularly advantageous because

it allows the model to retain its general language

understanding, focusing adaptation on a small set of learned

prompt parameters.

Simply put, instead of fine-tuning the entire model, you only

learn a set of additional (or “virtual”) tokens—a prompt—that

is prepended (or appended) to the actual input. During

training, only these prompt embeddings are adjusted, while

the original model weights remain frozen. This approach can

be particularly useful when you want to reduce compute,

avoid overfitting on small datasets, or quickly adapt a large

model to a new task.

Architecture:

Figure 3: Prompt Tuning (Adapted From [5])

With Model Tuning, each new task duplicates the large pre-

trained model’s parameters, leading to huge storage and

memory demands. By contrast, Prompt Tuning retains a

single frozen backbone and learns only a small prompt

embedding (20K parameters), reducing the trainable

parameter count by several orders of magnitude. This also

supports mixed-task inference, where multiple prompts can

be batched together on a single forward pass.

Key Insights from Lester et al. [5]:

• Scalability: As model size increases (e. g., T5-XXL),

Prompt Tuning’s performance can approach full

finetuning.

• Minimal Memory Footprint: Only a small prompt

embedding is updated, lowering compute/storage costs for

each downstream task.

• Domain Transfer & Robustness: Freezing the main model

can reduce overfitting, improving zero-shot transfer to

out-of-domain data.

• Prompt Ensembling: Multiple prompts can be combined

in a single forward pass for further performance gains,

without storing multiple large models.

Benefits of Prompt Tuning

• Minimal Memory Footprint: Only the prompt embeddings

are trained, leaving the core model untouched.

• Adaptation: Quick to fine-tune and easy to swap prompts

for different tasks or domains.

• Avoids Overfitting: Freezing the backbone helps preserve

general language understanding, improving domain

transfer.

• Scalable to Large Models: Performance gap to full

finetuning narrows as model size grows.

• Use Cases for Prompt Tuning

• Rapid Prototyping: Quickly adapt a large LLM (e. g.,

GPT-3, T5-XXL) to new tasks.

• Low-Resource Settings: Effective when labeled data are

limited, avoiding the overhead of full fine-tuning.

• Efficient Multi-Task Serving: Batching different prompts

reduces latency.

Best Practices:

• Experiment with prompt initialization strategies (random,

vocabulary-based, class-label-based).

• Use longer prompts in smaller models; short prompts can

suffice in larger LLMs.

• LM-adaptive pre-training for encoder-decoder models

(like T5) helps them better handle natural text prompts.

• Evaluate prompt ensembling for potential performance

boosts.

Trade-offs:

• May struggle with complex tasks or large domain gaps if

only the prompt is trainable.

• Performance is sensitive to prompt length and

initialization; hyperparameter tuning may be required.

• Small models can have a bigger gap from fully fine-tuned

performance; larger LLMs see greater relative benefit

from prompt tuning.

d) Prefix Tuning

Prefix Tuning is a parameter-efficient technique introduced

by Li and Liang [6] that adds a sequence of trainable, task-

specific vectors (prefixes) to the hidden states of each

Transformer layer, rather than just prepending tokens at the

input embedding level. Unlike Prompt Tuning—which

primarily modifies the initial input embeddings—Prefix

Tuning influences multiple layers of the model, potentially

leading to richer adaptations for complex tasks.

How Prefix Tuning Works

• Continuous Prefixes: Like Prompt Tuning, Prefix Tuning

adds virtual tokens, but instead of appending them only at

the input layer, these prefixes are applied across the hidden

states in all Transformer blocks [7]. The large majority of

the model’s parameters remain frozen, with only these

prefix vectors being updated during training.

• Layer-wise Modifications: At each layer, the Transformer

can attend to these trainable prefixes, allowing for more

expressive control. This yields an approach that is more

flexible than Prompt Tuning, which primarily operates at

the input embedding level.

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1168

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Sparse Updates: By freezing most of the model’s weights

and only tuning the prefix vectors, Prefix Tuning reduces

computational overhead and avoids the need to maintain

multiple fine-tuned copies of a large model.

Architecture:

Figure 4: Prefix Tuning (Adapted from Li and Liang [6])

• Prefix vectors are inserted as learnable parameters at each

Transformer layer.

• The main model parameters remain frozen.

• Only the prefix vectors are optimized to align the model

with downstream tasks.

Benefits of Prefix Tuning:

• More Expressive than Prompt Tuning: Because it modifies

activations across multiple Transformer layers, Prefix

Tuning can capture more complex adaptations, potentially

leading to better performance on tasks that demand deeper

model adjustments.

• Combines Well with LoRA: The prefix approach can be

used alongside LoRA, leveraging low-rank updates in

attention while simultaneously controlling intermediate

representations.

• Efficient Parameter Usage: Retains the majority of the pre-

trained model’s knowledge while updating only a small

fraction of parameters.

• Strong for NLG Tasks: By influencing hidden states,

Prefix Tuning is especially useful in natural language

generation scenarios where controlling generation at

multiple stages is advantageous.

Use Cases:

• Natural Language Generation: Tasks like summarization,

story generation, or table-to-text often benefit from the

richer control that Prefix Tuning provides.

• Resource-Constrained Scenarios: Similar to Prompt

Tuning, Prefix Tuning can achieve strong performance

with fewer trainable parameters than full fine-tuning.

• Complex Adaptations: Where small shifts in embedding-

level prompts are insufficient, layer-wise prefix

modifications offer more fine-grained control.

