
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Double Ensemble kNN: Towards an Enhanced k-

Nearest-Neighbors

Dhruv Roongta (TISB)1, Dr. Anasse Bari (NYU)2

1, 2Pioneer Academics

Abstract: Predictive Analytics, a branch of Data Science, has seen a surge in interest, attributed to the rise of Big Data and corporations’

needs to identify consumer trends. Unsupervised Learning refers to a branch of Machine Learning in which unlabeled data is sorted into

clusters, to identify trends and create target-segments. This can be used within Predictive Analytics to predict spam e-mails, which

customers are likely to return, and more. Several unsupervised learning methods have been created, with K-means, an iterative clustering

algorithm, being widely used due to its simplicity and stable nature. This paper creates three additional Ensemble methods using the K-

Nearest-Neighbor as the base-learner. The Double-Ensemble, a novel method introduced here uses an Ensemble of kNNs with different

‘k’s on subsets of data with randomized features. Experimental results demonstrated that the Double Ensemble method outperforms the

normal kNN, with an additional accuracy of 9.8%.

Keywords: Predictive Analytics, K-Means++, K-Nearest-Neighbors, Randomized-KNN, Double Ensemble, Machine Learning

1. Introduction

Predictive Analytics refers to the process of using data mining

to discover hidden patterns in data, and combining these

patterns with business knowledge to extract value to an

organization. It has been increasingly used both in the

business world, as well in commercial applications, such as

healthcare or the government. A key necessity for Predictive

Analytics is a trend, which will allow a trained model to

predict values in the future.

Predictive Analytics works in conjunction with Big Data,

which is characterized by great variety, has large volume, and

increasing velocity. The amount of available data has steadily

increased, at an ever-higher rate, resulting in the need for both

fast and efficient algorithms.

A method often used in Predictive Analytics is data

clustering, which is a form of unsupervised learning, i. e. the

data is not labeled. While this allows the computer to

potentially find patterns in the data that may have escaped

human analysis, it can also often lead to issues when clusters

in the data are relatively similar. An optimal data clustering

algorithm will create clusters that are different from each

other, but contain similar data-points. This paper will discuss

K-means and K-means++.

While data clustering can provide insight into hidden patterns

within data, supervised learning is needed in order to make

predictions. Supervised learning also relies on these patterns,

but a key difference is that in this case the test-data is labeled,

so unsupervised learning does not need to take place.

Supervised learning aims to connect a new data point to the

group, or data-point most similar to it. In order for data to be

analyzed effectively, most data-points need pre-processing.

For unstructured or semi-structured data, this primarily

involves using techniques to convert the data into structured

data. For instance, for text-based data, ‘document frequency’

is used to see how often a keyword is mentioned across

documents. Feature-selection is also used to create new

features, potentially through a combination of existing

features, which can provide a stronger relationship with the

prediction-variable.

Predictive Analytics has use-cases across all industries, but a

key step is to use business knowledge for that particular

domain when creating, evaluating, and optimizing models.

Hence, this requires both a thorough analysis of the data, as

well as an understanding of the industry for customer patterns,

demographics, and more. For instance, a large-scale,

unexpected event can often create an unexpected trend in the

data; this was the case with the onset of the Covid-19

pandemic, which, as a black-swan event, led to the stock-

market having a highly volatile period. [1]

“Twitter mood predicts the stock market” [2], published in

2011, was the first of a kind to use Predictive Analytics tools

to analyze high-volume and high-noise data, such as the stock

market. It used Natural Language Processing (NLP) to find

the sentiment from tweets using OpinionFinder and GPOMS.

It used Granger Causality to analyze the time-series data. This

sparked further research into stock-prediction, with Natural

Language Processing also expanding to news articles. In

2019, [3] used an Auto-Regressive-Integrated-Moving-

Average model with a Recurrent Neural Network to predict

the S&P-500 by training a model on historical stock data and

news articles.

A common use case of the kNN is in Recommender Systems,

where a new user or product is attempted to be classified into

a category of user / product groups. This information can then

be used to recommend users products that users in a similar

group purchased. This is known as a collaborative filtering

system. A key problem in collaborative filtering too is the

initial choice of ‘k’. The initial classification may be carried

out using K-means or K-means++ through unsupervised

learning. A new user may then be classified into a category

using kNN. These systems often suffer from a lack of

sufficient user data, a lack of business understanding, or users

with a large number of interests. This may also be known as

the ‘cold-start’ problem. A potential solution is to use content-

based filtering, where attributes of the product are used to

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 355

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

compare it to similar products, and hence recommend

products to users.

Similarly, Predictive Analytics was also used by Google to

build “Correlate” [4], a follow-up tool to the algorithms it

built in its prediction of the flu-influenza using google-search-

queries. Correlate uses a Nearest Neighbor approach using

Pearson Similarity to generalize it to all search queries.

As can be seen, Predictive Analytics is used across a wide

range of fields. Supervised learning, which predicts a variable

from a set of data, has far-reaching scope. Hence, the

development of supervised machine learning models that are

fast, efficient, and accurate is highly needed. This paper

creates such an algorithm, coined the “Double Ensemble

kNN”, which uses two Ensemble systems with kNNs as base-

learners. Our research is motived by the following questions:

1) Can we enhance kNN by creating an Ensemble of

learners with different k?

2) Can we enhance kNN by creating an Ensemble of

learners trained on subsets of the original dataset?

We build our model in python 3.9 using the sci-kit learn

library, and test it out on 9 datasets spanning a range of sizes

and features. The results are compared to the traditional kNN,

as well as a Single Ensemble, and a ‘random-k kNN’.

2. Machine Learning Algorithms

2.1 K-Means

The K-Means algorithm is an iterative unsupervised

clustering algorithm. It sorts the given data into ‘k’ groups,

where ‘k’ has to be manually set beforehand.

The algorithm starts by picking ‘k’ initial centroids, or cluster

representatives. This step is known as the “Assignment Step”.

The initial centroids are picked randomly. The initial

centroids determine both the time taken for the algorithm to

converge, as well the final result. Different initial centroids

may have different results.

In the Assignment Step, all other data points are then assigned

to a cluster based on the centroid they are most similar to.

Similarity can be measured using several techniques,

however, Euclidean distance and cosine similarity are the

most common technique. Cosine Similarity is particularly

effective during document-clustering.

In the recalculation step, centroids are recalculated as the

average of the values of all data-points in a cluster, and the

process is repeated. The algorithm continues until there is no

change between two iterations, i. e. the centroids remain the

same.

