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Abstract: Parametric models in option pricing have consistently failed to provide results truly consistent with the observed market data, 

due to the fact that market participants change their option pricing attitudes from time to time. Furthermore, most of these models are 

based on questionable assumptions such as the assumption of constant volatility, yet empirical evidence strongly suggests otherwise. This 

has led to the development and the use of alternative non-parametric models such as the ANN models. However, in spite of the well-known 

significance of the sensitivity indices in option pricing, little attempts have been made to provide a mechanism for computing these indices 

from the ANN model. Consequently, this study sought to provide a mechanism for and conduct sensitivity analysis from the ANN model 

outputs and conclude by comparing the performance of the hybrid model and the conventional ANN model developed.  All the indices 

developed lied within their desired range of values and this, being a resultant of the derivatives of the developed ANN output with respect 

to its various inputs, demonstrated how reliable the model was. Results not only demonstrate how the indices could be computed from the 

ANN models, but also play a significant role in the validation of the model. 
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1. Introduction 
 

Among the non-parametric techniques, perhaps the most 

fertile area for empirical research has been estimating option 

pricing formula using neural network [1]. The very first 

attempt to do this was made by [2]. The study used three 

different network architectures namely: Radial Basis 

Function (RBF), Multilayer perceptron (MLP) and Projection 

Pursuit Regression (PPR) to fit both Monte-Carlo simulated 

Brownian underlier and Black-Scholes option data and S & P 

500 futures thereof. The authors however used a minimalist 

approach in the selection of their inputs and restricted the 

network inputs to time maturity (𝑇 − 𝑡) and Moneyness. 

Interest rate and volatility was assumed to be constant. The 

study used financial knowledge in construction, namely the 

“homogeneity property” of the option price formula which 

was borrowed from [3], consequently justifying the use of 

moneyness instead of the underlying price and strike price 

separately.  

 

[4] compared the option pricing performance of the ANN 

model to the Black-Scholes and the GARCH pricing models. 

The study used a MLP with a single layer of hidden nodes. 

The ANN was trained on the implied volatility rather than the 

option price and this led to an improved performance in terms 

of validation errors compared to the competing models. The 

hedging performance of the neural network, the GARCH 

option-pricing model and the Black-Scholes were also 

analyzed. According to [5], one of the limitations of the BSM 

that prompted the application of the ANN is the controversial 

assumption that the underlying probability distribution is 

lognormal. The study thus proposed a couple of hybrid 

models to reduce these limitations and enhance the ability of 

option pricing. The key input to their option pricing model 

was volatility, in which three popular GARCH type models 

were used in estimating volatility. Two non-parametric 

models based on the neural networks and the neuro-fuzzy 

networks were then developed to price call options for S&P 

500 index. Results were then compared with those of the 

BSM and they showed that both the neural network and the 

neuro-fuzzy network models outperformed the BSM. 

Furthermore, comparing the neural network and the neuro-

fuzzy approaches, [6] observed that for at-the-money options 

(ATM), the neural network model performed better and for 

both in-the-money (ITM) and out-of-the money (OTM) 

options, the neuro-fuzzy model provided better results. [7], 

using Nifty call option prices, made an attempt to improve the 

accuracy of option price estimation using ANNs by adjusting 

all input parameters using a suitable multiplier. The values of 

these multipliers were determined using known data that 

minimizes errors in valuation.  

 

Another application involving ANN on option pricing was 

one done by [8]. The study compared the option pricing 

ability of Robust ANNs optimized with the Huber function 

against those optimized with Least Squares. The comparison 

was in respect to pricing European call options on the S&P 

500 using daily data for the period April 1998 to August 2001. 