Best Practices:

• Optimize Prefix Length: Longer prefixes can offer more

expressive capacity but risk overfitting or slowing

training.

• Careful Initialization: Initializing prefix vectors to

meaningful embeddings or random values can affect

stability.

• Empirically, using domain-relevant tokens often speeds

convergence.

• Combine with LoRA: For tasks requiring minimal

memory usage, applying LoRA to specific attention

weights while employing Prefix Tuning for layer control

can deliver strong results.

Trade-offs:

• Reduced Sequence Length: Because the prefix tokens

occupy space in the model’s hidden states, the effective

sequence length for original tokens can be lower.

• Potential Overhead in Multi-Layer Insertion: Maintaining

prefixes at every layer can be slightly more complex

compared to input-level prompt tuning.

• Hyperparameter Sensitivity: Finding the right prefix

length and initialization strategy may require tuning,

especially for more specialized domains.

3. GAPS in Existing Research

Although parameter-efficient fine-tuning (PEFT) has led to

remarkable progress in adapting large language models

(LLMs) with fewer resources, several challenges and open

questions remain:

1) Inconsistent Reporting of Parameter Counts and

Efficiency:

A recurring issue in PEFT studies is the inconsistency in

reporting parameter counts. Some methods report only

trainable parameters, whereas others cite changed parameters

or low-rank dimensions. This inconsistency makes it difficult

to compare methods fairly. Moreover, the relationship

between the number of parameters and actual resource usage

(e. g., GPU memory) is often non-linear. For instance, a

method that introduces many new parameters in a

reparameterization may still have low memory usage,

whereas a sparse, selective method could introduce minimal

changed parameters but require large gradients or masks for

full model layers.

Recommended Direction: Researchers should explicitly

report both trainable and changed parameters and detail

memory usage, training time, and inference overhead,

adhering to a standardized approach. Consistent metrics and

clear definitions would help practitioners make better-

informed decisions.

2) Lack of Standardized Metrics Beyond Accuracy:

While downstream performance is crucial, PEFT methods

need to be evaluated along multiple axes, including training

speed, peak memory usage, inference latency, and storage

overhead for adapter modules or soft prompts. Many recent

papers focus almost exclusively on accuracy (e. g., GLUE,

SuperGLUE) but do not provide details about GPU memory

consumption, training throughput, or inference speed, which

can vary significantly across different parameter-efficient

approaches.

Recommended Direction: A common benchmark that

includes efficiency metrics—such as training time in

tokens/second, inference speed, maximum VRAM usage, and

final model storage size—would provide a more holistic view

of method trade-offs.

3) Hyperparameter Sensitivity and Limited Tuning

Protocols:

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1169

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Several PEFT methods (e. g., Prefix Tuning, Prompt Tuning,

hybrid approaches) often exhibit high sensitivity to

hyperparameters like the prompt length, learning rate, and

initialization scheme. Many impressive results rely on heavily

tuned settings, which might not transfer well to real-world

constraints (limited compute budgets, new domains). This

gap is exacerbated in large-scale LLM fine-tuning, where

hyperparameter sweeps can be cost-prohibitive.

Recommended Direction: Systematic investigations on

hyperparameter robustness could yield heuristics or meta-

tuning strategies for practitioners. Auto-tuning or adaptively

choosing hyperparameters based on limited pilot runs (similar

to Hyperband or Bayesian optimization) might also mitigate

sensitivity concerns.

4) Model Scale and Generalization to Billion-Parameter+

Regimes:

Despite being labeled “large, ” many PEFT experiments are

performed on moderate-size Transformer backbones (e. g.,

BERT-base, T5-base). Yet, these methods often behave

differently once the model surpasses the billion-parameter

scale. For instance, some methods become more parameter-

efficient as model size grows, while others run into memory

bottlenecks or instability. This discrepancy indicates a need

for studying PEFT at truly large scales (e. g., 20B, 175B) to

capture real-world usage patterns.

Recommended Direction: Evaluate new PEFT methods on

diverse model sizes (e. g., smaller than 1B, 3B–20B, larger

than 20B) and analyze scalability and robustness. Results at

smaller scales should be clearly distinguished from those at

billion-parameter scales.

5) Comparison Across Hybrid or Combined Methods:

Although hybrid PEFT approaches (e. g., combining LoRA

with Adapters or Prompt Tuning) can leverage

complementary strengths, there is limited empirical

exploration of which combinations work best under different

constraints. Some studies do propose multicomponent

solutions (e. g., MAM Adapters, UniPELT), but they can be

memory-intensive or hyperparameter-heavy to the point that

real-world adoption is hindered.

Recommended Direction: More thorough head-to-head

comparisons and ablation studies of multi-component PEFT

recipes. Clarifying how each sub-component influences

memory and compute overhead could guide modular

adoption in production scenarios.

6) Reporting Challenges and Reproducibility:

In some open-source PEFT implementations, users must

install custom forks of Transformers libraries, with minimal

documentation on changes to code paths. This complicates

reproducibility and discourages consistent baselines. As a

result, many “new” PEFT techniques are not directly

comparable because they were tested in distinct frameworks

or rely on non-standard data preprocessing.

Recommended Direction: Encourage shared code repositories

and well-documented integration into popular libraries (e. g.,

HuggingFace PEFT, AdapterHub). A multitask PEFT

benchmark suite, accompanied by scripts for standard data

splits and metric logging, would foster transparency and

direct comparisons.