In Euclidean Distance, a simple distance is calculated

between the data-point and the centroid: For a dataset with ‘n’

features, the Euclidean distance is the root of the sum of the

squares of the difference between the centroid and the data-

point. A smaller Euclidean Distance is better, as it indicates

that the points are closer together. This can be mathematically

represented as follows:

𝑑(𝒑, 𝒒) = √∑(𝑞𝑖 − 𝑝1)2

𝑛

𝑖=1

Cosine Similarity finds the cosine of the angle between the

two data-points, when they are regarded as vectors. Because

the data-points are regarded as vectors, their dot-product is

divided by their scalars when multiplied. Unlike Euclidean

Distance, a higher value indicates that two data-points are

more similar for Cosine Similarity.

cos(𝑑1, 𝑑2) =
(𝑑1 ∙ 𝑑2)

‖𝑑1‖‖𝑑2‖

Cosine and Euclidean Similarity measures often perform

relatively similarly, and are used in conjunction to provide a

better overall similarity. However, Cosine may perform better

with smaller ‘k’ values, while Euclidean may perform better

for high-dimensional data. [5]

Advantages:

The K-means algorithm is one of the earliest unsupervised

clustering models to be introduced, and is still relatively

simple to implement. As a result, it can often be used as an

‘initial measure’, or when testing a dataset for clustering, as

the algorithm does not heavy modification or personalization

to be implemented.

Furthermore, K-means has linear time-complexity,

represented in Big-O notation as O (n). While not ideal, this

allows K-means to still be a relatively fast algorithm,

particularly compared to Hierarchical Clustering. This is

important for large datasets, which may have lots of data to

be clustered. Big Data is also characterized by ‘Velocity’, and

Predictive Analytics is often used in real-time, so efficient

computation is key.

Disadvantages:

K-means algorithms are not well-suited for datasets that have

a larger number of outliers, and the inclusion of outliers

affects the value of the centroids. This is because all data-

points are forced to be assigned to a cluster, and outliers are

not calculated. Hence, pre-processing of data to remove both

outliers, as well as data-points with missing values is highly

important.

K-means’ primary disadvantage is the need for manual

selection of ‘k’. This is often difficult to choose, because the

number of clusters may not be known. Hence, it is difficult to

predict the value for ‘k’, on which the algorithm so heavily

relies. In order to find the optimal ‘k’, the algorithm may be

run over several values of ‘k’ to find an optimum. However,

this can often take more time.

The initial centroids also have a significant effect on the final

result, and since they are picked randomly and can result in a

range of accuracies for the algorithm. While the algorithm

will converge in all cases, it will likely only reach a local

minimum: i. e. the final solution will not be the ideal solution.

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 356

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

2.2 K-Means ++ Algorithm

While the K-means Algorithm continues to be a highly useful

clustering algorithm, its primary disadvantage, as discussed

above, is the effect the randomization of the picking of initial

centroids can have. By leaving this initial decision up to

chance, final results can often have varying results, and not

be ideal.

Hence, the K-means ++ algorithm aims to improve K-means

by changing the initial process. It works by choosing an initial

random centroid.

Subsequently, for all other data points, the distance from that

data-point to the nearest centroid is found.

A new centroid is then found using a weighted probability

distribution that is proportional to the distance calculated

squared. This ensures that centroids are more likely to be

further from each other, so that inter-cluster distance is

higher, while intra-cluster distance is lower.

The process is repeated until ‘k’ centroids are found.

Once all centroids are found, the rest of the K-means

algorithm is applied. K-means++ also has several advantages

and disadvantages, but has been shown to generally perform

better than K-means.

A disadvantage is that the initial selection of centroids takes

more time than K-means, but in general, the overall algorithm

is faster. [6] first documents K-means++, finding a two-fold

increase in the speed compared to K-means.

 [7], compared K-means++ and K-means on a crime-domain

dataset, and found that K-means++ with Cosine Similarity

attained an F-measure of 0.910, while K-means with Cosine

Similarity only attained 0.802.

2.3 K-Nearest-Neighbor

Explanation

The K-Nearest-Neighbor was first introduced by [8], to solve

“the discrimination problem”. It is one of the earliest machine

learning algorithms for supervised learning, i. e. where a new

test-point has to be classified into a set of class-labels by a

model trained on a data-set of training-points with features.

Despite its simplicity, the kNN continues to be one of the

most widely used Machine Learning algorithms, and is used

across a variety of disciplines. kNN works by classifying a

new test-point based on the ‘k’ closest, previously classified,

data-points. The case in which k=1 is referred to as the

Nearest Neighbor approach.

Similar to K-means, several dominant techniques exist for

determination of the closest neighbor. This paper will

primarily use Euclidean Distance, due to its simplicity and

high accuracy. However, several approaches exist where a

different similarity measure is used. For instance, Minkowski

distance may be used for real-valued vector-spaces, i. e.

distances are vectors and non-negative. Manhattan distance

may also be used, which considers the absolute value

difference between the Cartesian coordinates. [9] finds that

the Euclidean Distance metric is best for categorical and

numerical datasets, but not for mixed datasets.

It is important to standardize the features if Euclidean

distance is used. If this is not done, features with a large range

can have a disproportionate impact.

In Pseudocode, kNN can be described as follows:

function kNN { (dataset = S, data point = d, k) =>

 Calculate distance for all points in S from d.

 Sort the distances, smallest first.

 Find the k nearest data points, and their classes.

 Assign the majority class from the k nearest neighbors.

 }

Figure 1: KNN Algorithm

As can be seen, increasing K increases the size of the ‘radius’.

The dotted line indicates that distance is likely calculated

using Euclidean metrics. The star is the data point to be

classified. This is only a two-dimensional dataset. However,

for larger datasets, the area would expand into all dimensions.

This further shows the importance that the value of ‘k’ can

have: For K=3, it is classified as Class B, while for K = 6, it

is classified as Class A.

Furthermore, the kNN is a non-parametric model. A

parametric model makes an assumption of the form of the

data-relationship, on which a model is built. This limits the

model, as it cannot be flexible. Furthermore, the relationship

assumed may be false. On the other hand, a non-parametric

model does not make any assumptions. While this makes

them more flexible, it has the disadvantage of needing more

data. [10]

Additionally, kNN is a “lazy learning” approach. This refers

to a type of supervised learning model where the processing

of training data points is carried out only when making

predictions/inferences. Hence, the algorithm is not ‘trained’

per se. This is the opposite of eager learning. Lazy learning is

better for Big Data, because the tendency of the data to

continuously increase in size means an eager learning

approach would have to be constantly retrained. However, it

has the disadvantage of taking a lot of time to make a

prediction. A lazy learning approach can also solve several

problem simultaneously.

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 357

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A Voronoi Diagram can be used to illustrate the Decision

Boundary, particularly for Nearest Neighbors. The following

example is taken from Raschka, Sebastian, “STAT 479:

Machine Learning Lecture Notes [11]. For the case where

k=1, a “decision boundary” can be established between two

classes. At this decision boundary, there is a theoretical tie

between the two-classes for classifying a new point. All

points within a decision boundary will be classified to the

training point within.

