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Abstract: Predictive Analytics, a branch of Data Science, has seen a surge in interest, attributed to the rise of Big Data and corporations’ 

needs to identify consumer trends. Unsupervised Learning refers to a branch of Machine Learning in which unlabeled data is sorted into 

clusters, to identify trends and create target-segments. This can be used within Predictive Analytics to predict spam e-mails, which 

customers are likely to return, and more. Several unsupervised learning methods have been created, with K-means, an iterative clustering 

algorithm, being widely used due to its simplicity and stable nature. This paper creates three additional Ensemble methods using the K-

Nearest-Neighbor as the base-learner. The Double-Ensemble, a novel method introduced here uses an Ensemble of kNNs with different 

‘k’s on subsets of data with randomized features. Experimental results demonstrated that the Double Ensemble method outperforms the 

normal kNN, with an additional accuracy of 9.8%.  
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1. Introduction 
 

Predictive Analytics refers to the process of using data mining 

to discover hidden patterns in data, and combining these 

patterns with business knowledge to extract value to an 

organization. It has been increasingly used both in the 

business world, as well in commercial applications, such as 

healthcare or the government. A key necessity for Predictive 

Analytics is a trend, which will allow a trained model to 

predict values in the future.  

 

Predictive Analytics works in conjunction with Big Data, 

which is characterized by great variety, has large volume, and 

increasing velocity. The amount of available data has steadily 

increased, at an ever-higher rate, resulting in the need for both 

fast and efficient algorithms.  

 

A method often used in Predictive Analytics is data 

clustering, which is a form of unsupervised learning, i. e. the 

data is not labeled. While this allows the computer to 

potentially find patterns in the data that may have escaped 

human analysis, it can also often lead to issues when clusters 

in the data are relatively similar. An optimal data clustering 

algorithm will create clusters that are different from each 

other, but contain similar data-points. This paper will discuss 

K-means and K-means++.  

 

While data clustering can provide insight into hidden patterns 

within data, supervised learning is needed in order to make 

predictions. Supervised learning also relies on these patterns, 

but a key difference is that in this case the test-data is labeled, 

so unsupervised learning does not need to take place. 

Supervised learning aims to connect a new data point to the 

group, or data-point most similar to it. In order for data to be 

analyzed effectively, most data-points need pre-processing. 

For unstructured or semi-structured data, this primarily 

involves using techniques to convert the data into structured 

data. For instance, for text-based data, ‘document frequency’ 

is used to see how often a keyword is mentioned across 

documents. Feature-selection is also used to create new 

features, potentially through a combination of existing 

features, which can provide a stronger relationship with the 

prediction-variable.  

 

Predictive Analytics has use-cases across all industries, but a 

key step is to use business knowledge for that particular 

domain when creating, evaluating, and optimizing models. 

Hence, this requires both a thorough analysis of the data, as 

well as an understanding of the industry for customer patterns, 

demographics, and more. For instance, a large-scale, 

unexpected event can often create an unexpected trend in the 

data; this was the case with the onset of the Covid-19 

pandemic, which, as a black-swan event, led to the stock-

market having a highly volatile period. [1]  

 

“Twitter mood predicts the stock market” [2], published in 

2011, was the first of a kind to use Predictive Analytics tools 

to analyze high-volume and high-noise data, such as the stock 

market. It used Natural Language Processing (NLP) to find 

the sentiment from tweets using OpinionFinder and GPOMS. 

It used Granger Causality to analyze the time-series data. This 

sparked further research into stock-prediction, with Natural 

Language Processing also expanding to news articles. In 

2019, [3] used an Auto-Regressive-Integrated-Moving-

Average model with a Recurrent Neural Network to predict 

the S&P-500 by training a model on historical stock data and 

news articles.  

 

A common use case of the kNN is in Recommender Systems, 

where a new user or product is attempted to be classified into 

a category of user / product groups. This information can then 

be used to recommend users products that users in a similar 

group purchased. This is known as a collaborative filtering 

system. A key problem in collaborative filtering too is the 

initial choice of ‘k’. The initial classification may be carried 

out using K-means or K-means++ through unsupervised 

learning. A new user may then be classified into a category 

using kNN. These systems often suffer from a lack of 

sufficient user data, a lack of business understanding, or users 

with a large number of interests. This may also be known as 

the ‘cold-start’ problem. A potential solution is to use content-

based filtering, where attributes of the product are used to 
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compare it to similar products, and hence recommend 

products to users.  

 

 

Similarly, Predictive Analytics was also used by Google to 

build “Correlate” [4], a follow-up tool to the algorithms it 

built in its prediction of the flu-influenza using google-search-

queries. Correlate uses a Nearest Neighbor approach using 

Pearson Similarity to generalize it to all search queries.  

 

As can be seen, Predictive Analytics is used across a wide 

range of fields. Supervised learning, which predicts a variable 

from a set of data, has far-reaching scope. Hence, the 

development of supervised machine learning models that are 

fast, efficient, and accurate is highly needed. This paper 

creates such an algorithm, coined the “Double Ensemble 

kNN”, which uses two Ensemble systems with kNNs as base-

learners. Our research is motived by the following questions:  

1) Can we enhance kNN by creating an Ensemble of 

learners with different k? 

2) Can we enhance kNN by creating an Ensemble of 

learners trained on subsets of the original dataset?  

 

We build our model in python 3.9 using the sci-kit learn 

library, and test it out on 9 datasets spanning a range of sizes 

and features. The results are compared to the traditional kNN, 

as well as a Single Ensemble, and a ‘random-k kNN’.  

 

2. Machine Learning Algorithms 
 

2.1 K-Means 

 

The K-Means algorithm is an iterative unsupervised 

clustering algorithm. It sorts the given data into ‘k’ groups, 

where ‘k’ has to be manually set beforehand.  

 

The algorithm starts by picking ‘k’ initial centroids, or cluster 

representatives. This step is known as the “Assignment Step”. 

