
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Enhanced Model of Fault Tolerance in Cloud

Computing Architectures

Imran Alam

Sr. Assistant Professor, Al – Barkaat College of Graduate Studies, Aligarh - India

Email: imranalam504[at]gmail.com

Abstract: Cloud computing has embarked a revolution in accessing, provisioning and consumption of the information and computing

in the ICT industry. It has emerged as a novel paradigm of high performance and large-scale computing that actuates relocation of

computing and data from desktops and personal computers to big data centres. Cloud computing refers to manipulating, configuring, and

accessing the applications online. It offers online data storage, infrastructure and application and involves both a combination of software

and hardware- based computing resources delivered as a network service. Cloud computing's rising popularity has led many organizations

to adopt it, streamlining business operations, lowering infrastructure costs, and enhancing agility by making application deployment and

modifications easier. Cloud computing, like any computer system, is susceptible to failures. These failures are often a significance of the

inherently distributed and complex nature of cloud platforms. Cloud computing systems need to be built for failure to ensure that they

continue operating even if the cloud system has an error. The errors should be disguised from the cloud users to ensure that users continue

accessing the cloud services and this intern leads to cloud consumers gaining confidence in the availability and reliability of cloud services.

In this paper, we propose the use of N+1 Segmental redundancy architecture to design and implement failure-free clouds.

Keywords: Cloud Computing, Fault Tolerant, ICT Industry, N+1 Segmental Redundancy

1. Introduction

Cloud computing is an emerging method of computing that is

inclined to many challenges due to the nature of its

complexity. It is therefore important to understand that cloud

systems just like any other complex computing system, will

contain errors and experience failures. This does not mean

that cloud systems should be ineligible from performing

important work, but it does mean that techniques for detecting

failures, isolating the failures and understanding the

consequences of the failures, and remediating the failures,

should be employed and should be a central issue for

researchers to understand before the wide-scale adoption of

cloud computing systems [1].

 Cloud Computing systems are based on distributed systems.

[2] States that a key feature of distributed systems is that they

should mask failures and continue operating if some aspect of

the system fails. An important goal of distributed systems

design is to design systems that can automatically recover

from partial failures without seriously affecting the overall

performance of a system. A system should continue to operate

even in the event of a failure while the failure is being fixed

[2]. The techniques that are used to create the fault tolerance

capabilities in cloud computing can be divided into three

categories. Redundancy techniques, fault tolerance policies,

and load balancing [5].

The key technique for handling failures in computer systems

is redundancy [2]. The redundancy techniques ensure that

cloud computing architectures are fault tolerance and they can

handle faults and continue operating even in the event of

errors.

2. Notion of Dependability

According to [2] being fault-tolerant is muscularly related to

being dependability. Dependability, in essence, is about the

reliability and trustworthiness of a system or individual. It's

the ability to be counted on to perform as expected, even in

the face of challenges or failures. It encompasses multiple

attributes, including availability, reliability, safety, and

security. Dependability encompasses multiple attributes,

including availability, reliability, safety, security, and

maintainability. [2] further define these properties as:

• Availability: The system's readiness to provide correct

service when needed.

• Reliability: The continuity of correct service over time,

ensuring consistent performance.

• Safety: The absence of catastrophic consequences on

users or the environment.

• Security: The protection of information and systems from

unauthorized access or damage.

• Maintainability: The ease with which the system can be

repaired, updated, or modified.

The dependability of a system according to [6] is defined as

“the system’s ability to avoid service failures that are more

frequent and more severe than is accepted”. Dependable

cloud systems should deliver the correct services. Correct

service is delivered when the service implements the system

function it was designed for [6]. Service failures occur when

a system transitions from correct service to incorrect service.

Many means have been developed to ensure that

dependability in computer systems is attained. These means

can be grouped into the following categories [6]:

• Fault Tolerance: Implement redundancy, backup

systems, and failover mechanisms to minimize the

impact of failures.

• Monitoring and Alerting: Continuously monitor cloud

resources and infrastructure to detect and address

potential issues proactively.

• Security Measures: Implement robust security controls,

including firewalls, intrusion detection systems, and

access controls, to protect against security threats.