Figure 2: Voronoi Diagram

For each of these, by creating a decision boundary, one can

easily see which class a new data point would be classified

into. These may also be known as Voronoi-cells. Because

Euclidean distance is used, a decision boundary is equidistant

from two data points. A vertex is equidistant from three (or

more) data points. When a class is added to each data-point,

Voronoi cells can be combined to form decision boundaries

for classes (as opposed to just cells). This is illustrated in the

Figure below, which shows the final result of applying

Voronoi tessellation using a Nearest Neighbor approach.

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 358

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 3: Voronoi Diagram part 2

Problems

There are three primary problems associated with the kNN:

1) The algorithm is relatively inefficient, because it has a

time-complexity of O (n), where n is the number of

training-points. This occurs because the classification of

a new data-point requires the calculation of its distance

to all training-points. Hence, the kNN cannot be pre-

trained, and then shipped. In fact, there is no training

required.

Several methods have been proposed to solve this. The

Condensed Nearest Neighbor, proposed by [12], aims to solve

this by removing training-data-points which are relatively

similar to others. Hence, only a subset of the original training

data-points are stored. However, some implementations of the

model select samples to retain randomly. Hence, this may

save samples that do not accurately classify test-points. This

would particularly be the case if the samples are deep within

a neighborhood, and not on the sample.

The reduced kNN (RNN) by [13] further works on the CNN

by removing data-points that do not significantly affect the

accuracy of the model. This can be known as “pruning”, and

involves two significant types: editing and prototype

selection. In editing, a data-point is permanently removed if

it does not play a significant role in classification. This is

usually true of outliers. Because the data point does not play

a role in classification, it can safely be removed.

In prototyping, several data points can be combined to a

single data point. This is similar to K-means, where a centroid

represents a class.

Research has also been conducted into improving the

classification time for the kNN by using different techniques,

such as hashing. [14] create a method for the kNN with time-

complexity O (dlogn), using locally-sensitive hashing,

whereby “the probability of collision is much higher for

objects which are close to each other than those which are far

apart”.

2) The second problem associated with the kNN is the

selection of ‘k’. The intuitive technique of ‘brute-

forcing’ the optimal value for ‘k’, i. e. testing out models

with a range of values of k on a dataset and then choosing

the most accurate value, is highly inefficient, as it would

take a lot of time. This would be particularly ineffective

for larger datasets.

The upper-bound for k is usually set at the square root of the

number of samples. However, since data sets increasingly

have a large number of samples, brute-forcing is not an

effective technique.

Similarly, an optimal k would still be a local optimum: there

exists the possibility of there being a different optimal value

of k for each dataset. Selecting these would not be plausible,

since for a real-world application, the class of a test-point will

not be known. Hence, there exists the need for an accurate

method to choose k.

A k that is too small may result in noisy data having a larger

impact, while a larger k would result in the algorithm being

affected by data points not in the data-class / from another

cluster. This is also why k is capped at the square root of n: a

k that is larger would likely simply lead to the data-point

being primarily affected by clusters that have a large number

of data points. If k = n, any new data-point would be classified

into the largest class.

3) The “curse of dimensionality” refers to high-dimensional

data with a small training size, also known as the “small

N, large P” problem. This is a significant problem for the

kNN because the volume of hyperspace that must be

captured increases. Hence, the neighbors become more

dissimilar, in both practice and theory. This is because

they are now further apart in several dimensions from the

test-point.

2.4 Random KNN

Several papers have investigated kNN Ensembles: i. e. a

group of sub-kNNs that act together to form a larger model,

based on a form of voting. Ensemble techniques have

included bagging, boosting, and more. A large variety of

Ensemble techniques surrounding the kNN have been shown

to outperform both the base kNN, as well as other models.

To begin with, [15] proposes Random KNN feature selection

as an alternative to Random Forests, which work on bagging.

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 359

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

It applies this for “small n, large p” problems, which refers to

datasets where there are a large number of features, but

limited number of data-points to train models on. This may

also be known as high-dimensional data, where dimensions

refer to the features. Methods used to address ‘small n, large

p’ problems focus on pre-processing of the data-set to reduce

noisy data and features which have minimal impact, so that

the model can be trained on a limited number of features. By

reducing the number of features, models can better

understand each feature, with the “samples per feature” ratio

increasing.

In their paper, Li. et al, [15] create a random KNN by creating

a set of ‘r’ kNNs, trained on r subsets of the input features.

This acts as a method to address high-dimensional data, as

individual kNNs have a high samples-per-feature ratio, while

the overall algorithm is trained on all features. The final

classification of the model is done by majority vote of the

individual kNNs. This works particularly well on datasets that

have a large number of features, as these would allow for a

large subset of individual kNNs to be formed, which can be

trained on different variables.

However, this does not solve the problem of redundant

features being removed. They are equally likely to be chosen,

and affect the final classification. A potential method to avoid

this may be using cross-validation to create a weighted

Ensemble.

On their comparison of 12 datasets, on average, a Random

Forest attained an accuracy of 83.0%, a R-1NN an accuracy

of 89.9%, and a R-3NN an accuracy of 87.0%. This shows

that the R-1NN performed best (and had a lower standard

deviation too).

This is contrary to Breiman’s prediction of bagging and

bagging-like methods not being highly effective on stable

classifiers such as the kNN. [16] states that the “vital element

is the instability of the prediction method”. This refers to the

impact that changing the data-set can have on the base-model.

A model that is highly sensitive to the base-dataset would

likely have a higher improvement when bagging is applied to

it. In fact, [16] further states that bagging can “slightly

degrade the performance of stable procedures”

Bagging, introduced by [16], is a method to create Ensemble

Learners by Bootstrapping and Aggerating. Two main

methods to combine individual learners are proposed to

receive the final classification: for labeled data-sets, voting is

suggested, while for numerical data, averaging is suggested.

Breiman further showed that accuracy tangents after 25 sub-

learners, with more sub-learners not further improving the

performance.

 [17] applies bagging to a kNN, similar to the method used by

[15]. However, a key difference is that they focus on small

datasets, because the kNN would be more unstable in these.

Hence, bagging is approached from improving an unstable

classifier, as opposed to the prior, which used it to reduce

high-dimensional data.

K is set to the square root of N, and 25 base-learners are used.

They find that for small data-sets, there is minimal

improvement when applying bagging to a kNN. In fact, it

performed worse than an individual kNN for a data-set of size

12. However, for data-sets that are medium in size, the bagged

kNN offered slight accuracy improvements, in the range ~

(0.01-0.06). Furthermore, it was shown that voting was the

best form of combining base-learners for a final classification.

[18] constructs an ensemble of kNNs, where a subset of

features is used to train individual kNNs. However, only a

subsection of trained kNNs are chosen, based on validation

from part of the training set. kNNs that have an accuracy

above the upper quartile are chosen to be in the Ensemble.