7) Broader Ethical and Long-Term Implications:

Efficiency-focused methods could have unintended

consequences. For instance, constant freezing of large

backbones might inhibit necessary updates for bias reduction

or domain fairness. Similarly, minimal adapters or prompts

might not rectify harmful stereotypes ingrained in the pre-

trained model. Empirical work on catastrophic forgetting

often lacks rigorous analysis of potential fairness or safety

considerations for real-world deployment.

Recommended Direction: Investigate bias, fairness, and

safety under the lens of PEFT, ensuring that parameter

efficiency does not come at the cost of ethical compromises.

Future research should measure and mitigate bias shifts that

can arise from partial or modular fine-tuning.

In summary, while PEFT methods—such as Adapters, LoRA,

Prompt/Prefix Tuning, and hybrids—offer promising avenues

to reduce cost and memory footprints, standardization in

reporting, robust hyperparameter protocols, and scalable

evaluations are critical next steps. Addressing these gaps will

enable a more reliable comparison of techniques and help

practitioners choose the most suitable approach for their

domain and resource constraints.

4. Implementation and Demonstration of

PEFT Methods

A. Experimental Setup

We implemented and compared four popular parameter-

efficient fine-tuning (PEFT) techniques on a biomedical

question-answering classification task using the PubMedQA

dataset. This section details our experimental setup,

implementation specifics, and execution environment.

Dataset: The PubMedQA dataset’s labeled subset

(pqa_labeled) contains 1, 000 expert-annotated biomedical

question-answer pairs. Each sample includes a natural

language question, a supporting PubMed abstract as context,

and an expert-labeled answer (yes, no, or maybe). We split

this dataset into training 80% and validation 20% sets.

Model Architecture: We utilized a pre-trained BERT-base-

uncased model (110M parameters) as our foundation, adding

a classification head for the 3-class classification task. The

model was implemented using the Hugging Face

Transformers library.

Computing Environment: Experiments were executed on a

cloud instance with the following specifications:

• GPU: 1× NVIDIA RTX A5000

• vCPUs: 12

• System Memory: 25 GB RAM

• Storage: 20 GB

• OS: Ubuntu 22.04 with CUDA 11.8.0

• Framework: PyTorch 2.1.0

Implementation Framework: We utilized Hugging Face’s

Transformers (v4.48.0) and PEFT (v0.7.1) libraries for model

implementation, with the following additional libraries:

• Accelerate (v0.26.0) for training optimization

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1170

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Datasets (v2.14.5) for data processing

• Evaluate (v0.4.1) for metrics calculation

• Weights & Biases for experiment tracking

Common Training Configuration: For consistent comparison,

all methods used identical training parameters:

• Maximum sequence length: 512 tokens (adjusted as

needed for prompt-based methods)

• Batch size: 8

• Learning rate: 5e-5

• Weight decay: 0.01

• Training epochs: 3

• Optimization: AdamW optimizer

• Mixed precision (FP16): Enabled

• Random seed: 42

B. PEFT Method Implementations

1) Adapters: Adapters insert small trainable bottleneck layers

between the existing layers of a pre-trained model. We

implemented adapters using the Pfeiffer configuration:

adapter_config = ADAPTER_CONFIG_MAP ["pfeiffer"]

model. add_adapter ("pubmedqa_adapter",

config=adapter_config)

model. train_adapter ("pubmedqa_adapter")

model. set_active_adapters ("pubmedqa_adapter")

The Pfeiffer adapter architecture adds bottleneck layers with

a reduction factor of 16 after the attention and feedforward

blocks in each transformer layer. This resulted in 2.1M

trainable parameters (1.89% of total parameters).

2) Low-Rank Adaptation (LoRA): LoRA applies low-rank

decomposition to weight matrices in the model, particularly

in the attention mechanism:

lora_config = LoraConfig (

 r=8, # Rank of update matrices

 lora_alpha=16, # Scaling factor

 target_modules= ["query", "value"], #

 Apply to specific matrices

 lora_dropout=0.1, # Regularization

 bias="none",

 task_type=TaskType. SEQ_CLS

)

 model = get_peft_model (model,

 lora_config)

Our implementation used a rank of 8 and targeted the query

and value matrices in the attention layers, resulting in 0.297M

trainable parameters (0.27% of total parameters).

3) Prompt Tuning: Prompt Tuning prepends trainable “soft

prompts” to the input while keeping the model frozen:

prompt_config = PromptTuningConfig (

 task_type=TaskType. SEQ_CLS,

 num_virtual_tokens=10,

 tokenizer_name_or_path="bert-base-

 uncased",

 prompt_tuning_init="RANDOM"

model = get_peft_model (model,

 prompt_config)

We implemented prompt tuning with 10 virtual tokens,

resulting in just 9, 987 trainable parameters (0.009% of total

parameters). To accommodate these virtual tokens, we

reduced the maximum sequence length for actual tokens to

502.

Note that we increased the training epochs to 10 for Prompt

Tuning (compared to 3 epochs for other methods) to give this

lightweight approach more opportunity to learn. Despite the

additional training time, Prompt Tuning still converged to

predicting only the majority class, achieving the same 51.5%

accuracy as LoRA and Prefix Tuning.

4) Prefix Tuning: Prefix Tuning adds trainable vectors to the

hidden states at each layer of the model:

prefix_config = PrefixTuningConfig (

 task_type=TaskType. SEQ_CLS,

 num_virtual_tokens=20,

 prefix_projection=True,

 encoder_hidden_size=768

)

model = get_peft_model (model,

 prefix_config)

Our implementation used 20 virtual tokens with a projection

layer, resulting in 14.8M trainable parameters (11.9% of total

parameters). We reduced the maximum sequence length to

492 to accommodate the prefix tokens.