The initial centroids are picked randomly. The initial 

centroids determine both the time taken for the algorithm to 

converge, as well the final result. Different initial centroids 

may have different results.  

 

In the Assignment Step, all other data points are then assigned 

to a cluster based on the centroid they are most similar to. 

Similarity can be measured using several techniques, 

however, Euclidean distance and cosine similarity are the 

most common technique. Cosine Similarity is particularly 

effective during document-clustering.  

 

In the recalculation step, centroids are recalculated as the 

average of the values of all data-points in a cluster, and the 

process is repeated. The algorithm continues until there is no 

change between two iterations, i. e. the centroids remain the 

same.  

 

In Euclidean Distance, a simple distance is calculated 

between the data-point and the centroid: For a dataset with ‘n’ 

features, the Euclidean distance is the root of the sum of the 

squares of the difference between the centroid and the data-

point. A smaller Euclidean Distance is better, as it indicates 

that the points are closer together. This can be mathematically 

represented as follows:  

𝑑(𝒑, 𝒒) = √∑(𝑞𝑖 − 𝑝1)2

𝑛

𝑖=1

  

 

Cosine Similarity finds the cosine of the angle between the 

two data-points, when they are regarded as vectors. Because 

the data-points are regarded as vectors, their dot-product is 

divided by their scalars when multiplied. Unlike Euclidean 

Distance, a higher value indicates that two data-points are 

more similar for Cosine Similarity.  

 

cos(𝑑1, 𝑑2) =
(𝑑1  ∙ 𝑑2)

‖𝑑1‖‖𝑑2‖
 

 

Cosine and Euclidean Similarity measures often perform 

relatively similarly, and are used in conjunction to provide a 

better overall similarity. However, Cosine may perform better 

with smaller ‘k’ values, while Euclidean may perform better 

for high-dimensional data. [5] 

 

Advantages:  

The K-means algorithm is one of the earliest unsupervised 

clustering models to be introduced, and is still relatively 

simple to implement. As a result, it can often be used as an 

‘initial measure’, or when testing a dataset for clustering, as 

the algorithm does not heavy modification or personalization 

to be implemented.  

 

Furthermore, K-means has linear time-complexity, 

represented in Big-O notation as O (n). While not ideal, this 

allows K-means to still be a relatively fast algorithm, 

particularly compared to Hierarchical Clustering. This is 

important for large datasets, which may have lots of data to 

be clustered. Big Data is also characterized by ‘Velocity’, and 

Predictive Analytics is often used in real-time, so efficient 

computation is key.  

 

Disadvantages:  

K-means algorithms are not well-suited for datasets that have 

a larger number of outliers, and the inclusion of outliers 

affects the value of the centroids. This is because all data-

points are forced to be assigned to a cluster, and outliers are 

not calculated. Hence, pre-processing of data to remove both 

outliers, as well as data-points with missing values is highly 

important.  

 

K-means’ primary disadvantage is the need for manual 

selection of ‘k’. This is often difficult to choose, because the 

number of clusters may not be known. Hence, it is difficult to 

predict the value for ‘k’, on which the algorithm so heavily 

relies. In order to find the optimal ‘k’, the algorithm may be 

run over several values of ‘k’ to find an optimum. However, 

this can often take more time.  

 

The initial centroids also have a significant effect on the final 

result, and since they are picked randomly and can result in a 

range of accuracies for the algorithm. While the algorithm 

will converge in all cases, it will likely only reach a local 

minimum: i. e. the final solution will not be the ideal solution.  
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2.2 K-Means ++ Algorithm 

 

While the K-means Algorithm continues to be a highly useful 

clustering algorithm, its primary disadvantage, as discussed 

above, is the effect the randomization of the picking of initial 

centroids can have. By leaving this initial decision up to 

chance, final results can often have varying results, and not 

be ideal.  

 

Hence, the K-means ++ algorithm aims to improve K-means 

by changing the initial process. It works by choosing an initial 

random centroid.  

 

Subsequently, for all other data points, the distance from that 

data-point to the nearest centroid is found.  

 

A new centroid is then found using a weighted probability 

distribution that is proportional to the distance calculated 

squared. This ensures that centroids are more likely to be 

further from each other, so that inter-cluster distance is 

higher, while intra-cluster distance is lower.  

 

The process is repeated until ‘k’ centroids are found.  

 

Once all centroids are found, the rest of the K-means 

algorithm is applied. K-means++ also has several advantages 

and disadvantages, but has been shown to generally perform 

better than K-means.  

 

A disadvantage is that the initial selection of centroids takes 

more time than K-means, but in general, the overall algorithm 

is faster. [6] first documents K-means++, finding a two-fold 

increase in the speed compared to K-means.  

 

 [7], compared K-means++ and K-means on a crime-domain 

dataset, and found that K-means++ with Cosine Similarity 

attained an F-measure of 0.910, while K-means with Cosine 

Similarity only attained 0.802.  

 

2.3 K-Nearest-Neighbor 

 

Explanation 

The K-Nearest-Neighbor was first introduced by [8], to solve 

“the discrimination problem”. It is one of the earliest machine 

learning algorithms for supervised learning, i. e. where a new 

test-point has to be classified into a set of class-labels by a 

model trained on a data-set of training-points with features. 

Despite its simplicity, the kNN continues to be one of the 

most widely used Machine Learning algorithms, and is used 

across a variety of disciplines. kNN works by classifying a 

new test-point based on the ‘k’ closest, previously classified, 

data-points. The case in which k=1 is referred to as the 

Nearest Neighbor approach.  

 

Similar to K-means, several dominant techniques exist for 

determination of the closest neighbor. This paper will 

primarily use Euclidean Distance, due to its simplicity and 

high accuracy. However, several approaches exist where a 

different similarity measure is used. For instance, Minkowski 

distance may be used for real-valued vector-spaces, i. e. 

distances are vectors and non-negative. Manhattan distance 

may also be used, which considers the absolute value 

difference between the Cartesian coordinates. [9] finds that 

the Euclidean Distance metric is best for categorical and 

numerical datasets, but not for mixed datasets.  