The benchmark value for accuracy can be changed based on

the wanted number of final kNNs in the ensemble. When

compared to other models, it is found that their model,

ESkNN, is most accurate on 8 datasets, and the Random

Forest is most accurate for 9 datasets. The random-KNN is

only most accurate for 1 dataset, which suggests that data-set

selection can play a large role, with a random-KNN working

well only on specific types of datasets.

3. Methodology

While much work has been conducted on a subset of kNNs

that use a subset of the training data, relatively less research

has been probed into the construction of a kNN that uses base-

learners of kNNs with different ‘k’s. This has the potential to

provide a more robust structure for kNNs that removes

Problem II, the problem of choosing an appropriate k value.

Several different Ensemble methods are created and analyzed

in this paper.

3.1 Random-k kNN

The first is the Random-k KNN, where the value of ‘k’ is

randomly chosen between the range of (1, √𝑁). This is carried

out within an ensemble of 10 KNNs. An ensemble method is

applied here because a randomly chosen k would naturally not

return a high accuracy, as evidenced by research previously

conducted into optimal ‘k’s. However, by choosing ‘k’

randomly for an Ensemble, the likely effect may be that

KNNs of varying sizes will develop to avoid being

disproportionately affected by noisy data or large classes.

Pseudocode:

Function Random-k kNN {

for counter in range (0, 10):

k = random integer between 1 and √𝑁

create kNN

predict Class

majority vote on Class

}

This is a relatively novel technique of a k-NN ensemble, and

most prior research into selection of ‘k’ has chosen to use a

mathematical-optimization, or brute-forcing approach to

select the optimal ‘k’. This approach has several advantages,

including having faster selection of ‘k’, since brute-forcing

requires testing on all ‘k’ values, which, particularly for larger

datasets, can represent significant computational effort.

Furthermore, the randomized selection of ‘k’ for kNNs within

an Ensemble may lead to the avoidance of bias. Noisy data

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 360

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

continues to represent a key struggle in Big Data, particularly

as data continues to grow and become noisier. An ensemble

with randomized ‘k’ could bypass highly inaccurate results

due to noisy data by ‘regressing to the mean’, i. e. being

affected by noisy data from several classes, such that the final

result would be closer to the true value.

However, a randomized ‘k’ does not provide a significant

mathematical suggestion for improved performance. The use

of a k closer to √𝑁 may allow for a better overall suited kNN,

and the creation of an Ensemble may simply increase

computational complexity. If errors from individual kNNs are

too large, they will ultimately affect the final result. Hence, it

is important that errors from individual base-learners are

canceled, not compounded.

3.2 Double Ensemble

Furthermore, a Double-Ensemble is created: The training set

is divided into randomly chosen sub-training sets made out of

N rows and M features, where N is the original number of

rows and M=5, either 5, 10, 15, 20 times, and for each sub-

training set, an Ensemble of KNNs for k={1 to 5} is created.

This Double Ensemble aims to use random feature-selection

to avoid overfitting on a specific class, while several KNNs

are used to further gauge the data from multiple angles.

Pseudocode:

 Function Double-Ensemble { Num1 = [5.10, 15, 20]

 For counter in range (0, Num1):

 Select subset of Dataset randomly. (of size features=5)

 For k in range (1, 5):

 Train kNN (for k)

 Predict Class

 Majority vote on Class

 }

While this model represents far higher complexity, both

algorithmically and computationally, than the traditional

kNN, it has the potential to solve several issues that currently

plague the kNN.

Being disproportionately affected by a certain feature can be

solved through feature-selection. However, as a model that

often does not undergo pre-processing, the option of choosing

a subset of features represents a potential alternative to

feature-selection: by choosing features randomly, a certain

feature’s potentially misleading relationship with Y (i. e. the

class to be predicted) could be diminished.

Creating the second Ensemble further allows the model to

minimize being affected by outliers, while points closer to the

dataset are given more importance. This occurs because the

point closest to the data-point is considered 5 times, the point

second-closest 4 times, and so on. Hence, a weakness of the

traditional kNN, the lack of weighting for points closer to the

test-point, is also addressed.

3.2 Single Ensemble

Additionally, a Single Ensemble is created similar to the

Double-Ensemble, except the second Ensemble is avoided:

The model creates a subset of training data sets chosen

randomly, on which a kNN for k=1 is applied.

Pseudocode:

Function Double-Ensemble { Num1 = [5.10, 15, 20]

For counter in range (0, Num1):

Select subset of Dataset randomly (of size features = 5)

Train kNN (k=1)

Predict Class

Majority vote on Class

}

This Ensemble is built similar to the Double Ensemble, except

the second Ensemble is replaced with a singular kNN with

k=1. By noting the differences in performance between both

algorithms, an assessment of whether the second Ensemble

helps will be established. Even if there are minor

improvements through the Double Ensemble, there is a trade-

off with the added time needed to compute the second

Ensemble.

4. Datasets

To have a well-defined and generalized conclusion, we test

our models on several datasets of various sizes and types. This

has several practical advantages, including finding certain

scenarios in which certain models are better, finding potential

flaws in models, and gaining a deeper understanding of the

improvement a certain model offers.

8 Datasets are used in this paper, including multi-and binary-

classification. All datasets used are open-source, and links to

their sources are included in the References section. The

datasets span a variety of fields, sizes, and types.

Table 1: Dataset Description

Dataset Name
Total Number

of Samples

Number of

Features

Credit 690 14

Diabetes 768 8

Breast Cancer 699 9

Ionosphere 351 34

Ecoli 336 7

Wine 178 13

Iris 150 4

Lung Cancer 32 56

As can be seen, the datasets have a variety of sizes, however,

Lung Cancer is by far the smallest, with only 32 data-samples.

This represents a common “small N, large P” problem,

because it has 56 features, which represents a feature-sample

ratio of 7: 4. Hence, it might be likely that the randomized

Ensembles perform better on this dataset. The limited number

of data-samples might act as a bottleneck in testing, limiting

the testing sample to only 6 samples. (All datasets use a test-

sample size of 20% of the total data). Hence, even if the

Ensemble models are better optimized to perform, we may not

be able to distinguish them with other models due to the

limited availability to assess them.

Furthermore, datasets with a smaller number of features may

be better suited to individual kNNs, because the use of a

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 361

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

randomized sub-set of data might result in kNNs being trained

on the same dataset again. This could lead to randomized bias

towards a particular data point if it was selected twice (or

more).

Because of this reason, it is likely that the Ensembles will

perform better on Datasets with both a higher number of

Samples and a higher number of Features; particularly, it will

be interesting to note how the models perform on the Credit

and Ionosphere datasets.

Lastly, the datasets used here have been frequently used in the

academic community to test models, and several pre-

processing tasks have been implemented to optimize machine

learning models. However, to provide a general overview of

the models, as well as assess how well they perform on raw

data, without pre-processing techniques such as Feature-

selection of Hyper-parameter-selection, this paper has not

used any pre-processing techniques; this excludes cleaning

data, and filling null values with the mean of the column.