In the study, the analysis was augmented with the use of 

several historical and implied volatility measures. The study 

also went a step further to include hybrid networks that 

directly incorporated information from the parametric model 

in the analysis. It was found that the ANN models with the 

use of the Huber function outperformed the ones optimized 

with least squares in terms of the performance errors. [9] 

applied a hybrid neural network which preprocessed financial 

input data for improving the estimation of option market 

prices. The model in this study comprised of two parts. In the 

first part, a neural network model was developed to estimate 

volatility, while in the second part an additional neural 

network was developed to value the difference between the 

BSM results and the actual option market prices. The 

resulting option price was then a summation between the 

BSM and the network response. The study obtained that the 

hybrid system with a neural network for estimating volatility 

provided better performance in terms of pricing accuracy than 

either the BSM with historical volatility, or the BSM with 

volatility valued by the neural network. 
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[10], developed an ANN model that processes financial input 

data to estimate market option prices at closing. The ANNs 

ability was compared to the BSM, a comparison that revealed 

that the MSE for the ANN was less than that of the BSM in 

more than half the cases examined. The ANN model used 

exactly the same financial data as the BSM. [11] examined 

whether an MLP ANN, could be used to find a call option 

pricing formula better corresponding to market prices and the 

properties of the underlying asset than the Black-Scholes 

formula. The neural network method was applied to the out-

of-sample pricing and delta-hedging of daily Swedish stock 

index call options from 1997-1999, with the BSM with 

historical and implied volatility as a benchmark. The findings 

revealed that the ANN outperformed the benchmarks in both 

pricing and hedging [11]. [12] applied a non-parametric 

modular neural network (MNN) model to price the S&P-500 

European call options. The modules were based on time to 

maturity and moneyness of the options. The option price 

function of interest was homogenous of degree one with 

respect to the underlying index price and the strike price. The 

study found that modularity improved the generalization 

properties of standard feedforward ANN option pricing 

models (with or without the homogeneity), relative to the 

Black-Scholes model. 

 

From the literature reviewed, all the studies in which ANN 

was applied in option pricing attach this resolve to the 

shortcomings of the BSM with regards to its questionable 

assumptions such as log-normality of financial data [5], 

constant volatility [9], among others. However, hardly any 

study uses sensitivity analysis in the validation of the model 

with nearly all the studies only using the validation errors in 

validating their models. 

 

2. Materials and Methods 
 

Data 

The study used intraday data for the AAPL stock option for 

the period between December 2016 and March 2017 with 

56,238 data points. After modelling the option prices using 

ANN, we perform a sensitivity analysis by deriving the Greek 

letters with respect to the ANN model in a bid to demonstrate 

the role played by each of the inputs used in determining/ 

influencing the option prices.  

 

Sensitivity analysis  

Sensitivity analysis of model output investigates the 

relationship between the outputs of a model, possibly 

implemented in a computer program and its input variables 

(Saltelli et al., 1991). The relevance of this ranges from 

quality assurance of the model to identification of critical 

regions in the parameter space, just to mention but a few. Such 

sensitivities in option pricing can represent the different 

dimensions to the risk in an option. Financial institutions 

selling options to their clients can manage their risks using 

these sensitivities. Sensitivity analysis techniques are purely 

model dependent and normally quite easier for linear models 

than for non-linear models.  

 

Different sensitivity analysis techniques exist ranging from 

basic correlation analysis to advanced statistics. In option 

pricing however, sensitivity analysis is performed differently. 

Sensitivity analysis on option pricing is done using "Greek 

letters". The author defines "Greek letters" as the sensitivities 

of the option prices to a single-unit change in the value of 

either a state variable or a parameter. Financial institutions 

selling options to their clients can therefore manage their risk 

by Greek letters analysis. We adopt and explore this definition 

and line of argument and proceed to compute the sensitivity 

indices for option prices on our input variables namely: 

underlying asset price, time to maturity and volatility. 

 

Proposition 1 

For an option price 𝑃, with a strike price 𝑋, underlying asset 

price 𝑆 and time to maturity 𝑇, the sensitivities (Greeks) of 

the option price with respect to the underlying asset price, 

time to maturity and volatility are given by: 








=




=




=

P
v

P

S

P

                               (1) 

Now, Recall that the output of the ANN model is sigmoid-

transformed which is given by: 
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Proposition 2 

The derivative (with respect to y) of the sigmoid function is 

given by: 
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In which case we can proceed and re-write the derivative in 

terms of 𝜑(𝑦) as follows: 
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Completing the proof. 