Paper ID: SR25605113318 DOI: https://dx.doi.org/10.21275/SR25605113318 565

http://www.ijsr.net/
mailto:imranalam504@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Performance Optimization: Optimize resource

allocation, network configuration, and application

design to ensure optimal performance and availability.

• Collaboration and Communication: Establish clear

communication channels and collaboration mechanisms

between cloud providers and users to address issues

effectively.

Fault prevention and fault tolerance techniques are aimed at

ensuring that the services provided by a computer system can

be trusted, while fault removal and fault forecasting are aimed

at reaching confidence in the ability for services to be trusted

by justifying that the functional and dependability

specifications are adequate and that the system is likely to

meet the specifications and functions [6].

3. Systems Failures

"System failure" are caused by breakdown, malfunction,

error, defect, collapse, and crash. [7] define faults as

“a fault is a defect or problem in a system that causes it to fail

or act abnormally. A fault is the fundamental damage of the

normal system operation, faults cause errors.”

Tolerance techniques need to be implemented or built into a

system to ensure that failures are camouflaged and the system

is failure-free and this is true for cloud systems. So, the fault

tolerance systems are developed. Fault tolerance is a system's

ability to continue operating effectively, even in the face of

hardware or software failures [7].

Fault tolerance is critical for cloud systems to permit cloud

users to continue accessing the needed cloud services even in

the presence of cloud failures [8]. The figure below represents

how faults cause errors and this, in turn, results in system

failure.

Figure 1: Adapted from [8]

There are four kinds of system faults, each fault is briefly

described below [7]:

a) Transient faults: occur as a result of some temporary

condition affecting the system. In cloud computing, this

includes conditions such as network connectivity failures

and service unavailability. Transient faults disappear as

soon as they are rectified. Transient faults can also be

resolved by restarting system components.

b) Intermittent faults: occur randomly at irregular

intervals and they normally resemble malfunctioning of

a system, hardware device, or component. Intermittent

faults are extremely difficult to diagnose and resolve

permanently. An example could be a hard disk that stops

functioning as a result of temperature fluctuations but it

returns to normal at some stage.

c) Permanent faults: These faults continue to exist until

the root cause of the fault is found and resolved. These

faults normally occur as a result of a complete

malfunction of a system component, and it is normally

straightforward to diagnose permanent faults.

d) Byzantine faults: These faults are the hardest to detect.

With Byzantine Faults, a system component might

behave illogically and provide incorrect results to the

client. This can be a result of a corrupted internal state of

a system, data corruption, or incorrect network routes.

They are extremely hard and expensive to handle.

4. Building Fault - Tolerant Cloud Systems:

The previous sections have introduced the basic concepts of

dependability and the need for dependable cloud systems.

This section will delve deeper and look at two main

approaches that are used to build failure-free cloud systems.

Understanding failure in cloud systems helps cloud service

providers and cloud system developers build cloud systems

that are resilient and able to continue even if there is a failure.

Building cloud systems for failure involves using fault

tolerance techniques to ensure that cloud systems continue

operating even in the event of a failure. [9] theorises that fault

tolerance ensures more availability and reliability of cloud

services during application execution.

systems that may occur either due to hardware failure or

software faults [8]. Fault tolerance is especially crucial in

cloud platforms as it gives assurance regarding the

performance, reliability, and availability of cloud applications

and services. It is therefore important to understand fault

tolerance in order to build failure-free cloud systems. Fault-

tolerant systems can continue responding to client requests

even when certain parts of a system are experiencing failures.

There are two common approaches used to build resilient

cloud systems. The first approach is the reactive approach.

With this approach, the influence of the failure on the cloud

system is decreased after the fault or failure has occurred [8].

The following techniques are used to achieve reactive fault

tolerance:

Check Pointing: Regular snapshots of the system state are

taken, allowing for a rollback to a stable state in the event of a

failure [11]. This method acts as a time machine for the system,

where it can "go back in time" to a moment before things go

wrong. By periodically saving the state of the system,

checkpointing minimizes data loss and recovery time,

facilitating a quick return to normal operations after a fault is

detected [12].