5. Result and Analysis

A. Performance Comparison

Table I summarizes the performance metrics, parameter

efficiency, and training characteristics of the four PEFT

methods:

Table I: Comparison of PEFT Methods on PUBMEDQA

Method Accuracy
F1

Score

Trainable

Param-

eters

Parameter

Efficiency

Class

Discriminat

-ion

Adapter

(Pfeiffer)
79.0% 0.79 2.1M 1.89% Strong

LoRA 51.5% 0.23 0.297M 0.27% Poor

Prompt

Tuning
51.5% 0.23 9, 987 0.009% None

Prefix

Tuning
51.5% 0.23 14.8M 11.9% None

B. Detailed Analysis

Performance Across Methods: The adapter approach

significantly outperformed other PEFT methods, achieving

79% accuracy with good discrimination between classes. In

contrast, LoRA, Prompt Tuning, and Prefix Tuning all

converged to predicting only the majority class (“yes”),

resulting in identical performance metrics (51.5% accuracy

and 0.23 F1 score).

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1171

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Classification Behavior: The classification reports revealed

distinct behavior patterns:

Adapters: Showed balanced precision and recall across all

classes

 Precision Recall F1-Score Support

Yes 0.82 0.87 0.84 113

No 0.77 0.70 0.73 67

Maybe 0.65 0.65 0.65 20

LoRA, Prompt Tuning, Prefix Tuning: All displayed the same

pattern of predicting only the majority class

 Precision Recall F1-Score Support

Yes 0.52 1.00 0.68 103

No 0.00 0.00 0.00 72

Maybe 0.00 0.00 0.00 25

Parameter Efficiency: Prompt Tuning achieved the highest

parameter efficiency, requiring only 0.009% of the model’s

parameters, while Prefix Tuning unexpectedly had the lowest

efficiency at 11.9%. LoRA demonstrated excellent efficiency

at 0.3% while Adapters used a moderate 1.89% of parameters.

Training Dynamics: All methods showed unusual training

loss patterns, with relatively flat losses across epochs. This is

particularly notable for LoRA, Prompt Tuning, and Prefix

Tuning, which all converged to predicting only the majority

class despite having different architectures and parameter

counts.

The poor performance of LoRA, Prompt Tuning, and Prefix

Tuning on the PubMedQA task likely stems from their limited

architectural modifications. While these methods are

parameter-efficient, they may lack the computational capacity

needed for complex biomedical question-answering.

Adapters, by adding new neural network layers with non-

linear transformations, create additional processing pathways

that can learn task-specific patterns. In contrast, LoRA’s low-

rank updates, Prompt Tuning’s input-only modifications, and

Prefix Tuning’s attention-only adjustments might be too

constrained to capture the nuanced relationships between

medical questions and scientific abstracts, causing them to

default to the simplest solution: majority class prediction.

C. Discussion

Our results highlight several important insights about PEFT

methods when applied to biomedical classification tasks:

• Method Selection Criticality: The choice of PEFT method

dramatically impacts performance, with Adapters clearly

superior for this particular task despite using more

parameters than some alternatives.

• Task Compatibility: Not all PEFT methods are equally

suited to all tasks. The poor performance of prompt-based

methods suggests they may require task-specific

optimization or may simply be less effective for

classification with BERT-like models.

• Efficiency-Performance Trade-off: The most parameter-

efficient method (Prompt Tuning) performed poorly, while

the moderately efficient Adapter approach achieved the

best results. This suggests that some minimum level of

parameter flexibility may be necessary for effective

learning.

• Implementation Challenges: Both Prompt Tuning and

Prefix Tuning required special handling of sequence

lengths to accommodate virtual tokens, adding

implementation complexity.

• Domain-Specific Considerations: The biomedical

domain’s specialized vocabulary and complex reasoning

requirements may favor adapter-based approaches that

retain more expressive power at key layers in the network.

Beyond just the number of trainable parameters, it’s crucial

for practitioners to consider the broader computational

overhead. The reduced number of trainable parameters in

PEFT methods, as shown in Table I, directly translates to

lower GPU memory consumption during training compared

to traditional full fine-tuning. This is a significant advantage

for environments with limited hardware resources.

Furthermore, fewer trainable parameters generally mean less

computation during the backpropagation step, which can lead

to faster training times per epoch, even if the total training

time might vary based on convergence speed. For inference,

the impact varies. Methods like LoRA offer the significant

advantage of being mergeable into the original model weights

after training, resulting in no additional inference latency.

Adapter-based methods, on the other hand, introduce small

additional layers, which might add a minor overhead during

inference, although this is often negligible compared to the

efficiency gains during training. Prompt and Prefix Tuning

operate by modifying input or hidden states, and while they

avoid modifying the core model weights, their impact on

inference latency can depend on the specific implementation

and how the prefixes/prompts are handled. When selecting a

PEFT method, practitioners should evaluate not just

parameter count but also measure training speed and

inference latency in their target deployment environment.

D. Limitations and Future Work

Several limitations should be noted:

• Dataset Size: The PubMedQA labeled subset contains

only 1, 000 examples, which may be insufficient for

prompt-based methods that typically benefit from larger

datasets.