 

It is important to standardize the features if Euclidean 

distance is used. If this is not done, features with a large range 

can have a disproportionate impact.  

 

In Pseudocode, kNN can be described as follows:  

 

function kNN { (dataset = S, data point = d, k) => 

 Calculate distance for all points in S from d.  

 Sort the distances, smallest first.  

 Find the k nearest data points, and their classes.  

 Assign the majority class from the k nearest neighbors.  

 } 

 

 
Figure 1: KNN Algorithm 

 

As can be seen, increasing K increases the size of the ‘radius’. 

The dotted line indicates that distance is likely calculated 

using Euclidean metrics. The star is the data point to be 

classified. This is only a two-dimensional dataset. However, 

for larger datasets, the area would expand into all dimensions. 

This further shows the importance that the value of ‘k’ can 

have: For K=3, it is classified as Class B, while for K = 6, it 

is classified as Class A.  

 

Furthermore, the kNN is a non-parametric model. A 

parametric model makes an assumption of the form of the 

data-relationship, on which a model is built. This limits the 

model, as it cannot be flexible. Furthermore, the relationship 

assumed may be false. On the other hand, a non-parametric 

model does not make any assumptions. While this makes 

them more flexible, it has the disadvantage of needing more 

data. [10] 

 

Additionally, kNN is a “lazy learning” approach. This refers 

to a type of supervised learning model where the processing 

of training data points is carried out only when making 

predictions/inferences. Hence, the algorithm is not ‘trained’ 

per se. This is the opposite of eager learning. Lazy learning is 

better for Big Data, because the tendency of the data to 

continuously increase in size means an eager learning 

approach would have to be constantly retrained. However, it 

has the disadvantage of taking a lot of time to make a 

prediction. A lazy learning approach can also solve several 

problem simultaneously.  
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A Voronoi Diagram can be used to illustrate the Decision 

Boundary, particularly for Nearest Neighbors. The following 

example is taken from Raschka, Sebastian, “STAT 479: 

Machine Learning Lecture Notes [11]. For the case where 

k=1, a “decision boundary” can be established between two 

classes. At this decision boundary, there is a theoretical tie 

between the two-classes for classifying a new point. All 

points within a decision boundary will be classified to the 

training point within.  

 

 

 
Figure 2: Voronoi Diagram 

 

For each of these, by creating a decision boundary, one can 

easily see which class a new data point would be classified 

into. These may also be known as Voronoi-cells. Because 

Euclidean distance is used, a decision boundary is equidistant 

from two data points. A vertex is equidistant from three (or 

more) data points. When a class is added to each data-point, 

Voronoi cells can be combined to form decision boundaries 

for classes (as opposed to just cells). This is illustrated in the 

Figure below, which shows the final result of applying 

Voronoi tessellation using a Nearest Neighbor approach.  
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Figure 3: Voronoi Diagram part 2 

 

Problems 

There are three primary problems associated with the kNN:  

 

1) The algorithm is relatively inefficient, because it has a 

time-complexity of O (n), where n is the number of 

training-points. This occurs because the classification of 

a new data-point requires the calculation of its distance 

to all training-points. Hence, the kNN cannot be pre-

trained, and then shipped. In fact, there is no training 

required.  

 

Several methods have been proposed to solve this. The 

Condensed Nearest Neighbor, proposed by [12], aims to solve 

this by removing training-data-points which are relatively 

similar to others. Hence, only a subset of the original training 

data-points are stored. However, some implementations of the 

model select samples to retain randomly. Hence, this may 

save samples that do not accurately classify test-points. This 

would particularly be the case if the samples are deep within 

a neighborhood, and not on the sample.  

 

The reduced kNN (RNN) by [13] further works on the CNN 

by removing data-points that do not significantly affect the 

accuracy of the model. This can be known as “pruning”, and 

involves two significant types: editing and prototype 

selection. In editing, a data-point is permanently removed if 

it does not play a significant role in classification. This is 

usually true of outliers. Because the data point does not play 

a role in classification, it can safely be removed.  

In prototyping, several data points can be combined to a 

single data point. This is similar to K-means, where a centroid 

represents a class.  

 

Research has also been conducted into improving the 

classification time for the kNN by using different techniques, 

such as hashing. [14] create a method for the kNN with time-

complexity O (dlogn), using locally-sensitive hashing, 

whereby “the probability of collision is much higher for 

objects which are close to each other than those which are far 

apart”.  

 

2) The second problem associated with the kNN is the 

selection of ‘k’. The intuitive technique of ‘brute-

forcing’ the optimal value for ‘k’, i. e. testing out models 

with a range of values of k on a dataset and then choosing 

the most accurate value, is highly inefficient, as it would 

take a lot of time. This would be particularly ineffective 

for larger datasets.  

 

The upper-bound for k is usually set at the square root of the 

number of samples. However, since data sets increasingly 

have a large number of samples, brute-forcing is not an 

effective technique.  

 

Similarly, an optimal k would still be a local optimum: there 

exists the possibility of there being a different optimal value 

of k for each dataset. Selecting these would not be plausible, 

since for a real-world application, the class of a test-point will 

not be known. Hence, there exists the need for an accurate 

method to choose k.  

 

A k that is too small may result in noisy data having a larger 

impact, while a larger k would result in the algorithm being 

affected by data points not in the data-class / from another 

cluster. This is also why k is capped at the square root of n: a 

k that is larger would likely simply lead to the data-point 

being primarily affected by clusters that have a large number 

of data points. If k = n, any new data-point would be classified 

into the largest class.  

 

3) The “curse of dimensionality” refers to high-dimensional 

data with a small training size, also known as the “small 

N, large P” problem. This is a significant problem for the 

kNN because the volume of hyperspace that must be 

captured increases. Hence, the neighbors become more 

dissimilar, in both practice and theory. This is because 

they are now further apart in several dimensions from the 

test-point.  