Paper ID: SR25605113318 DOI: https://dx.doi.org/10.21275/SR25605113318 566

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 2: Adapted from [12]

Replication: Data replication across different geographical

locations ensures that a copy of the data is always available,

even if one site goes down [7]. This is crucial for disaster

recovery and maintaining data availability [8].

BIST (Built – In – Self - Test): This technique enables systems

to conduct automatic diagnostics to detect hardware failures

promptly [10]. By regularly checking their own health, systems

can identify potential issues before they escalate, ensuring that

maintenance can be performed proactively rather than

reactively. This self-awareness is key to minimizing downtime

and maintaining system integrity [15].

TMR (Triple Modular Redundancy): A method where three

systems run in parallel; if one fails, the other two can continue

to provide uninterrupted service [9]. This redundancy ensures

that the system remains operational even in the face of hardware

failure, making it an essential strategy for critical applications

where downtime is not an option. The automatic failover

process ensures a seamless transition with no service

interruption [8].

Figure 3: Adapted from [24]

Load Balancing: In computing, load balancing is the process

of distributing a set of tasks over a set of resources

(computing units), with the aim of making their overall

processing more efficient. Load balancing can optimize

response time and avoid unevenly overloading some compute

nodes while other compute nodes are left idle. [16]. In cloud

environments, load balancing is used to distribute workloads

across multiple virtual machines and ensure high

availability and scalability. These resources could be virtual

machines, physical servers, and frameworks [17]. Load

balancing mechanisms are considered to be one of the best

fault-tolerance methods in cloud computing because these

methods provide easy logical resource management in cloud

computing environments [16]. Load balancing allows for

easy scaling of applications by adding or removing servers

as needed. Load balancers use different algorithms to

distribute traffic, such as round-robin, least connections, and

IP hash.

Self-Healing: Self-healing in cloud computing refers

to systems that can automatically identify and resolve issues,

like performance degradation or component failures, without

human intervention [7]. Numerous instances of the same

application run on various Virtual Machines; this ensures that

the failure of the application's instances are handled

automatically. This method permits the cloud system to

recognize and heal from problems occurring, without

depending on the administrator [8].

Rescue Workflow: Rescue workflow techniques are aimed at

solving fault tolerance for workflow-based systems. The

workflow is allowed to continue even if the task fails until it

becomes impossible to continue without attending to the

failed task [7].

Preemptive Migration: This technique prevents the system

components that are about to fail from impacting the

performance of the system [7]. This is achieved through

monitoring and by moving components away from nodes that

are about to fail and run them on more stable nodes. This

method uses a feedback loop to constantly monitor and

analyse applications for failure [8].

Job Migration: This technique involves migrating tasks that

have failed to execute on a specific physical resource because

of component failure onto a different physical resource [8].

A third method for building fault-tolerant cloud systems

called the Resilient Fault Tolerance method. This approach is

proposed by [7]. Resilient fault tolerance methods involve

building intelligent cloud systems. These cloud systems can

predict failure in the cloud system and respond to failure

automatically without human intervention. These smart cloud

systems can learn failures and the appropriate response to the

failure by using Machine Learning and Artificial Intelligence.

The use of resilient fault tolerance techniques for cloud

systems is leading to the development of cloud systems that

are termed smart clouds [7].

All the techniques mentioned above are aimed at developing

architectures and services that are highly available, scalable,

secure, and fault-tolerant [22] to ensure that the services

provided by cloud systems are failure-free. These approaches

bring about a justifiable level of trust in the cloud systems and

services provided by cloud service providers.

Paper ID: SR25605113318 DOI: https://dx.doi.org/10.21275/SR25605113318 567

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5. Related Work

The previous sections introduced the concepts of

dependability and fault- tolerance as a means to build failure-

free clouds. This section will look at what other researchers

have written or done concerning the subject of fault-free

cloud computing architectures.

In [5] Fault Tolerance Policies (Reactive and Proactive

Policies) are suggested as a means of building failure-free

clouds. The policies in [5] can be applied to hardware and

software. These techniques are quite complex to implement

and might introduce points of failure in a cloud system due to

the nature of their complexity.