Now, consider the resultant output from the output neuron of 

the hybrid ANN model which represents the scaled APPL call 

option price for each 𝛼, for 𝛼 = 1,2, … , 𝑛 is given by:
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Which can be re-written as: 
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Where 𝐼𝑗𝑜, represents the net input to the output neuron and is given by: 
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The later equation represents the transformation of the input 𝐼𝑗𝐻  to the hidden neuron and is given by; 
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Which implies that equation 𝐼𝑗0 can also be re-written as  
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It should be noted that equation 𝐼𝑗0 is a net representation of 

the net input to the 𝑗𝑡ℎ hidden node which was given by: 

( )*2

)()(

*

*

0 



 AGGtAGGjj

t

jMjjH
S

X
I ++










+=  

This leads to a transformation of the input 𝐼𝑗𝐻  to the 𝑗𝑡ℎ hidden 

neuron as follows: 
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From here, we proceed to obtain the different sensitivities i.e. 

Delta, Theta and Vega as follows: 

(a) Delta ANN (∆𝑨𝑵𝑵): Option prices versus the 

underlying asset price 

Let, the ultimate option price be denoted and given for each 

𝛼, for 𝛼 = 1,2, … , 𝑛. by. 
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Which is a descaled representation of scaled output. Then, the 

rate of change of the option price with respect to the rate of 

change of the underlying asset price, is denoted by ∆𝐴𝑁𝑁  

(Delta ANN) and is obtained as follows: 
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This is obtained by working backwards on 𝐼𝑗𝐻  as follows: 

𝐼𝑗𝐻  is a representation of the net input to the 𝑗𝑡ℎ hidden node 

is given by: 
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Now, the derivative of this equation 𝐼𝑗𝐻  above with respect to 

the underlying asset price 𝑆𝑡 is given by: 
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Next, note that the sigmoid transformation of the input 𝐼𝑗𝐻  to 

the 𝑗𝑡ℎ hidden neuron is given by equation 7. Thus, using 

proposition 2, the derivative with respect to 𝑆𝑡 of this sigmoid 

transformation (equation 7) is given: 
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Next, we find the derivative with respect to 𝑆𝑡 of the net input 

to the output neuron given by equation 6 as: 
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Recall that the resultant output from the output neuron was 

given in equation by equation 5. Consequently, an application 

of proposition 2 on this expression yields the following 

derivative with respect to the underlying asset price.  
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In which case the last two expressions in equation 12 are 

obtained by substituting 𝐼𝑗0
′𝑠  and 𝐼𝑗𝐻

′𝑠  from equation 11 and 9 

respectively. 

 

Ultimately, our ANN delta will be given by: 
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(b) Theta ANN (𝜣𝑨𝑵𝑵): Option prices versus time to 

maturity 

The rate of change of an option price with respect to the 

passage of time is usually denoted by 𝛩 and is defined as: 




=

P
                             (14) 

In which case 𝑃 is the option price and 𝜏 is the passage in 

time. This rate can be defined in terms of time to maturity 𝜏 =
𝑇 − 𝑡 so that: 
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This implies that 𝛩  can be expressed as minus one times the 

rate of change of the option price with respect to time to 

maturity. 

Recall that the ultimate option price be denoted and given for 

each 𝛼, for 𝛼 = 1,2, … , 𝑛. by: 
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Which is a descaled representation of the scaled output. Then, 

the rate of change of the option price with respect to the passage 

in time, is denoted by 𝛩𝐴𝑁𝑁  (Theta ANN) and is obtained as 

follows: 
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This is obtained by working backwards on 𝐼𝑗𝐻  as follows: 

𝐼𝑗𝐻  is a representation of the net input to the 𝑗𝑡ℎ hidden node 

was given by: 
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Now, the derivative of 𝐼𝑗𝐻  above with respect to 𝜏 is given by: 
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                     (18) 

Recall that the sigmoid transformation of the input 𝐼𝑗𝐻  to the 

𝑗𝑡ℎ hidden neuron was given by equation 7. Thus, using 

proposition 2, the derivative with respect to 𝜏 of this sigmoid 

transformation is obtained as follows: 
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(19) 

Next, we find the derivative with respect to 𝜏 of the net input 

to the output neuron given by equation 6 as: 
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(20) 

Recall that the resultant output from the output neuron was 

given in equation 5. Consequently, an application of 

proposition 2 on this expression yields the following 

derivative with respect to the time to maturity.  
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In which case the last two expressions in equation 13 are obtained by substituting 𝐼𝑗0
′𝜏 and 𝐼𝑗𝐻

′𝜏  from equation 20 and 18 

respectively. 