 

2.4 Random KNN 

 

Several papers have investigated kNN Ensembles: i. e. a 

group of sub-kNNs that act together to form a larger model, 

based on a form of voting. Ensemble techniques have 

included bagging, boosting, and more. A large variety of 

Ensemble techniques surrounding the kNN have been shown 

to outperform both the base kNN, as well as other models.  

 

To begin with, [15] proposes Random KNN feature selection 

as an alternative to Random Forests, which work on bagging. 
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It applies this for “small n, large p” problems, which refers to 

datasets where there are a large number of features, but 

limited number of data-points to train models on. This may 

also be known as high-dimensional data, where dimensions 

refer to the features. Methods used to address ‘small n, large 

p’ problems focus on pre-processing of the data-set to reduce 

noisy data and features which have minimal impact, so that 

the model can be trained on a limited number of features. By 

reducing the number of features, models can better 

understand each feature, with the “samples per feature” ratio 

increasing.  

 

In their paper, Li. et al, [15] create a random KNN by creating 

a set of ‘r’ kNNs, trained on r subsets of the input features. 

This acts as a method to address high-dimensional data, as 

individual kNNs have a high samples-per-feature ratio, while 

the overall algorithm is trained on all features. The final 

classification of the model is done by majority vote of the 

individual kNNs. This works particularly well on datasets that 

have a large number of features, as these would allow for a 

large subset of individual kNNs to be formed, which can be 

trained on different variables.  

 

However, this does not solve the problem of redundant 

features being removed. They are equally likely to be chosen, 

and affect the final classification. A potential method to avoid 

this may be using cross-validation to create a weighted 

Ensemble.  

 

On their comparison of 12 datasets, on average, a Random 

Forest attained an accuracy of 83.0%, a R-1NN an accuracy 

of 89.9%, and a R-3NN an accuracy of 87.0%. This shows 

that the R-1NN performed best (and had a lower standard 

deviation too).  

 

This is contrary to Breiman’s prediction of bagging and 

bagging-like methods not being highly effective on stable 

classifiers such as the kNN. [16] states that the “vital element 

is the instability of the prediction method”. This refers to the 

impact that changing the data-set can have on the base-model. 

A model that is highly sensitive to the base-dataset would 

likely have a higher improvement when bagging is applied to 

it. In fact, [16] further states that bagging can “slightly 

degrade the performance of stable procedures” 

 

Bagging, introduced by [16], is a method to create Ensemble 

Learners by Bootstrapping and Aggerating. Two main 

methods to combine individual learners are proposed to 

receive the final classification: for labeled data-sets, voting is 

suggested, while for numerical data, averaging is suggested. 

Breiman further showed that accuracy tangents after 25 sub-

learners, with more sub-learners not further improving the 

performance.  

 

 [17] applies bagging to a kNN, similar to the method used by 

[15]. However, a key difference is that they focus on small 

datasets, because the kNN would be more unstable in these. 

Hence, bagging is approached from improving an unstable 

classifier, as opposed to the prior, which used it to reduce 

high-dimensional data.  

 

K is set to the square root of N, and 25 base-learners are used. 

They find that for small data-sets, there is minimal 

improvement when applying bagging to a kNN. In fact, it 

performed worse than an individual kNN for a data-set of size 

12. However, for data-sets that are medium in size, the bagged 

kNN offered slight accuracy improvements, in the range ~ 

(0.01-0.06). Furthermore, it was shown that voting was the 

best form of combining base-learners for a final classification.  

 

[18] constructs an ensemble of kNNs, where a subset of 

features is used to train individual kNNs. However, only a 

subsection of trained kNNs are chosen, based on validation 

from part of the training set. kNNs that have an accuracy 

above the upper quartile are chosen to be in the Ensemble. 

The benchmark value for accuracy can be changed based on 

the wanted number of final kNNs in the ensemble. When 

compared to other models, it is found that their model, 

ESkNN, is most accurate on 8 datasets, and the Random 

Forest is most accurate for 9 datasets. The random-KNN is 

only most accurate for 1 dataset, which suggests that data-set 

selection can play a large role, with a random-KNN working 

well only on specific types of datasets.  

 

3. Methodology 
 

While much work has been conducted on a subset of kNNs 

that use a subset of the training data, relatively less research 

has been probed into the construction of a kNN that uses base-

learners of kNNs with different ‘k’s. This has the potential to 

provide a more robust structure for kNNs that removes 

Problem II, the problem of choosing an appropriate k value.  

 

Several different Ensemble methods are created and analyzed 

in this paper.  

 

3.1 Random-k kNN 

The first is the Random-k KNN, where the value of ‘k’ is 

randomly chosen between the range of (1, √𝑁). This is carried 

out within an ensemble of 10 KNNs. An ensemble method is 

applied here because a randomly chosen k would naturally not 

return a high accuracy, as evidenced by research previously 

conducted into optimal ‘k’s. However, by choosing ‘k’ 

randomly for an Ensemble, the likely effect may be that 

KNNs of varying sizes will develop to avoid being 

disproportionately affected by noisy data or large classes.  

 

Pseudocode:  

Function Random-k kNN { 

for counter in range (0, 10):  

k = random integer between 1 and √𝑁 

create kNN 

predict Class 

majority vote on Class 

} 

 

This is a relatively novel technique of a k-NN ensemble, and 

most prior research into selection of ‘k’ has chosen to use a 

mathematical-optimization, or brute-forcing approach to 

select the optimal ‘k’. This approach has several advantages, 

including having faster selection of ‘k’, since brute-forcing 

requires testing on all ‘k’ values, which, particularly for larger 

datasets, can represent significant computational effort.  

 

Furthermore, the randomized selection of ‘k’ for kNNs within 

an Ensemble may lead to the avoidance of bias. Noisy data 
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continues to represent a key struggle in Big Data, particularly 

as data continues to grow and become noisier. An ensemble 

with randomized ‘k’ could bypass highly inaccurate results 

due to noisy data by ‘regressing to the mean’, i. e. being 

affected by noisy data from several classes, such that the final 

result would be closer to the true value.  