In [18] the use of an Artificial Neural Network for fault

detection and a heartbeat detection strategy is proposed. This

is rather complex and might need specialized skills to

manage. This complexity in itself makes it difficult to manage

this implementation. [22] define a heartbeat as a cluster

management software that enables a cluster infrastructure to

identify its hosts, active and inactive, by periodic message

exchanges.

In [19] a hybrid cloud using open-source software to

implement fault tolerance is proposed. [21] used an

architectural approach to effectively represent and analyse

fault-tolerant software systems. This solution relies on

exception handling to tolerate faults associated with

component and connector failures, architectural mismatches,

and configuration faults. The approach by [21] is more

focused on software systems.

Antifragility is a technique proposed by [24], the proposal by

[24] suggests the use of failure induction techniques which

are comprised of monitoring and learning mechanisms.

Antifragility is a phenomenon that proposes that systems can

be strengthen when they are exposed to aberrant conditions in

their operating environment. This technique is not very

different from chaos engineering which proposes the

experimental injection of faults into systems in production so

as to observe the behaviour of the system and come up with

resilient solutions that enable the system to operate under

aberrant conditions [25]. Through exposure to shocks and

knocks the system is able to adjust and adapt to these

conditions [24].

[25] posits that chaos engineering is one technique that can be

used to build reliable cloud systems by injecting faults in the

system while it is in production. Chaos engineering is widely

used at Netflix, [25] further states that other cloud service

providers use this technique but use other names to describe

the same phenomenon.

6. N-Segmental Redundancy

The previous section looked at some of the research that has

been done in terms of fault tolerant computing. These

techniques are rather complex and bring in overheads in terms

of processing and the cost of the

infrastructure and daily operation. This section will focus on

redundancy as a solution for providing failure free clouds.

Redundancy implementation topologies are discussed. Cloud

computing is distributed in nature and this in itself brings in

complexity. We propose the use of N+1 Segmental

redundancy especially for hardware redundancy.

Redundancy may be applied to hardware, information, and

software that governs the operations of a cloud system.

Various configurations of redundant system design may be

used based on the cost, performance, associated risk, and

management complexity. These configurations take various

forms, such as N, N+1, N+2, 2N, 2N+1, 2N+2, 3N/2. These

multiple levels of redundancy topologies are described as N-

Segmental Redundancy [23]. [23] further breaks down the

building blocks of N-Modular redundancy by describing them

as follows:

1) In N-Segmental Redundancy (NSR), N refers to the bare

minimum number of independent components required to

successfully perform the intended operation.

2) N+X refers to a redundant system that contains X number

of spare components to act as an independent backup

when the primary component fails to operate as intended.

3) YN refers to the number of times the capacity is available

to replace the entire set of original components.

4) YN+X refers to the combination of the above two

topologies (N+X and YN).

5) AN/B refers to a shared redundancy topology, where A

amount of backup capacity is available for total B

amount of load or original components.

The choice of the redundancy topology largely depends on what

level of availability is required. Redundancy brings in extra cost

and complexity in cloud systems. It is critical that organisations

consider the level of availability required and they should be

able to take on the risk of increased cost and system complexity.

Redundancy systems may offer Active, Passive, Load Sharing,

or Standby configuration. Active redundancy means that the

redundant component is operating simultaneously with the

primary component, but the secondary component or node is

only used when the primary component fails. The Passive

component is switched on only after the original component

fails. The Standby redundancy component fills in the

availability gap temporarily until the issue with the primary

component is resolved. Additional load-sharing redundancy

may be applied to offer partial redundancy in meeting the

necessary resilience goals in an event that there is an increase in

workloads leading to the stressing of the cloud system [23]. The

load balancing mechanism should detect this increase and

distribute the workload to other standby nodes to ease the stress

on the cloud system. This will in turn lead to improved quality

of service in terms of the response time experienced by the cloud

consumer.

7. Architectural Diagrams

The above sections have mostly given descriptions of the N-

Segmental Redundancy architectures. In this section, we

present the architectural diagrams of some of the N-Segmental

Redundancy architectures as a way of qualifying the concepts

described above. In this section, we present the architecture

when N=1, N+1 and 2N+1. When N=1, the failure of the Virtual

Machine (VM1) will mean that the cloud system will not be

Paper ID: SR25605113318 DOI: https://dx.doi.org/10.21275/SR25605113318 568

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

accessible. Users will not be able to perform any computing

functions on the system until VM1 is restored.