 

Ultimately, our ANN theta will be given by: 

Paper ID: SR25608164927 DOI: https://dx.doi.org/10.21275/SR25608164927 638 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 6, June 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

( ) ( )

( )
( ) 
( ) 

( )  

















+















−−=

−=



−=

*2

)(

'

*2

)(

'

*2

)(

'

*2

)(

'

*2

)(

'

3

*2

)(3

,,,,

,,,,

,,,,
,,,,

,,,,,,,,

AGGtt

AGGtt

AGGtt

AGGtt

AGGttAGGttANN

SXfMin

SXfMin

SXfMax
SXf

SXSX

























3

3

3

3

33

ω

ω

ω
ω

ωω

             (22) 

 

(c) Vega ANN (∆𝑨𝑵𝑵): Option prices versus the underlying asset price 

In this case, we denote the sensitivity index by Vega (𝜈)  and define it by: 
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
=

P
v                                  (23) 

 

This index gives the rate of change of our option price with respect to volatility.  

 

As before, let the ultimate option price be denoted and given for each 𝛼, for 𝛼 = 1,2, … , 𝑛. as. 
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Which is a descaled representation scaled output. Then, the 

rate of change of the option price with respect to the rate of 

change of volatility, is denoted by 𝜈𝐴𝑁𝑁  (Vega ANN) and is 

obtained as follows: 

 

( ) ( )

( )
( ) 
( ) 

( ) *2

)(

'

*2

)(

'

*2

)(

'

*2

)(

'

*2

)(

'

3

*2

)(3*2

)(

,,,,

,,,,

,,,,
,,,,

,,,,,,,,

*2
)(

*2
)(

*2
)(

*2
)(

*2
)(

AGGtt

AGGtt

AGGtt

AGGtt

AGGttAGGtt

AGGt

ANN

SXfMin

SXfMin

SXfMax
SXf

SXSXv

AGGt

AGGt

AGGt

AGGt

AGGt

























3

3

3

3

33

ω

ω

ω
ω

ωω

+















−
=

=



=

                       (24) 

 

This is again obtained by working backwards from equation 

𝐼𝑗𝐻  as follows: 

𝐼𝑗𝐻  is a representation of the net input to the 𝑗𝑡ℎ hidden node 

was given by: 
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Now, the derivative of 𝐼𝑗𝐻  with respect to 𝜎𝑡(𝐴𝐺𝐺)
2  is given by: 
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Next, recall that the sigmoid transformation of the input 𝐼𝑗𝐻  to 

the 𝑗𝑡ℎ hidden neuron was given by equation 7. Thus, using 

proposition 2, the derivative with respect to 𝜎𝑡(𝐴𝐺𝐺)
2  of this 

sigmoid transformation (equation 7) is given: 

                        (26) 

Next, we find the derivative with respect to 𝜎𝑡(𝐴𝐺𝐺)
2 of the net 

input to the output neuron given by equation 6 as: 
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Consider the resultant output from the output neuron was 

given by equation 5. Consequently, an application of 

proposition 2 on this expression yields the following 

derivative with respect to volatility.  
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In which case the last two expressions in equation 28 are obtained by substituting 𝐼
𝑗0

′
𝜎𝑡(𝐴𝐺𝐺)
2

 and 𝐼
𝑗𝐻

′
𝜎𝑡(𝐴𝐺𝐺)
2

 from equation 27 and 

25 respectively.   

Ultimately, our Vega ANN will be given by: 
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3. Results and Discussion 
 

In validating the developed ANN model, the study used 

intraday data for the AAPL stock option for the period 

between December 2016 and March 2017 with 56,238 data 

points. Of these options values, 59.15% were in the money 

(ITM) while 40.85% were out of the money (OTM). The data 

was divided into three sets with 50% (28,119) used for 

training the model, 25% (14,160) used in testing and the 

remaining 25% (14,059) used in the validation of the model. 

Basic preliminary analysis on the AAPL stock price showed 

a stock in which prices were generally characterized by an 

increasing trend over the 82 trading days between December 

2016 and March 2017 with the prices ranging from slightly 

above USD 100 to USD 140 as shown in Figure 1. 