5. Results

All algorithms were tested on the Dataset mentioned, as well

as three traditional kNNs for k = 1, 3 and √𝑁 to test how large

the improvements in accuracy for the models were. The

following table summarizes the results. Accuracy was

calculated using the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100%

Table 2: Experimental Results

Dataset
KNN Random

KNN

Double Ensemble Single Ensemble Max

Accuracy

Max Accuracy

Model 1 3 √𝑁 5 10 15 20 5 10 15 20

Credit 72% 67% 67% 67% 70% 70% 78% 79% 68% 72% 81% 77% 81% SE-15

Diabetes 68% 65% 68% 68% 66% 69% 68% 71% 67% 69% 69% 69% 71% DE-20

Breast Cancer 78% 76% 78% 78% 94% 96% 97% 96% 95% 94% 95% 96% 97% DE-15

Ionosphere 82% 83% 82% 82% 82% 92% 92% 92% 93% 90% 94% 90% 94% SE-15

Ecoli 84% 87% 84% 63% 56% 60% 60% 59% 54% 46% 53% 57% 87% 3-KNN

Wine 95% 94% 95% 95% 96% 98% 98% 98% 96% 98% 98% 98% 98% DE, SE-[10, 15, 20]

Iris 93% 93% 93% 67% 67% 67% 67% 67% 67% 67% 67% 67% 93% 1, 3, sqrt (N)-KNN

Lung Cancer 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% 92% All

To begin with, it can be seen that in 5 out of 8 Datasets, the

Double Ensemble or Single Ensemble outperforms the

traditional kNN. Furthermore, this is often by a significant

margin, on average, 9.8%. This is a relatively high difference,

and further shows that the Ensemble techniques outperform

the traditional kNN for several types of datasets.

It is also noted that in both the Double Ensemble and the

Single Ensemble, a larger value for the base-learners is

associated with a generally larger accuracy. However, this is

not a significant linear trend, but rather, a generalized one.

The key observation is that there is often a significant

difference in accuracy between the number of base-learners

from 5 to 10, and a resultant diminished increase. Hence, it is

suggested that an optimal value for the base-learns in both

Double and Single Ensemble be set to 10.

Interestingly, the Random-k kNN performs rather poorly.

While it underperforms with the Ensembles, it performs on-

par with the traditional kNN. Hence, the random KNN is

likely not a fit option, and will have probably ‘compounded’

the individual errors.

The Lung Cancer dataset had all models perform with a 92%

accuracy, which is likely due to all models predicting the

same set of classes. The likely cause behind this relatively rare

event would be a lack of training data and limited testing data,

leading to the same answers, as randomization would not have

enough space to have significant effects.

The Iris and Ecoli datasets act as exceptions, with the

traditional kNNs outperforming all Ensembles, and by a high

margin. A further investigation into these datasets might

likely yield a reason for this. However, a likely potential cause

could be a high number of outliers, as well as all features

playing a significant role in classification-determination.

On average, the Double Ensemble outperforms the Single

Ensemble. However, the margin of error is relatively high,

because the outperformance is minimal. Hence, while the

Double Ensemble outperforms the Single Ensemble, it is

recommended that the Single Ensemble be used, because of

the trade-off between accuracy and prediction-time.

6. Double and Single Ensemble – Analysis

In response to the data results, it is clear that the Double and

Single Ensemble can regularly outperform the traditional

kNN. However, a thorough analysis of their advantages and

disadvantages is needed to assess their implications in a real-

world setting.

Advantages

A key advantage of the Double and Single Ensemble are their

reduction of bias. Bias refers to when a machine learning

model makes systematic errors, i. e. has a lower accuracy,

because of inaccurate trend-identification in the data. This

particularly occurs when a model underfits, which may occur

if there is a lack of many data points. The Ensembles reduce

bias by not being trained on all data-features.

Furthermore, they reduce variance, which refers to how

deeply a change in the training data affects the model’s

prediction. This is particularly important for data-sets where

the training data may not be fully accurate, or have many

missing values. The models reduce variance, like many other

Ensemble models, by not being trained on the complete

dataset.

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 362

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

While several effective Ensemble Machine Learning models

exist, the kNN double and single Ensemble create a highly

applicable instance, through a combination of the relative

simplicity of kNNs and error-reducing ensemble methods,

reducing some of the kNN’s major disadvantages.

For instance, when compared to a Random Forest, which

applies bagging to Decision Trees, an Ensemble k-NN as

created in this paper might prove more useful for

recommendation engines. This is because a kNN works by

creating user-neighborhoods, while a Random Forest, as an

eager learner, attempts to understand and build patterns.

These might be unnecessarily complicated, and potentially

inaccurate. By using an ensemble, a user may also be mapped

to better sub-categories, i. e. areas where neighborhoods

overlap due to shared interests. Experimentally evaluating

this hypothesis might be highly useful for the development of

recommendation engines.

A key advantage of the Double Ensemble over the Single

Ensemble is weighting the nearest neighbor: this is a problem

with the traditional kNN too, which does not place greater

importance on neighbors closer to the test-point, but rather,

values all k-nearest-neighbors equally. Since the double

Ensemble considers the closer neighbors more often, their

weightage increases.

The total number of neighbors considered is, where T is the

number of base-learners.

(𝑇)(𝑇 + 1)

2

It is important to note that T = kmax, i. e. the furthest neighbor

considered. If T =5, the 5th base-learner will consider the 5

nearest neighbors, while the 4th base learner will only consider

the 4 nearest neighbor. Hence, the Nth base-learner will

consider the N-nearest-neighbor.

The number of instances of the nth neighbor is: 𝑇 + 1 − 𝑛

Hence, to find the weightage, the number of instances is

divided by the total number of instances. Therefore:

𝑊(𝑛) =
2(𝑇 + 1 − 𝑛)

 (𝑇) (𝑇 + 1)

The below graph illustrates that the weight decreases linearly.

This is because T is a constant, while ‘n’ increases. In this

specific example, ‘T’ is taken as 3.

Figure 4: Demonstration of Weighting

Table 3: Sample Weight Calculation
‘n’ value Weightage

1 0.5

2 0.333

3 0.167

Total 1

This represents an advantage over the traditional kNN and

Single-Ensemble kNN, where each neighbor is given a

weightage of 1/k.

Disadvantages

A key disadvantage of kNNs is the high training-time,

because the model has to parse all data-points prior to making

a prediction, as a lazy-learner. By creating an Ensemble

approach, the computational complexity increases multi-fold,

relatively by the number of base-learners created. This effect

is squared for the Double-Ensemble, since there are two

Ensemble methods within each other.

Furthermore, optimizing the Ensemble kNNs would be harder

due to the introduction of a random effect, which removes the

kNN’s traditional stability: the same data point is always

classified into the same class. Because kNNs may be used for

medical applications, or other important fields, a lack of

stability can be a major drawback, and create uncertainty.