 

However, a randomized ‘k’ does not provide a significant 

mathematical suggestion for improved performance. The use 

of a k closer to √𝑁 may allow for a better overall suited kNN, 

and the creation of an Ensemble may simply increase 

computational complexity. If errors from individual kNNs are 

too large, they will ultimately affect the final result. Hence, it 

is important that errors from individual base-learners are 

canceled, not compounded.  

 

 

3.2 Double Ensemble 

Furthermore, a Double-Ensemble is created: The training set 

is divided into randomly chosen sub-training sets made out of 

N rows and M features, where N is the original number of 

rows and M=5, either 5, 10, 15, 20 times, and for each sub-

training set, an Ensemble of KNNs for k={1 to 5} is created. 

This Double Ensemble aims to use random feature-selection 

to avoid overfitting on a specific class, while several KNNs 

are used to further gauge the data from multiple angles.  

 

Pseudocode:  

 

 Function Double-Ensemble { Num1 = [5.10, 15, 20] 

 For counter in range (0, Num1):  

 Select subset of Dataset randomly. (of size features=5)  

 For k in range (1, 5):  

 Train kNN (for k)  

 Predict Class 

 Majority vote on Class 

 } 

 

While this model represents far higher complexity, both 

algorithmically and computationally, than the traditional 

kNN, it has the potential to solve several issues that currently 

plague the kNN.  

 

Being disproportionately affected by a certain feature can be 

solved through feature-selection. However, as a model that 

often does not undergo pre-processing, the option of choosing 

a subset of features represents a potential alternative to 

feature-selection: by choosing features randomly, a certain 

feature’s potentially misleading relationship with Y (i. e. the 

class to be predicted) could be diminished.  

 

Creating the second Ensemble further allows the model to 

minimize being affected by outliers, while points closer to the 

dataset are given more importance. This occurs because the 

point closest to the data-point is considered 5 times, the point 

second-closest 4 times, and so on. Hence, a weakness of the 

traditional kNN, the lack of weighting for points closer to the 

test-point, is also addressed.  

 

 

 

3.2 Single Ensemble 

 

Additionally, a Single Ensemble is created similar to the 

Double-Ensemble, except the second Ensemble is avoided: 

The model creates a subset of training data sets chosen 

randomly, on which a kNN for k=1 is applied.  

 

Pseudocode:  

Function Double-Ensemble { Num1 = [5.10, 15, 20] 

For counter in range (0, Num1):  

Select subset of Dataset randomly (of size features = 5)  

Train kNN (k=1)  

Predict Class 

Majority vote on Class 

} 

 

This Ensemble is built similar to the Double Ensemble, except 

the second Ensemble is replaced with a singular kNN with 

k=1. By noting the differences in performance between both 

algorithms, an assessment of whether the second Ensemble 

helps will be established. Even if there are minor 

improvements through the Double Ensemble, there is a trade-

off with the added time needed to compute the second 

Ensemble.  

 

4. Datasets 
 

To have a well-defined and generalized conclusion, we test 

our models on several datasets of various sizes and types. This 

has several practical advantages, including finding certain 

scenarios in which certain models are better, finding potential 

flaws in models, and gaining a deeper understanding of the 

improvement a certain model offers.  

 

8 Datasets are used in this paper, including multi-and binary-

classification. All datasets used are open-source, and links to 

their sources are included in the References section. The 

datasets span a variety of fields, sizes, and types.  

 

Table 1: Dataset Description 

Dataset Name 
Total Number  

of Samples 

Number of  

Features 

Credit 690 14 

Diabetes 768 8 

Breast Cancer 699 9 

Ionosphere 351 34 

Ecoli 336 7 

Wine 178 13 

Iris 150 4 

Lung Cancer 32 56 

  

As can be seen, the datasets have a variety of sizes, however, 

Lung Cancer is by far the smallest, with only 32 data-samples. 

This represents a common “small N, large P” problem, 

because it has 56 features, which represents a feature-sample 

ratio of 7: 4. Hence, it might be likely that the randomized 

Ensembles perform better on this dataset. The limited number 

of data-samples might act as a bottleneck in testing, limiting 

the testing sample to only 6 samples. (All datasets use a test-

sample size of 20% of the total data). Hence, even if the 

Ensemble models are better optimized to perform, we may not 

be able to distinguish them with other models due to the 

limited availability to assess them.  

 

Furthermore, datasets with a smaller number of features may 

be better suited to individual kNNs, because the use of a 
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randomized sub-set of data might result in kNNs being trained 

on the same dataset again. This could lead to randomized bias 

towards a particular data point if it was selected twice (or 

more).  

 

Because of this reason, it is likely that the Ensembles will 

perform better on Datasets with both a higher number of 

Samples and a higher number of Features; particularly, it will 

be interesting to note how the models perform on the Credit 

and Ionosphere datasets.  

 

Lastly, the datasets used here have been frequently used in the 

academic community to test models, and several pre-

processing tasks have been implemented to optimize machine 

learning models. However, to provide a general overview of 

the models, as well as assess how well they perform on raw 

data, without pre-processing techniques such as Feature-

selection of Hyper-parameter-selection, this paper has not 

used any pre-processing techniques; this excludes cleaning 

data, and filling null values with the mean of the column.  