• Hyperparameter Optimization: We used consistent

hyperparameters across methods to ensure fair

comparison, but method-specific tuning might improve

performance, particularly for the underperforming

methods.

• Additional PEFT Methods: Newer methods such as IA³,

BitFit, and UniPELT were not evaluated and could

potentially offer different performance characteristics.

• Future work could explore:

• Combining methods (e. g., LoRA + Adapters) for

potentially better performance.

• Extending evaluations to larger biomedical datasets.

• Investigating the impact of model scale on PEFT method

effectiveness.

• Developing specialized PEFT approaches for biomedical

classification tasks.

The implementation code for all four PEFT methods used in

this study is available at [https: //github.

com/chandantroughia/PEFT], providing researchers with a

practical starting point for their own experiments with

parameter-efficient fine-tuning methods.

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1172

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

6. Real World Applications

Parameter-efficient fine-tuning methods have rapidly gained

adoption across multiple industries, enabling organizations to

customize large language models for domain-specific

applications while managing computational resources

effectively. Several key sectors are leading the

implementation of these techniques:

A. Healthcare and Biomedical Applications

The healthcare industry has embraced PEFT methods to adapt

language models for specialized medical tasks:

Clinical Decision Support: Research by Christophe et al.

(2024) demonstrated that while full-parameter fine-tuning

achieved better performance, parameter-efficient methods

like LoRA yielded remarkably close results when adapting

large language models for medical reasoning and diagnostic

tasks, including on the USMLE medical licensing exam

where their Med42 model achieved 72% accuracy [8].

Biomedical Information Extraction: Dagdelen et al. (2024)

showed how large language models could be fine-tuned to

extract structured information from scientific texts, with

applications in materials chemistry demonstrating effective

extraction of complex scientific knowledge while maintaining

efficiency in computational resources [9].

Hospital Discharge Summarization: Parameter-efficient fine-

tuning using QLoRA (Quantized Low-Rank Adaptation) has

been applied to summarize hospital discharge papers,

enabling accurate interpretation of medical terminologies and

contexts while significantly reducing memory usage

compared to full fine-tuning, as demonstrated by Prajapati et

al. (2024) [10].

B. Financial Services

The financial sector leverages PEFT methods to enhance

analytical capabilities:

Financial Sentiment Analysis: Research by Zhang et al.

(2023) demonstrated that instruction-tuned models using

parameter-efficient fine-tuning outperformed state-of-the-art

supervised sentiment analysis models on financial text,

particularly when handling numerical values and financial

contexts crucial for market analysis [11].

Financial Documentation Processing: A study on FinLoRA by

Wang et al. (2025) showed that parameter-efficient fine-

tuning with quantized low-rank adaptation (QLoRA)

significantly reduced GPU memory requirements and

improved training efficiency while maintaining high model

performance for processing financial regulatory

documentation and extracting relevant information [12].

Portfolio Management: Research by Konstantinidis et al.

(2024) demonstrated that LoRA-based fine-tuning applied to

financial large language models reduced model training time

significantly while maintaining comparable performance on

financial sentiment analysis tasks, using only 0.06% of the

total trainable parameters (4.2 million parameters) to enhance

portfolio management and risk assessment capabilities [13].

C. Customer Service and Enterprise Applications

Organizations across industries are deploying PEFT methods

to enhance customer interactions with significant measurable

benefits. The implementation of these techniques is

transforming how businesses handle customer engagement

while substantially reducing computational costs.

Domain-Specific Chatbots: Enterprise implementations of

PEFT methods in customer service have shown remarkable

efficiency gains. A 2024 study documented that AI-powered

chatbots can handle up to 70% of routine customer inquiries,

allowing human agents to focus on complex issues [14]. This

reduction in manual workload translates to lower operational

costs as businesses can manage their customer service

operations with fewer resources.

Multilingual Support: Parameter-efficient fine-tuning enables

organizations to efficiently adapt foundation models for

multilingual customer support applications. Research has

shown that PEFT methods like Semantic Knowledge Tuning

(SK-Tuning) can achieve competitive or superior

performance compared to full fine-tuning while utilizing

significantly fewer parameters [15]. By reducing the number

of trainable parameters from hundreds of millions to just a

few million, these approaches allow companies to deploy

specialized models for different languages without the

computational overhead of maintaining fully fine-tuned

models for each language, making multilingual support more

accessible and cost-effective.

Enterprise Knowledge Management: A 2024 Together. ai case

study on Multi-LoRA demonstrated how enterprise teams can

deploy task-specific adapters for functions ranging from

customer service automation to documentation

management—all using a shared base model [16]. This

approach eliminated the need for separate model deployments

while improving information retrieval quality and allowing

for more efficient resource utilization.

D. Emerging Applications

Beyond established use cases, PEFT methods are enabling

innovation in emerging areas:

Resource-Constrained Devices: Recent research by Ding et

al. (2024) demonstrates that LoRA approaches can be

optimized for IoT and edge devices with limited

computational resources, enabling efficient model adaptation

without compromising performance [17].

Personalized AI Experiences: Tan et al. (2024) introduced

“One PEFT Per User” (OPPU), a personalization framework

that equips each user with their own parameter-efficient fine-

tuning module. This approach significantly outperformed

existing prompt-based methods across diverse tasks while

requiring only 0.5% of the trainable parameters compared to

full model fine-tuning [18].

Rapid Domain Adaptation: The Hugging Face PEFT library

(2023) provides implementations of LoRA and other

parameter-efficient techniques that enable practitioners to

adapt models to new domains in hours rather than days, while

maintaining over 95% of the performance of full fine-tuning

approaches [19].