 

 
Figure 1: The trend of the AAPL Stock Price 

Important in calculating option prices is volatility. This is 

defined in terms of the returns of the underlying asset, thus 

prompting an analysis of the AAPL stock returns. A basic 

analysis on the AAPL stock returns revealed averagely 

constant variation/movement in the stock prices except for 

around the 40th trading day where a sharp rise is experienced 

as can clearly be seen in figure 2 which is a graph of the 

AAPL stock squared returns. The squared returns are mainly 

confined to between 0 to 0.0005 with a single outlier of about 

0.004. This is further confirmed by the calculated 10-day 

historical volatility which exhibits a fairly constant trend as 

shown in figure 2. 
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Figure 2-5: AAPL Stock Returns and Volatility 

 

Sensitivity analysis 

The delta of a call option is the slope of the option price curve 

at a point corresponding to a price of the underlying asset. In 

this study, since option pricing was done using the ANN 

model, the delta corresponds to the slope of the ANN model 

outputs at various AAPL stock prices. Figure 6 shows the 

relationship between our call option prices and the AAPL 

stock prices.  

 

 
Figure 6: ANN Delta 

By computing the delta ratio, a financial institution that sells 

Options to a client can make a delta neutral position to hedge 

the risk of changes of the underlying asset price. In our figure 

6 for instance, suppose we consider the AAPL stock price at 

$100, the call option price at this point is $10, and the delta of 

the call option is 0.4. This implies that the financial institution 

involved would vend 10 call option to its client, so that the 

client has right to buy 1,000 shares at the maturity time. The 

implication of this is that: to construct a delta hedge position, 

the institution should buy 0.4 x 1,000 = 400 shares of the 

AAPL stock. If the AAPL stock price goes up to $1, the 

option price will go up by $0.4. Under this circumstances, the 

financial institution has a $400 ($1 x 400 shares) gain in its 

AAPL stock position, and a $400 ($0.4 x 1,000 shares) loss 

in its option position. The total payoff of the financial 

institution is zero. On the other hand, if the stock price goes 

down by $1, the option price will go down by $0.4. The total 

payoff of the financial institution is also zero. 

 

It is worth noting that the relationship between option prices 

and stock prices is not always linear hence the delta 

fluctuations over different AAPL stock price. Any investor 

interested in maintaining a delta neutral portfolio ought to 

adjust his hedged ratio periodically. The more frequent the 

adjustment are done the better the delta-hedging. Delta 

measure can be combined with other risk measures to yield 

better risk mitigation measures.  

 

When it comes to theta, it is also the slope of the option price 

curve at a point corresponding to a change in time. In this 

study, since option pricing was done using the ANN model, 

the theta corresponds to the slope of the ANN model outputs 

at various points in time. Figure 7 shows the relationship 

between our call option prices and time.  

 

 
Figure 7: Hybrid ANN Theta 

 

It is however worth noting that the value of an option is the 

combination of time value and stock value, and when time 

passes, the time value of the option decreases. Thus, the rate 

of change of the option price with respect to the passage of 

time, theta, is usually negative. Since the passage of time on 

an option is not uncertain, we do not need to make a theta 

hedge portfolio against the effect of the passage of time. 

However, we still regard theta as a useful parameter, because 

it is a proxy of gamma in the delta neutral portfolio.  
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Figure 8: Hybrid ANN Vega 

 

Suppose a delta-neutral and gamma-neutral portfolio has a 

vega equal to and the vega of a particular option is similar to 

gamma, we can add a position of   in option to make a vega-

neutral portfolio. To maintain delta-neutral, we should change 

the underlying asset position. However, when we change the 

option position, the new portfolio is not gamma-neutral. 

Generally, a portfolio with one option cannot maintain its 

gamma-neutral and vega-neutral at the same time. If we want 

a portfolio to be both gamma-neutral and vega-neutral, we 

should include at least two kind of option on the same 

underlying asset in our portfolio. 

 

4. Conclusion 
 

Sensitivity analysis on ANN not only aides in demonstrating 

how the indices can be computed from the ANN models, but 

also plays a significant role in the validation of the model. All 

the indices developed were within their desired range of 

values and this, being a resultant of the derivatives of the 

developed hybrid ANN output with respect to its various 

inputs, demonstrated how reliable the model was. 
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