 

5. Results 
 

All algorithms were tested on the Dataset mentioned, as well 

as three traditional kNNs for k = 1, 3 and √𝑁 to test how large 

the improvements in accuracy for the models were. The 

following table summarizes the results. Accuracy was 

calculated using the following formula:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100% 

 

Table 2: Experimental Results 

Dataset 
KNN Random 

KNN 

Double Ensemble Single Ensemble Max 

Accuracy 

Max Accuracy  

Model 1 3 √𝑁 5 10 15 20 5 10 15 20 

Credit 72% 67% 67% 67% 70% 70% 78% 79% 68% 72% 81% 77% 81% SE-15 

Diabetes 68% 65% 68% 68% 66% 69% 68% 71% 67% 69% 69% 69% 71% DE-20 

Breast Cancer 78% 76% 78% 78% 94% 96% 97% 96% 95% 94% 95% 96% 97% DE-15 

Ionosphere 82% 83% 82% 82% 82% 92% 92% 92% 93% 90% 94% 90% 94% SE-15 

Ecoli 84% 87% 84% 63% 56% 60% 60% 59% 54% 46% 53% 57% 87% 3-KNN 

Wine 95% 94% 95% 95% 96% 98% 98% 98% 96% 98% 98% 98% 98% DE, SE-[10, 15, 20] 

Iris 93% 93% 93% 67% 67% 67% 67% 67% 67% 67% 67% 67% 93% 1, 3, sqrt (N)-KNN 

Lung Cancer 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% All 

 

To begin with, it can be seen that in 5 out of 8 Datasets, the 

Double Ensemble or Single Ensemble outperforms the 

traditional kNN. Furthermore, this is often by a significant 

margin, on average, 9.8%. This is a relatively high difference, 

and further shows that the Ensemble techniques outperform 

the traditional kNN for several types of datasets.  

 

It is also noted that in both the Double Ensemble and the 

Single Ensemble, a larger value for the base-learners is 

associated with a generally larger accuracy. However, this is 

not a significant linear trend, but rather, a generalized one. 

The key observation is that there is often a significant 

difference in accuracy between the number of base-learners 

from 5 to 10, and a resultant diminished increase. Hence, it is 

suggested that an optimal value for the base-learns in both 

Double and Single Ensemble be set to 10.  

 

Interestingly, the Random-k kNN performs rather poorly. 

While it underperforms with the Ensembles, it performs on-

par with the traditional kNN. Hence, the random KNN is 

likely not a fit option, and will have probably ‘compounded’ 

the individual errors.  

 

The Lung Cancer dataset had all models perform with a 92% 

accuracy, which is likely due to all models predicting the 

same set of classes. The likely cause behind this relatively rare 

event would be a lack of training data and limited testing data, 

leading to the same answers, as randomization would not have 

enough space to have significant effects.  

 

The Iris and Ecoli datasets act as exceptions, with the 

traditional kNNs outperforming all Ensembles, and by a high 

margin. A further investigation into these datasets might 

likely yield a reason for this. However, a likely potential cause 

could be a high number of outliers, as well as all features 

playing a significant role in classification-determination.  

 

On average, the Double Ensemble outperforms the Single 

Ensemble. However, the margin of error is relatively high, 

because the outperformance is minimal. Hence, while the 

Double Ensemble outperforms the Single Ensemble, it is 

recommended that the Single Ensemble be used, because of 

the trade-off between accuracy and prediction-time.  

 

6. Double and Single Ensemble – Analysis 
 

In response to the data results, it is clear that the Double and 

Single Ensemble can regularly outperform the traditional 

kNN. However, a thorough analysis of their advantages and 

disadvantages is needed to assess their implications in a real-

world setting.  

 

Advantages 

A key advantage of the Double and Single Ensemble are their 

reduction of bias. Bias refers to when a machine learning 

model makes systematic errors, i. e. has a lower accuracy, 

because of inaccurate trend-identification in the data. This 

particularly occurs when a model underfits, which may occur 

if there is a lack of many data points. The Ensembles reduce 

bias by not being trained on all data-features.  

 

Furthermore, they reduce variance, which refers to how 

deeply a change in the training data affects the model’s 

prediction. This is particularly important for data-sets where 

the training data may not be fully accurate, or have many 

missing values. The models reduce variance, like many other 

Ensemble models, by not being trained on the complete 

dataset.  
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While several effective Ensemble Machine Learning models 

exist, the kNN double and single Ensemble create a highly 

applicable instance, through a combination of the relative 

simplicity of kNNs and error-reducing ensemble methods, 

reducing some of the kNN’s major disadvantages.  

 

For instance, when compared to a Random Forest, which 

applies bagging to Decision Trees, an Ensemble k-NN as 

created in this paper might prove more useful for 

recommendation engines. This is because a kNN works by 

creating user-neighborhoods, while a Random Forest, as an 

eager learner, attempts to understand and build patterns. 

These might be unnecessarily complicated, and potentially 

inaccurate. By using an ensemble, a user may also be mapped 

to better sub-categories, i. e. areas where neighborhoods 

overlap due to shared interests. Experimentally evaluating 

this hypothesis might be highly useful for the development of 

recommendation engines.  

 

A key advantage of the Double Ensemble over the Single 

Ensemble is weighting the nearest neighbor: this is a problem 

with the traditional kNN too, which does not place greater 

importance on neighbors closer to the test-point, but rather, 

values all k-nearest-neighbors equally. Since the double 

Ensemble considers the closer neighbors more often, their 

weightage increases.  

 

The total number of neighbors considered is, where T is the 

number of base-learners.  

 
(𝑇)(𝑇 + 1)

2
 

It is important to note that T = kmax, i. e. the furthest neighbor 

considered. If T =5, the 5th base-learner will consider the 5 

nearest neighbors, while the 4th base learner will only consider 

the 4 nearest neighbor. Hence, the Nth base-learner will 

consider the N-nearest-neighbor.  

 

The number of instances of the nth neighbor is: 𝑇 + 1 − 𝑛 

 

Hence, to find the weightage, the number of instances is 

divided by the total number of instances. Therefore:  

 

𝑊(𝑛) =
2(𝑇 + 1 − 𝑛)

 (𝑇) (𝑇 + 1) 
 

 

The below graph illustrates that the weight decreases linearly. 

This is because T is a constant, while ‘n’ increases. In this 

specific example, ‘T’ is taken as 3.  

 

 
Figure 4: Demonstration of Weighting 

 

Table 3: Sample Weight Calculation 
‘n’ value Weightage 

1 0.5 

2 0.333 

3 0.167 

Total 1 

 

 

This represents an advantage over the traditional kNN and 

Single-Ensemble kNN, where each neighbor is given a 

weightage of 1/k.  