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1173

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

These real-world applications demonstrate that PEFT

methods are not merely theoretical innovations but practical

solutions addressing genuine industry needs for efficient,

domain-specific AI deployment.

7. Best Practices and Trade-Offs

Successfully applying Parameter-Efficient Fine-Tuning

methods in practice often requires careful consideration and

tuning of hyperparameters. While PEFT significantly reduces

the search space compared to full fine-tuning, parameters

specific to each PEFT technique (such as LoRA rank, prompt

length, or adapter reduction factor) can significantly influence

performance. The best practices and trade-offs discussed

below provide a valuable starting point, but practitioners

should anticipate the need for some level of hyperparameter

experimentation to achieve optimal results for their specific

task and dataset.

PEFT

Methods
Best Practices Trade-offs

Adapters

• Use reduction factor of

16 for balanced

efficiency and

implement Adapter

Fusion for multi-task

learning

• Place adapters

strategically in

transformer layers

• Introduces architectural

complexity and higher

inference latency

compared to the base

model

• Requires additional

model-parameters,

increasing model size

LoRA

• Optimize rank

parameter (r=8

recommended starting

point) and target

specific matrices

(query and value for

attention)

• Consider applying to

different layers based

on task

• Performance depends

heavily on rank

selection and requires

weight merging for

deployment

• Lower rank may

significantly degrade

results

Prompt

Tuning

• Experiment with

prompt initialization

strategies, use longer

prompts for complex

tasks, and works best

with larger models

(larger than 1B

parameters)

• May struggle with

complex tasks,

performance highly

dependent on model

size, and limited

effectiveness with

smaller models

Prefix

Tuning

• Optimize prefix length

based on task

complexity and use

reparameterization for

better stability

• Consider combining

with LoRA for better

results

• Reduces usable

sequence length, can be

surprisingly parameter-

intensive, and

introduces

implementation

complexity with

attention masks

8. Future Research Directions

While PEFT methods have advanced significantly, several

promising research directions could further enhance their

effectiveness and applicability. Based on our findings and

identified gaps in current research, we propose the following

areas for future investigation:

A. Hybrid PEFT Approaches

Current research predominantly evaluates individual PEFT

methods in isolation, yet preliminary evidence suggests that

combining techniques may yield superior results. Future

research should systematically investigate:

• Integration of complementary methods (e. g., LoRA with

Prefix Tuning) to leverage their respective strengths while

minimizing weaknesses [3].

• Development of adaptive frameworks that dynamically

select optimal PEFT techniques based on task

characteristics and resource constraints, expanding on

work by Li et al. [6].

• Quantification of efficiency-performance trade-offs in

hybrid approaches across diverse model architectures and

sizes [3, 6].

B. Cross-Modal and Multi-Domain Applications

Most PEFT research has focused on natural language

processing, leaving significant opportunities to explore:

• Adaptation of PEFT techniques for vision transformers,

audio models, and multi-modal architectures, building on

preliminary work by Wang et al. [3].

• Domain-specific optimizations for healthcare, finance,

legal, and scientific applications [8, 11].

• Transfer learning capabilities across diverse domains with

minimal parameter updates [1, 4].

• Evaluation of PEFT methods in robotics and embodied AI,

where resource constraints are often stringent.

C. Ethical Considerations and Bias Mitigation

As PEFT methods become more widely adopted, research

must address:

• Impact of parameter-efficient adaptation on inherited

biases from pre-trained models.

• Development of PEFT variations specifically designed to

reduce harmful biases while maintaining task

performance.

• Comparative analysis of how different PEFT approaches

affect model fairness and safety.

• Transparency frameworks for documenting adaptations

and their potential effects on model behavior.

D. Resource-Constrained Environments

Further research is needed to optimize PEFT methods for

deployment in settings with limited computational resources:

• Quantization-aware PEFT techniques that maintain

compatibility with low-precision inference.

• Auto-scaling approaches that adjust parameter efficiency

based on available resources.

• Edge-specific adaptations that minimize memory footprint

and power consumption.

• Differential updating strategies that prioritize parameter

modifications based on task-specific importance.

E. Standardized Evaluation Frameworks

To address inconsistencies in reporting and enable fair

comparisons:

• Development of comprehensive benchmarks evaluating

accuracy, memory usage, training speed, and inference

latency.

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1174

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Standardized protocols for hyperparameter selection and

optimization.

• Long-term studies on stability and catastrophic forgetting

in PEFT-adapted models.

• Metrics for quantifying the robustness of PEFT methods

across different domains and tasks [3, 5].

These research directions address current limitations in PEFT

methodologies while expanding their applicability to new

domains and deployment scenarios. As large language models

continue to grow in size and capability, parameter-efficient

fine-tuning approaches will become increasingly critical for

democratizing access to state-of-the-art AI technologies.

9. Conclusion

Parameter-efficient fine-tuning (PEFT) techniques represent

a significant advancement in the adaptation of large language

models, offering computationally viable alternatives to

traditional full fine-tuning approaches. This paper has

provided a comprehensive analysis of four prominent PEFT

strategies—Adapters, Low-Rank Adaptation (LoRA), Prompt

Tuning, and Prefix Tuning—examining their architectural

designs, implementation details, and empirical performance

on a biomedical classification task.