Figure 4: N=1, adapted from [26] [27]

Figure 5: N+1, adapted from [26] [27]

In the figure above, the N+1 architecture is shown. In this

architecture, VM2 can either be live or on standby. When both

virtual machines are live, the load is shared between the two

virtual machines. Data is replicated between VM1 and VM2

so that if VM1 has a problem, the load can be transferred to

VM2 and users will continue operating without noticing a

significant shift in the performance of the cloud system.

Figure 6: 2N+1, adapted from [26][27]

In the architecture shown above, VM1, VM2 and VM3 are all

connected, data is replicated amongst the virtual machines.

The load can be shared amongst the three virtual machines to

improve the performance of the virtual machine. VM1 and

VM2 can be in production while VM3 is on standby, VM3

will move into live status if there is a problem with VM1 or

VM2 and in some cases VM1 and VM2 can have a problem

at the same time. In such a scenario VM3 will be live while

errors on VM1 and VM2 are resolved.

8. Conclusion

In this paper we introduced the notion of dependability in

cloud computing and proceeded by explaining the failures

that affect computing and the methods that can be used to

build failure free clouds. We propose the use of N+1

Segmental Redundancy topologies for designing and

implementing failure free clouds. We also state that the

topology chosen depends on the level of availability or

dependability that should be gained from the cloud system.

We further show examples of the architural diagrams as proof

of concept.

References

[1] Lee Badger, Tim Grace, Robert Patt-Corner, Jeff Voas,

NIST Special Publication 800-146: Cloud Computing

Synopsis and Recommendations: May 2012.

[2] Andrew S. Tanenbaum, Maarten Van Steen,

Distributed Systems: Principles and Paradigms,

Second Edition, Prentice Hall, Pearson

Education,2007, Upper Saddle River NJ 07458.

Paper ID: SR25605113318 DOI: https://dx.doi.org/10.21275/SR25605113318 569

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[3] Martin L. Shooman, Reliability of Computer Systems

and Networks: Fault Tolerance, Analysis, and

Design,2002 John Wiley & Sons, Inc.

[4] Antonio Bucchiarone, Henry Muccini and Patrizio

Pelliccione, Architecting Fault-tolerant Component-

based Systems: from requirements to testing,

Electronic Notes in Theoretical Computer Science 168

(2007) 77–90 International Journal of Computer

Science & Information Technology (IJCSIT) Vol 14,

No 2, April 2022 28

[5] Ehdi Nazari Cheragh Lou, Ahmad Khadem-Zadeh, and

Majid Haghparast,2015: A SURVEY OF FAULT

TOLERAN Architecture in Cloud Computing, Journal

of Network and Computer Applications,

http://dx.doi.org/10.1016/j.jnca.2015.10.004.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randall

and Carl Landwehr, Basic Concepts and Taxonomy of

Dependable and Secure Computing, IEEE

Transactions on Dependable and Secure Computing,

Volume 1, Number 1, January-March 2004.

[7] Mukosi A. Mukwevho and Turgay Celik, Toward a

Smart Cloud: A Review of Fault-Tolerance Methods in

Cloud Systems, Transactions on Services Computing,

DOI 10.1109/TSC.2018.2816644,2018.

[8] Priti Kumari and Parmeet Kaur, A survey of fault

tolerance in cloud computing: Journal of King Saud

University Computer and Information sciences, 2018.

[9] Eman Abdelfattah, Mohamed Elkawkagy and Ashraf

El-Sisi, A Reactive Fault Tolerance Approach for

Cloud Computing, 2017 13th International Computer

Engineering Conference (ICENCO), Electronic ISSN:

2475-2320.

[10] Madhu B. K and Ghamdan. M. Q, Proactive Fault

Tolerance for Resilience Cloud Data Centres to

Improve Performance Efficiency, International Journal

of Engineering Research & Technology, ISSN: 2278-

0181, Special Issue - 2016.

[11] Ao Zhou, Qibo Sun, Jinglin Li, Enhancing Reliability

via Checkpointing in Cloud Computing Systems,

China Communications 2017.