 

Disadvantages 

A key disadvantage of kNNs is the high training-time, 

because the model has to parse all data-points prior to making 

a prediction, as a lazy-learner. By creating an Ensemble 

approach, the computational complexity increases multi-fold, 

relatively by the number of base-learners created. This effect 

is squared for the Double-Ensemble, since there are two 

Ensemble methods within each other.  

 

Furthermore, optimizing the Ensemble kNNs would be harder 

due to the introduction of a random effect, which removes the 

kNN’s traditional stability: the same data point is always 

classified into the same class. Because kNNs may be used for 

medical applications, or other important fields, a lack of 

stability can be a major drawback, and create uncertainty. 

Finding the optimal ‘k’, or number of base-learners, would 

also be harder.  

 

Lastly, the data results showed that datasets with a small 

number of features (such as the Iris Dataset) are not well 

suited for the Ensemble kNNs, because the randomization of 

data by splitting features does not effectively work.  

 

7. Conclusion 
 

This paper has investigated the design and applications of a 

novel kNN model, coined the ‘Double Ensemble kNN’, built 

on top of a ‘Single Ensemble kNN’ that uses randomized 

feature-splitting to increase accuracy and take advantage of 

the kNNs traditional stability and Ensemble methods 

reduction of bias and variance to create a net model that 

performs more accurately than the traditional kNN.  

 

While the Ensemble methods have several disadvantages, the 

higher accuracies, combined with other advantages, provide a 

defining case for their use in real-world applications, 

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 363 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 6, June 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

particularly datasets that contain a large number of features 

and data points.  

 

Further research may be conducted on the selection of an 

optimal number of base-learners for both Ensembles, that 

provides a midpoint for the tradeoff between accuracy and 

computational-time. This might push the model closer to 

Bayes Error, which is regarded as the lowest possible error 

rate that can be traditionally achieved.  
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Appendix 1 – Dataset Sources:  

 

Credit: https: //archive. ics. uci. edu/ml/datasets/default+of+credit+card+clients 

Diabetes: https: //www.kaggle. com/datasets/uciml/pima-indians-diabetes-database 

Breast Cancer Wisconsin: https: //archive. ics. uci. edu/ml/datasets/breast+cancer+wisconsin+ (diagnostic)  

Ionosphere: https: //archive. ics. uci. edu/ml/datasets/ionosphere 

Ecoli: https: //archive. ics. uci. edu/ml/datasets/ecoli 

Wine: https: //archive. ics. uci. edu/ml/datasets/wine 

Iris: https: //www.kaggle. com/datasets/uciml/iris 

Lung https: //archive. ics. uci. edu/ml/datasets/lung+cancer  

 

Appendix 2– Python Code 

 

from sklearn. neighbors import KNeighborsClassifier 

from sklearn. model_selection import train_test_split 

from sklearn. datasets import load_iris 

from sklearn. metrics import accuracy_score 

import pandas as pd 

import numpy as np 

import matplotlib. pyplot as plt 

from sklearn. preprocessing import LabelEncoder 

from sklearn. preprocessing import MinMaxScaler 

import math 

import random 

from sklearn import datasets 

 

class RunTest:  

 def __init__ (self):  

 self. num_columns = 1 

 

 def compile (self):  

 X_train, X_test, y_train, y_test = self. Ionosphere ()  

 self. normal_KNN (X_train, X_test, y_train, y_test)  

 self. random_K (X_train, X_test, y_train, y_test)  

 self. DoubleEnsemble (X_train, X_test, y_train, y_test)  

 self. SingleEnsemble (X_train, X_test, y_train, y_test)  

 

 def LungCancer (self):  

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/lung_cancer_examples. csv')  

 df = df. drop (['Name', 'Surname'], axis=1)  

 X = df. drop ("Result", axis=1)  

 y = df ['Result'] 

 X = X. fillna (0)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 def Iris (self):  

 dataset = datasets. load_iris ()  

 X, y = dataset. data, dataset. target 

 #X = X [: , [0, 2]] 

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, stratify=y, test_size=0.7, random_state=42 

)  

 return (X_train, X_test, y_train, y_test)  

 def Wine (self):  
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 df = pd. read_csv ('/Users/dhruvroongta/Downloads/winequalityN. csv')  

 df ['type'] = df ['type']. astype ("category"). cat. codes 

 X = df. drop ("type", axis=1)  

 y = df ['type'] 

 X = X. fillna (0)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 def Ecoli (self):  

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/ecoli. csv')  

 le = LabelEncoder ()  

 le. fit (df ["SITE"])  

 df ["SITE"] = le. transform (df ["SITE"])  

 df = df. drop (columns= ["SEQUENCE_NAME"])  

 y = df. iloc [: , 7] 

 X = df. iloc [: , 0: 6] 

 X = X. fillna (0)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 def LiverData (self):  

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/indian_liver_patient. csv')  

 df ["Gender"] = df ["Gender"]. map ({"Male": 0, "Female": 1})  

 indices_to_keep = ~df. isin ([np. nan, np. inf,-np. inf]). any (1)  

 df = df [indices_to_keep]. astype (np. float64)  

 df = df. dropna ()  

 y = df ["Dataset"] 

 y = y. map ({"1": 0, "2": 1})  

 

 print (df)  

 X = df 

 X = X. drop (columns= ["Dataset"])  

 X = X. fillna (0)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 def Ionosphere (self):  

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/ionosphere_data_kaggle. csv')  

 y = df ["label"] 

 y = y. map ({"g": 1, "b": 0})  

 X = df 

 X = X. drop (columns= ["label"])  

 X = X. fillna (0)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 def WisconsinBreastCancer (self):  

 

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/BreastCancerWisconsin. csv')  

 y = df ["diagnosis"] 

 y = y. map ({"M": 1, "B": 0})  

 X = df 

 X = X. drop (columns= ["diagnosis"])  