Finding the optimal ‘k’, or number of base-learners, would

also be harder.

Lastly, the data results showed that datasets with a small

number of features (such as the Iris Dataset) are not well

suited for the Ensemble kNNs, because the randomization of

data by splitting features does not effectively work.

7. Conclusion

This paper has investigated the design and applications of a

novel kNN model, coined the ‘Double Ensemble kNN’, built

on top of a ‘Single Ensemble kNN’ that uses randomized

feature-splitting to increase accuracy and take advantage of

the kNNs traditional stability and Ensemble methods

reduction of bias and variance to create a net model that

performs more accurately than the traditional kNN.

While the Ensemble methods have several disadvantages, the

higher accuracies, combined with other advantages, provide a

defining case for their use in real-world applications,

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 363

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

particularly datasets that contain a large number of features

and data points.

Further research may be conducted on the selection of an

optimal number of base-learners for both Ensembles, that

provides a midpoint for the tradeoff between accuracy and

computational-time. This might push the model closer to

Bayes Error, which is regarded as the lowest possible error

rate that can be traditionally achieved.

References

[1] Ning Zhang, Aiqun Wang, Naveed-Ul-Haq & Safia

Nosheen (2022) The impact of COVID-19 shocks on

the volatility of stock markets in technologically

advanced countries, Economic Research-Ekonomska

Istraživanja, 35: 1, 2191-2216, DOI:

10.1080/1331677X.2021.1936112

[2] Bollen et al., (2010), Twitter Mood Predicts the Stock

Market, https: //arxiv. org/pdf/1010.3003. pdf

[3] Mohan, Saloni; Mullapudi, Sahitya; Sammeta, Sudheer;

Vijayvergia, Parag; Anastasiu, David C. (2019). Stock

Price Prediction Using News Sentiment Analysis, doi:

10.1109/BigDataService.2019.00035

[4] Mohebbi et al, (2011), Google Correlate Whitepaper,

https: //static. googleusercontent. com/media/research.

google. com/en//pubs/archive/41695. pdf

[5] Baisantry, M., & Shukla, D., (2017), COMPARISON

OF DIFFERENT SIMILARITY MEASURES FOR

SELECTION OF OPTIMAL, INFORMATION-

CENTRIC BANDS OF HYPERSPECTRAL IMAGES,

https: //www.asprs. org/wp-

content/uploads/2018/04/Baisantry_M. pdf

[6] Arthur, D., & Vassilvitskii, S., k-means++: the

advantages of careful seeding, https: //theory. stanford.

edu/~sergei/papers/kMeansPP-soda. pdf

[7] Aubaidan et al., (2014), COMPARATIVE STUDY OF

K-MEANS AND K-MEANS++ CLUSTERING

ALGORITHMS ON CRIME DOMAIN, https:

//thescipub. com/pdf/jcssp.2014.1197.1206. pdf

[8] E. Fix and J. L. Hodges (1951): An Important

Contribution to Nonparametric Discriminant Analysis

and Density Estimation https: //www.jstor.

org/stable/1403796

[9] Hu, Li-Yu; Huang, Min-Wei; Ke, Shih-Wen; Tsai,

Chih-Fong (2016). The distance function effect on k-

nearest neighbor classification for medical datasets.

SpringerPlus, 5 (1), 1304–. doi: 10.1186/s40064-016-

2941-7

[10] Ahmed, M.,, (2021), Parametric and Non-parametric

Machine Learning Algorithm, https: //faun.

pub/parametric-and-nonparametric-machine-learning-

algorithm-6134d7155cc

[11] Raschka, S. (2018), STAT 479: Machine Learning

Lecture Notes https: //sebastianraschka.

com/pdf/lecture-notes/stat479fs18/02_knn_notes. pdf

[12] Hart, P. (1968). The condensed nearest neighbor rule

(Corresp.)., 14 (3), 515–516. doi:

10.1109/tit.1968.1054155

[13] G. Gates.: The Reduced Nearest Neighbour Rule. IEEE

Transactions onInformation Theory, 18, 431-433,

(1972)

[14] Har-peled et al., (2012), Approximate Nearest

Neighbor: Towards removing the curse of

dimensionality, https: //theoryofcomputing.

org/articles/v008a014/v008a014. pdf

[15] Li, S., Harner, E. J. & Adjeroh, D. A. Random KNN

feature selection-a fast and stable alternative to Random

Forests. BMC Bioinformatics 12, 450 (2011). https:

//doi. org/10.1186/1471-2105-12-450

[16] Breiman, L. Bagging predictors. Mach Learn 24, 123–

140 (1996). https: //doi. org/10.1007/BF00058655

[17] AlBaghdadi, Amer & Alkoot, Fuad. (2005). Bagging

KNN Classifiers using Different Expert Fusion

Strategies. .219-224.

[18] Gul et al., (2014), Ensemble of a subset of kNN

Classifiers, https: //link. springer.

com/content/pdf/10.1007/s11634-015-0227-5. pdf

[19] R. D. KING, C. FENG & A. SUTHERLAND (1995)

STATLOG: COMPARISON OF CLASSIFICATION

ALGORITHMS ON LARGE REAL-WORLD

PROBLEMS, Applied Artificial Intelligence, 9: 3, 289-

333, DOI: 10.1080/08839519508945477

[20] Michie, D. & Spiegelhalter, D. & Taylor, Charles.

(1999). Machine Learning, Neural and Statistical

Classification. Technometrics.37.10.2307/1269742.

[21] Ha, Sang & Nam, Nguyen & Nhan, Nguyen. (2016). A

Novel Credit Scoring Prediction Model based on

Feature Selection Approach and Parallel Random

Forest. Indian Journal of Science and

Technology.9.10.17485/ijst/2016/v9i20/92299.

[22] Bouaguel, Waad & Mufti, Ghazi & Limam, Mohamed.

(2013). A three-stage feature selection using quadratic

programming for credit scoring. Applied Artificial

Intelligence.27.721-

742.10.1080/08839514.2013.823327.

[23] García-Pedrajas, N., & Ortiz-Boyer, D. (2009),

Boosting k-nearest neighbor classifier by means of input

space projection, http: //www.stat. yale.

edu/~lc436/papers/KNN/Garcia-Pedrajas_2009. pdf

[24] Ebrahimpour, H., & Kouzani, A., Face Recognition

using Bagging KNN, http: //users. cecs. anu. edu.

au/~ramtin/ICSPCS/ICSPCS%2707/papers/198. pdf

[25] Farrelly, C., KNN Ensembles for Tweedie Regression:

The Power of Multiscale Neighborhoods, https: //arxiv.

org/pdf/1708.02122. pdf

[26] Domeniconi, C., & Yan., B., (2004), Nearest Neighbor

Ensemble, https: //citeseerx. ist. psu.

edu/viewdoc/download?doi=10.1.1.331.2665&rep=re

p1&type=pdf

[27] S. Shi, Y. Liu, Y. Huang, S. Zhu &Y. Liu, (2008) Active

Learning for kNN Based on Bagging Features, 2008

Fourth International Conference on Natural

Computation, 2008, pp.61-64, doi:

10.1109/ICNC.2008.868.