[12] Jialei Liu, Shangguang Wang, Ao Zhou, Sathish A.P

Kumar, Fangchun Yang, and Rajkumar Buyya, Using

Proactive Fault-Tolerance Approach to Enhance Cloud

Service Reliability, IEEE Transactions on Cloud

Computing, DOI 10.1109/TCC.2016.2567392.

[13] Zeeshan Amin, Nisha Sethi, Harshpreet Singh, Review

on Fault Tolerance Techniques in Cloud Computing,

International Journal of Computer Applications (0975

– 8887) Volume 116 – No. 18, April 2015.

[14] Atul Kumar, Deepti Malhotra, Study of Various

Reactive Fault Tolerance Techniques in Cloud

Computing, International Journal of Computer

Sciences and Engineering, Vol-6, Special Issue-5, Jun

2018 E-ISSN:2347-2693.

[15] Yong Chul Kwon, Magdalena Balazinska, Albert

Greenberg, Fault-tolerant Stream Processing using a

Distributed, Replicated File System,2008.

[16] Mehdi Nazari Cheraghlou, Ahmad Khadem-Zadeh,

Majid Haghparast, A survey of fault tolerance

architecture in cloud computing, Journal of Network

and Computer Applications,2015.

[17] Renu Sharma, Manohar Mishra, Janmenjoy Nayak,

Bighnaraj Naik, Danilo Pelusi, Innovation in Electrical

Power Engineering, Communication, and Computing

Technology, Proceedings of IEPCCT 2019.

[18] Amin, Z., Sethi, N., Singh, H., “Review on Fault

Tolerance Techniques in Cloud Computing”

International Journal of computer Applications, Vol.

116, April 2015, p. 11-17.

[19] E.M. Hernandez-Ramirez, V.J. Sosa-Sosa, I. Lopez-

Arevalo, A Comparison of Redundancy Techniques for

Private and Hybrid Cloud Storage, Journal of Applied

Research and Technology, Vol. 10, December 2012

[20] Elena Dubrova, Fault-Tolerant Design, Springer New

York Heidelberg Dordrecht London, DOI

10.1007/978-1-4614-2113-9,2013.

[21] Rogério de Lemos, Paulo Asterio de Castro Guerra and

Cecília Mary Fischer Rubira, A Fault-Tolerant

Architectural Approach for Dependable Systems,

IEEE Computer Society, 2006.

[22] Rosangela Melo, Vicente de Paulo F. Marques

Sobrinho, Ivanildo José de Melo Filho, Fábio

Feliciano, Paulo Romero Martins Maciel, Redundancy

Mechanisms Applied in Cloud Computing

infrastructures, 2019.

[23] Muhammad Raza, N, N+1, N+2, 2N, 2N+1, 2N+2,

3N/2 Redundancy Explained,

https://www.bmc.com/blogs/n-n1-n2-2n-3n-

redundancy/, accessed on 2nd July 2021.

[24] Amal Abid, Mouna Torjmen Khemakhem, Soumaya

Marzouk, Maher Ben Jemaa, Thierry Monteil, Khalil

Drira, 2014, Toward Antifragile Cloud Computing

Infrastructures, 1st International Workshop” From

Dependable to Resilient, from Resilient to Antifragile

Ambients and Systems” (ANTIFRAGILE 2014),

Procedia Computer Science 32 (2014) 850 – 855

[25] Russ Miles, 2019, Learning Chaos Engineering, First

Edition, O’Reilly Media, United States of America.

[26] Data Centre Redundancy: N+1, 2N, 2(N+1) or 3N2,

https://datacenter.com/news_and_insight/data center-

redundancy-2plus1-2n-distributed-redundancy/ last

accessed on 28th April 2022.

[27] An Introduction to UPS Redundancy,

http://www.feace.com/single-post/an-introduction-to-

ups redundancy last accessed on 28th April 2022.

Paper ID: SR25605113318 DOI: https://dx.doi.org/10.21275/SR25605113318 570

http://www.ijsr.net/
https://datacenter.com/news_and_insight/data
http://www.feace.com/single-post/an-introduction-to-ups
http://www.feace.com/single-post/an-introduction-to-ups