 X = X. fillna (0)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 

 return (X_train, X_test, y_train, y_test)  

 def IndianPrimaDiabetes (self):  

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/diabetes. csv')  

 df = df. replace ("?", np. NaN)  

 df = df. fillna (df. mean ())  

 X = df. drop ('Outcome', axis=1)  
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 y = df ['Outcome'] 

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 def creditloading (self):  

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/cc_approvals. csv')  

 

 df = df. replace ("?", np. NaN)  

 df = df. fillna (df. mean ())  

 for col in df. columns:  

 # Check if the column is of object type 

 if df [col]. dtypes == 'object':  

 # Impute with the most frequent value 

 df [col] = df [col]. fillna (df [col]. value_counts (). index [0])  

 le = LabelEncoder ()  

 self. num_columns = int (len (df. columns))  

 for col in df. columns:  

 # Compare if the dtype is object 

 if df [col]. dtype=='object':  

 # Use LabelEncoder to do the numeric transformation 

 df [col]=le. fit_transform (df [col])  

 

 

 df = df. drop ([df. columns [10], df. columns [13]], axis=1)  

 df = df. values 

 X, y = df [: , 0: 13], df [: , 13] 

 scaler = MinMaxScaler (feature_range= (0, 1))  

 rescaledX = scaler. fit_transform (X)  

 X_train, X_test, y_train, y_test = train_test_split ( 

 X, y, test_size=0.2, random_state=42)  

 return (X_train, X_test, y_train, y_test)  

 

 def normal_KNN (self, X_train, X_test, y_train, y_test):  

 knn_normal = KNeighborsClassifier (n_neighbors=1)  

 knn_normal. fit (X_train, y_train)  

 y_pred_normal = (knn_normal. predict (X_test))  

 print ("KNN-1: ", accuracy_score (y_test, y_pred_normal))  

 

 knn_normal = KNeighborsClassifier (n_neighbors=3)  

 knn_normal. fit (X_train, y_train)  

 y_pred_normal = (knn_normal. predict (X_test))  

 print ("KNN-3: ", accuracy_score (y_test, y_pred_normal))  

 

 knn_normal = KNeighborsClassifier (n_neighbors=int (math. sqrt (self. num_columns)))  

 knn_normal. fit (X_train, y_train)  

 y_pred_normal = (knn_normal. predict (X_test))  

 print ("KNN-Sqrt (n) = ", int (math. sqrt (self. num_columns)), " ", accuracy_score (y_test, y_pred_normal))  

 

 def random_K (self, X_train, X_test, y_train, y_test):  

 overallArr = [] 

 for counter in range (1, 10):  

 knn = KNeighborsClassifier (n_neighbors=random. randint (1, int (math. sqrt (self. num_columns))))  

 knn. fit (X_train, y_train)  

 y_pred = (knn. predict (X_test))  

 overallArr. append (list (y_pred))  

 results = pd. DataFrame (overallArr, columns=list (range (0, len (y_test))))  

 finalResults = [] 

 for column in results:  

 sum = (results [column]. sum ())  

 if sum >= (len (results. index)) / 2:  

 finalResults. append (1)  

 else:  

 finalResults. append (0)  
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 acc = (accuracy_score (y_test, finalResults))  

 print ("Random-K: ", acc)  

 

 def SingleEnsemble (self, X_train, X_test, y_train, y_test):  

 results = pd. DataFrame ()  

 xpoints, ypoints = [], [] 

 for num1 in range (1, 5):  

 overallArr = [] 

 num2 = 5 

 # Actual r-knn starts here 

 for counter in range (0, 5 * num1):  

 X_train_sub = pd. DataFrame (X_train). sample (n=4, axis='columns')  

 X_test_sub = pd. DataFrame (X_test) [X_train_sub. columns] 

 y_predArr = [] 

 k = 1 

 knn = KNeighborsClassifier (n_neighbors=k)  

 knn. fit (X_train_sub, y_train)  

 

 y_pred = (knn. predict (X_test_sub))  

 y_predArr. append (y_pred)  

 overallArr. append (list (y_pred))  

 

 results = pd. DataFrame (overallArr, columns=list (range (0, len (y_test))))  

 finalResults = [] 

 for column in results:  

 sum = (results [column]. sum ())  

 if sum >= (len (results. index)) / 2:  

 finalResults. append (1)  

 else:  

 finalResults. append (0)  

 acc = (accuracy_score (y_test, finalResults))  

 print ("Single-Ensemble: ", 5 * num1, " ", acc)  

 xpoints. append (num1)  

 ypoints. append (acc)  

 

 def DoubleEnsemble (self, X_train, X_test, y_train, y_test):  

 results = pd. DataFrame ()  

 xpoints, ypoints = [], [] 

 for num1 in range (1, 5):  

 overallArr = [] 

 num2 = 5 

 #Actual r-knn starts here 

 for counter in range (0, 5*num1):  

 X_train_sub = pd. DataFrame (X_train). sample (n = 4, axis = 'columns')  

 X_test_sub = pd. DataFrame (X_test) [X_train_sub. columns] 

 y_predArr = [] 

 

 for k in range (1, 1+num2):  

 knn = KNeighborsClassifier (n_neighbors=k)  

 knn. fit (X_train_sub, y_train)  

 

 y_pred = (knn. predict (X_test_sub))  

 y_predArr. append (y_pred)  

 overallArr. append (list (y_pred))  

 

 results = pd. DataFrame (overallArr, columns =list (range (0, len (y_test))))  

 finalResults = [] 

 for column in results:  

 sum = (results [column]. sum ())  

 if sum >= (len (results. index)) /2:  

 finalResults. append (1)  

 else:  

 finalResults. append (0)  
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 acc = (accuracy_score (y_test, finalResults))  

 print ("Double-Ensemble: ", 5*num1, " ", acc)  

 xpoints. append (num1)  

 ypoints. append (acc)  

 

 

 

 

to_run = RunTest ()  

to_run. compile ()  
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