[28] Yu, Q., & Lendasse, A., (2009) Ensemble KNNs for

Bankruptcy Prediction, https: //www.researchgate.

net/publication/255669581_Ensemble_KNNs_for_Ban

kruptcy_Prediction

[29] Uddin, S., et al., (2022), Comparative performance

analysis of K‐nearest neighbour (KNN) algorithm and

its different variants for disease prediction, https:

//www.nature. com/articles/s41598-022-10358-x.

pdf?origin=ppub

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 364

http://www.ijsr.net/
https://arxiv.org/pdf/1010.3003.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/41695.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/41695.pdf
https://www.asprs.org/wp-content/uploads/2018/04/Baisantry_M.pdf
https://www.asprs.org/wp-content/uploads/2018/04/Baisantry_M.pdf
https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf
https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf
https://thescipub.com/pdf/jcssp.2014.1197.1206.pdf
https://thescipub.com/pdf/jcssp.2014.1197.1206.pdf
https://www.jstor.org/stable/1403796
https://www.jstor.org/stable/1403796
https://faun.pub/parametric-and-nonparametric-machine-learning-algorithm-6134d7155cc
https://faun.pub/parametric-and-nonparametric-machine-learning-algorithm-6134d7155cc
https://faun.pub/parametric-and-nonparametric-machine-learning-algorithm-6134d7155cc
https://sebastianraschka.com/pdf/lecture-notes/stat479fs18/02_knn_notes.pdf
https://sebastianraschka.com/pdf/lecture-notes/stat479fs18/02_knn_notes.pdf
https://theoryofcomputing.org/articles/v008a014/v008a014.pdf
https://theoryofcomputing.org/articles/v008a014/v008a014.pdf
https://doi.org/10.1007/BF00058655
https://link.springer.com/content/pdf/10.1007/s11634-015-0227-5.pdf
https://link.springer.com/content/pdf/10.1007/s11634-015-0227-5.pdf
https://doi.org/10.1080/08839519508945477
http://users.cecs.anu.edu.au/~ramtin/ICSPCS/ICSPCS%2707/papers/198.pdf
http://users.cecs.anu.edu.au/~ramtin/ICSPCS/ICSPCS%2707/papers/198.pdf
https://arxiv.org/pdf/1708.02122.pdf
https://arxiv.org/pdf/1708.02122.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2665&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2665&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.2665&rep=rep1&type=pdf
https://www.researchgate.net/publication/255669581_Ensemble_KNNs_for_Bankruptcy_Prediction
https://www.researchgate.net/publication/255669581_Ensemble_KNNs_for_Bankruptcy_Prediction
https://www.researchgate.net/publication/255669581_Ensemble_KNNs_for_Bankruptcy_Prediction
https://www.nature.com/articles/s41598-022-10358-x.pdf?origin=ppub
https://www.nature.com/articles/s41598-022-10358-x.pdf?origin=ppub
https://www.nature.com/articles/s41598-022-10358-x.pdf?origin=ppub

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[30] Tahir, A., Morison, G., Skelton, D. A. et al. (2020) A

Novel Functional Link Network Stacking Ensemble with

Fractal Features for Multichannel Fall Detection. Cogn

Comput 12, 1024–1042 (2020). https: //doi.

org/10.1007/s12559-020-09749-x

[31] Hassasnat, A., et al., (2014), Solving the Problem of the

K Parameter in the KNN Classifier Using an Ensemble

Learning Approach, https: //arxiv. org/pdf/1409.0919.

pdf

[32] Gowda, K.; Krishna, G. (1979). The condensed nearest

neighbor rule using the concept of mutual nearest

neighborhood (Corresp.)., 25 (4), 488–490. doi:

10.1109/tit.1979.1056066

Appendix 1 – Dataset Sources:

Credit: https: //archive. ics. uci. edu/ml/datasets/default+of+credit+card+clients

Diabetes: https: //www.kaggle. com/datasets/uciml/pima-indians-diabetes-database

Breast Cancer Wisconsin: https: //archive. ics. uci. edu/ml/datasets/breast+cancer+wisconsin+ (diagnostic)

Ionosphere: https: //archive. ics. uci. edu/ml/datasets/ionosphere

Ecoli: https: //archive. ics. uci. edu/ml/datasets/ecoli

Wine: https: //archive. ics. uci. edu/ml/datasets/wine

Iris: https: //www.kaggle. com/datasets/uciml/iris

Lung https: //archive. ics. uci. edu/ml/datasets/lung+cancer

Appendix 2– Python Code

from sklearn. neighbors import KNeighborsClassifier

from sklearn. model_selection import train_test_split

from sklearn. datasets import load_iris

from sklearn. metrics import accuracy_score

import pandas as pd

import numpy as np

import matplotlib. pyplot as plt

from sklearn. preprocessing import LabelEncoder

from sklearn. preprocessing import MinMaxScaler

import math

import random

from sklearn import datasets

class RunTest:

 def __init__ (self):

 self. num_columns = 1

 def compile (self):

 X_train, X_test, y_train, y_test = self. Ionosphere ()

 self. normal_KNN (X_train, X_test, y_train, y_test)

 self. random_K (X_train, X_test, y_train, y_test)

 self. DoubleEnsemble (X_train, X_test, y_train, y_test)

 self. SingleEnsemble (X_train, X_test, y_train, y_test)

 def LungCancer (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/lung_cancer_examples. csv')

 df = df. drop (['Name', 'Surname'], axis=1)

 X = df. drop ("Result", axis=1)

 y = df ['Result']

 X = X. fillna (0)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def Iris (self):

 dataset = datasets. load_iris ()

 X, y = dataset. data, dataset. target

 #X = X [: , [0, 2]]

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, stratify=y, test_size=0.7, random_state=42

)

 return (X_train, X_test, y_train, y_test)

 def Wine (self):

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 365

http://www.ijsr.net/
https://doi.org/10.1007/s12559-020-09749-x
https://doi.org/10.1007/s12559-020-09749-x
https://arxiv.org/pdf/1409.0919.pdf
https://arxiv.org/pdf/1409.0919.pdf
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/ecoli
https://archive.ics.uci.edu/ml/datasets/wine
https://www.kaggle.com/datasets/uciml/iris
https://archive.ics.uci.edu/ml/datasets/lung+cancer

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/winequalityN. csv')

 df ['type'] = df ['type']. astype ("category"). cat. codes

 X = df. drop ("type", axis=1)

 y = df ['type']

 X = X. fillna (0)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def Ecoli (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/ecoli. csv')

 le = LabelEncoder ()

 le. fit (df ["SITE"])

 df ["SITE"] = le. transform (df ["SITE"])

 df = df. drop (columns= ["SEQUENCE_NAME"])

 y = df. iloc [: , 7]