Our comparative evaluation revealed considerable

differences in parameter efficiency and effectiveness across

methods. While Adapter-based approaches demonstrated

superior performance for our classification task, achieving

79% accuracy with only 1.89% of trainable parameters, other

methods showed limitations when applied to smaller models

and specialized domains. These findings underscore the

importance of method selection based on specific use cases,

available computational resources, and task requirements.

The best practices and trade-offs we identified highlight that

PEFT methods are not universally interchangeable—each

offers distinct advantages for particular applications.

Adapters provide robust performance with modular design

benefits, LoRA offers excellent parameter efficiency with

minimal inference overhead, while prompt-based methods

potentially excel with larger models despite struggling in our

experiments with a smaller model.

As large language models continue to grow in size and

capability, the significance of parameter-efficient adaptation

will only increase. Future research should focus on

developing hybrid approaches that combine the strengths of

multiple PEFT methods, expanding applications beyond NLP

to other domains, addressing ethical considerations including

bias mitigation, and optimizing for resource-constrained

environments. Standardized evaluation frameworks will be

crucial for fair comparison across the rapidly evolving

landscape of parameter-efficient fine-tuning techniques.

The insights and implementation guidelines presented in this

paper provide practitioners with practical knowledge for

deploying PEFT methods effectively in real-world scenarios,

contributing to more accessible, efficient, and sustainable

adaptation of large language models across diverse

applications and domains.

References

[1] https: //medium. com/[at]ysfckmk/parameter-efficient

fine-tuning-peft-for-large-language-models-making-ai

more-adaptable-and-52fb0395af2a

[2] N. Houlsby, et al., “Parameter-Efficient Transfer

Learning for NLP, ” ICML, 2019. [Online]. Available:

https: //arxiv. org/abs/1902. 00751

[3] L. Wang, S. Chen, L. Jiang, S. Pan, R. Cai, S. Yang, F.

Yang, “Parameter-Efficient Fine-Tuning in Large

Models: A Survey of Methodologies, ” arXiv preprint

arXiv: 2410.19878 (v2), 2024. [Online]. Available:

https: //doi. org/10. 48550/arXiv. 2410. 19878

[4] E. J. Hu, et al., “LoRA: Low-Rank Adaptation of Large

Language Models, ” ICLR, 2022. [Online]. Available:

https: //arxiv. org/abs/2106. 09685.

[5] Bs. Lester, et al., “The Power of Scale for Parameter

Efficient Prompt Tuning, ” EMNLP, 2021. [Online].

Available: https: //arxiv. org/abs/2104. 08691.

[6] X. Li and P. Liang, “Prefix-Tuning: Optimizing

Continuous Prompts for Generation, ” ACL, 2021.

[Online]. Available: https: //arxiv. org/abs/2101. 00190

[7] Parameter Efficient Fine Tuning. Adapters; LoRA;

QLora-Medium. Accessed February 10, 2025. [Online].

Available: https: //medium.

com/aimonks/parameterefficient-fine-tuning-

075954d1db51

[8] C. Christophe, P. K. Kanithi, P. Munjal, et al., “Med42

– Evaluating Fine-Tuning Strategies for Medical LLMs:

Full-Parameter vs. Parameter-Efficient Approaches, ”

arXiv preprint arXiv: 2404.14779, 2024. [Online].

Available: https: //arxiv. org/abs/2404. 14779

[9] J. Dagdelen, A. Dunn, S. Lee, et al., “Structured

information extraction from scientific text with large

language models, ” Nature Communications, vol.15,

no.1, p.1418, 2024. [Online]. Available: https: // www.

nature. com/articles/s41467-024-45563-x

[10] K. K. Prajapati, A. Saha, A. K. Saha, and J. Goswami,

“Parameter-efficient fine-tuning large lan-guage model

approach for hospital discharge paper summarization, ”

Applied Soft Computing, 2024. [Online]. Available:

https: //www. sciencedirect. com/science/

article/abs/pii/S1568494624003053

[11] B. Zhang, H. Yang, and X. Liu, “Instruct-FinGPT:

Financial Sentiment Analysis by Instruction Tuning of

General-Purpose Large Language Models, ” arXiv

preprint arXiv: 2306.12659, 2023. [Online]. Available:

https: //arxiv. org/abs/2306. 12659

[12] D. Wang, et al., “FinLoRA: Fine-tuning Quantized

Financial Large Language Models Using Low-Rank

Adaptation, ” arXiv preprint arXiv: 2412.11378, 2025.

[Online]. Available: https: //arxiv. org/abs/2412. 11378

[13] T. Konstantinidis, G. Iacovides, M. Xu, T. G.

Constantinides, and D. Mandic, “FinLlama: Financial

Sentiment Classification for Algorithmic Trading

Applications, ” arXiv preprint arXiv: 2403.12285, 2024.

[Online]. Available: https: //arxiv. org/abs/2403. 12285

[14] ResearchGate. (2024). “Leveraging AI-Powered

chatbots to enhance customer service efficiency and

future opportunities in automated support.”