 X = df. iloc [: , 0: 6]

 X = X. fillna (0)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def LiverData (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/indian_liver_patient. csv')

 df ["Gender"] = df ["Gender"]. map ({"Male": 0, "Female": 1})

 indices_to_keep = ~df. isin ([np. nan, np. inf,-np. inf]). any (1)

 df = df [indices_to_keep]. astype (np. float64)

 df = df. dropna ()

 y = df ["Dataset"]

 y = y. map ({"1": 0, "2": 1})

 print (df)

 X = df

 X = X. drop (columns= ["Dataset"])

 X = X. fillna (0)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def Ionosphere (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/ionosphere_data_kaggle. csv')

 y = df ["label"]

 y = y. map ({"g": 1, "b": 0})

 X = df

 X = X. drop (columns= ["label"])

 X = X. fillna (0)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def WisconsinBreastCancer (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/BreastCancerWisconsin. csv')

 y = df ["diagnosis"]

 y = y. map ({"M": 1, "B": 0})

 X = df

 X = X. drop (columns= ["diagnosis"])

 X = X. fillna (0)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def IndianPrimaDiabetes (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/diabetes. csv')

 df = df. replace ("?", np. NaN)

 df = df. fillna (df. mean ())

 X = df. drop ('Outcome', axis=1)

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 366

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 y = df ['Outcome']

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def creditloading (self):

 df = pd. read_csv ('/Users/dhruvroongta/Downloads/cc_approvals. csv')

 df = df. replace ("?", np. NaN)

 df = df. fillna (df. mean ())

 for col in df. columns:

 # Check if the column is of object type

 if df [col]. dtypes == 'object':

 # Impute with the most frequent value

 df [col] = df [col]. fillna (df [col]. value_counts (). index [0])

 le = LabelEncoder ()

 self. num_columns = int (len (df. columns))

 for col in df. columns:

 # Compare if the dtype is object

 if df [col]. dtype=='object':

 # Use LabelEncoder to do the numeric transformation

 df [col]=le. fit_transform (df [col])

 df = df. drop ([df. columns [10], df. columns [13]], axis=1)

 df = df. values

 X, y = df [: , 0: 13], df [: , 13]

 scaler = MinMaxScaler (feature_range= (0, 1))

 rescaledX = scaler. fit_transform (X)

 X_train, X_test, y_train, y_test = train_test_split (

 X, y, test_size=0.2, random_state=42)

 return (X_train, X_test, y_train, y_test)

 def normal_KNN (self, X_train, X_test, y_train, y_test):

 knn_normal = KNeighborsClassifier (n_neighbors=1)

 knn_normal. fit (X_train, y_train)

 y_pred_normal = (knn_normal. predict (X_test))

 print ("KNN-1: ", accuracy_score (y_test, y_pred_normal))

 knn_normal = KNeighborsClassifier (n_neighbors=3)

 knn_normal. fit (X_train, y_train)

 y_pred_normal = (knn_normal. predict (X_test))

 print ("KNN-3: ", accuracy_score (y_test, y_pred_normal))

 knn_normal = KNeighborsClassifier (n_neighbors=int (math. sqrt (self. num_columns)))

 knn_normal. fit (X_train, y_train)

 y_pred_normal = (knn_normal. predict (X_test))

 print ("KNN-Sqrt (n) = ", int (math. sqrt (self. num_columns)), " ", accuracy_score (y_test, y_pred_normal))

 def random_K (self, X_train, X_test, y_train, y_test):

 overallArr = []

 for counter in range (1, 10):

 knn = KNeighborsClassifier (n_neighbors=random. randint (1, int (math. sqrt (self. num_columns))))

 knn. fit (X_train, y_train)

 y_pred = (knn. predict (X_test))

 overallArr. append (list (y_pred))

 results = pd. DataFrame (overallArr, columns=list (range (0, len (y_test))))

 finalResults = []

 for column in results:

 sum = (results [column]. sum ())

 if sum >= (len (results. index)) / 2:

 finalResults. append (1)

 else:

 finalResults. append (0)

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 367

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 acc = (accuracy_score (y_test, finalResults))

 print ("Random-K: ", acc)

 def SingleEnsemble (self, X_train, X_test, y_train, y_test):

 results = pd. DataFrame ()

 xpoints, ypoints = [], []

 for num1 in range (1, 5):

 overallArr = []

 num2 = 5

 # Actual r-knn starts here

 for counter in range (0, 5 * num1):

 X_train_sub = pd. DataFrame (X_train). sample (n=4, axis='columns')

 X_test_sub = pd. DataFrame (X_test) [X_train_sub. columns]

 y_predArr = []

 k = 1

 knn = KNeighborsClassifier (n_neighbors=k)

 knn. fit (X_train_sub, y_train)

 y_pred = (knn. predict (X_test_sub))

 y_predArr. append (y_pred)

 overallArr. append (list (y_pred))

 results = pd. DataFrame (overallArr, columns=list (range (0, len (y_test))))

 finalResults = []

 for column in results:

 sum = (results [column]. sum ())

 if sum >= (len (results. index)) / 2:

 finalResults. append (1)

 else:

 finalResults. append (0)

 acc = (accuracy_score (y_test, finalResults))

 print ("Single-Ensemble: ", 5 * num1, " ", acc)

 xpoints. append (num1)

 ypoints. append (acc)

 def DoubleEnsemble (self, X_train, X_test, y_train, y_test):

 results = pd. DataFrame ()

 xpoints, ypoints = [], []

 for num1 in range (1, 5):

 overallArr = []

 num2 = 5

 #Actual r-knn starts here

 for counter in range (0, 5*num1):

 X_train_sub = pd. DataFrame (X_train). sample (n = 4, axis = 'columns')

 X_test_sub = pd. DataFrame (X_test) [X_train_sub. columns]

 y_predArr = []

 for k in range (1, 1+num2):

 knn = KNeighborsClassifier (n_neighbors=k)

 knn. fit (X_train_sub, y_train)

 y_pred = (knn. predict (X_test_sub))

 y_predArr. append (y_pred)

 overallArr. append (list (y_pred))

 results = pd. DataFrame (overallArr, columns =list (range (0, len (y_test))))

 finalResults = []

 for column in results:

 sum = (results [column]. sum ())

 if sum >= (len (results. index)) /2:

 finalResults. append (1)

 else:

 finalResults. append (0)

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 368

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 acc = (accuracy_score (y_test, finalResults))

 print ("Double-Ensemble: ", 5*num1, " ", acc)

 xpoints. append (num1)

 ypoints. append (acc)

to_run = RunTest ()

to_run. compile ()

Paper ID: SR25604011054 DOI: https://dx.doi.org/10.21275/SR25604011054 369

http://www.ijsr.net/