ResearchGate, 385230161. [Online]. Available: https:

//www. researchgate. net/publication/385230161

Leveraging AI-Powered chatbots to enhance

customer service efficiency and future opportunities in

automated support

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1175

http://www.ijsr.net/
https://medium.com/@ysfckmk/parameter-efficient-fine-tuning-peft-for-large-language-models-making-ai-more-adaptable-and-52fb0395af2a
https://medium.com/@ysfckmk/parameter-efficient-fine-tuning-peft-for-large-language-models-making-ai-more-adaptable-and-52fb0395af2a
https://medium.com/@ysfckmk/parameter-efficient-fine-tuning-peft-for-large-language-models-making-ai-more-adaptable-and-52fb0395af2a
https://medium.com/@ysfckmk/parameter-efficient-fine-tuning-peft-for-large-language-models-making-ai-more-adaptable-and-52fb0395af2a
https://medium.com/@ysfckmk/parameter-efficient-fine-tuning-peft-for-large-language-models-making-ai-more-adaptable-and-52fb0395af2a
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://doi.org/10.48550/arXiv.2410.19878
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://medium.com/aimonks/parameter-efficient-fine-tuning-075954d1db51
https://medium.com/aimonks/parameter-efficient-fine-tuning-075954d1db51
https://medium.com/aimonks/parameter-efficient-fine-tuning-075954d1db51
https://medium.com/aimonks/parameter-efficient-fine-tuning-075954d1db51
https://medium.com/aimonks/parameter-efficient-fine-tuning-075954d1db51
https://medium.com/aimonks/parameter-efficient-fine-tuning-075954d1db51
https://arxiv.org/abs/2404.14779
https://arxiv.org/abs/2404.14779
https://arxiv.org/abs/2404.14779
https://arxiv.org/abs/2404.14779
https://arxiv.org/abs/2404.14779
https://www.nature.com/articles/s41467-024-45563-x
https://www.nature.com/articles/s41467-024-45563-x
https://www.nature.com/articles/s41467-024-45563-x
https://www.nature.com/articles/s41467-024-45563-x
https://www.nature.com/articles/s41467-024-45563-x
https://www.nature.com/articles/s41467-024-45563-x
https://www.nature.com/articles/s41467-024-45563-x
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://www.sciencedirect.com/science/article/abs/pii/S1568494624003053
https://arxiv.org/abs/2306.12659
https://arxiv.org/abs/2306.12659
https://arxiv.org/abs/2306.12659
https://arxiv.org/abs/2306.12659
https://arxiv.org/abs/2306.12659
https://arxiv.org/abs/2306.12659
https://arxiv.org/abs/2412.11378
https://arxiv.org/abs/2412.11378
https://arxiv.org/abs/2412.11378
https://arxiv.org/abs/2412.11378
https://arxiv.org/abs/2412.11378
https://arxiv.org/abs/2403.12285
https://arxiv.org/abs/2403.12285
https://arxiv.org/abs/2403.12285
https://arxiv.org/abs/2403.12285
https://arxiv.org/abs/2403.12285
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support
https://www.researchgate.net/publication/385230161_Leveraging_AI-Powered_chatbots_to_enhance_customer_service_efficiency_and_future_opportunities_in_automated_support

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[15] Scientific Reports. (2024). “Parameter-efficient

finetuning of large language models using semantic

knowledge tuning. ” Nature. [Online]. Available: https:

// www. nature. com/articles/s41598-024-75599-4

[16] Together. ai. (2024). “Announcing Serverless

MultiLoRA: Fine-tune and deploy hundreds of adapters

for model customization at scale. ” Together. ai Blog.

[Online]. Available: https: //www. together. ai/blog/

serverless-multi-lora-fine-tune-and-deploy-

hundredsof-adapters-for-model-customization-at-scale

[17] C. Ding, Y. Wang, T. Zhang, X. Hei, Y. Jin, and X. Yang,

“LoRA-C: Parameter-Efficient Fine-Tuning of Robust

CNN for IoT Devices, ” arXiv preprint arXiv:

2410.16954, 2024. [Online]. Available: https: // arxiv.

org/abs/2410. 16954

[18] Z. Tan, Q. Zeng, Y. Tian, Z. Liu, B. Yin, and M. Jiang,

“Democratizing Large Language Models via

Personalized Parameter-Efficient Fine-tuning, ” arXiv

preprint arXiv: 2402.04401, 2024. [Online]. Available:

https: // arxiv. org/abs/2402. 04401

[19] Hugging Face, “PEFT: Parameter-Efficient Fine-Tuning

of Large Language Models, ” GitHub Repository, 2023.

[Online]. Available: https: //github.

com/huggingface/peft

[20] Adapter documentation and implementation guidelines

from HuggingFace PEFT library. [Online]. Available:

https: //huggingface. co/docs/peft/main/en/ conceptual

guides/adapter

Paper ID: SR25612082136 DOI: https://dx.doi.org/10.21275/SR25612082136 1176

http://www.ijsr.net/
https://www.nature.com/articles/s41598-024-75599-4
https://www.nature.com/articles/s41598-024-75599-4
https://www.nature.com/articles/s41598-024-75599-4
https://www.nature.com/articles/s41598-024-75599-4
https://www.nature.com/articles/s41598-024-75599-4
https://www.nature.com/articles/s41598-024-75599-4
https://www.nature.com/articles/s41598-024-75599-4
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://www.together.ai/blog/serverless-multi-lora-fine-tune-and-deploy-hundreds-of-adapters-for-model-customization-at-scale
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2410.16954
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://arxiv.org/abs/2402.04401
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://huggingface.co/docs/peft/main/en/conceptual_guides/adapter
https://huggingface.co/docs/peft/main/en/conceptual_guides/adapter
https://huggingface.co/docs/peft/main/en/conceptual_guides/adapter
https://huggingface.co/docs/peft/main/en/conceptual_guides/adapter
https://huggingface.co/docs/peft/main/en/conceptual_guides/adapter
https://huggingface.co/docs/peft/main/en/conceptual_guides/adapter

